• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python stem.SnowballStemmer类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nltk.stem.SnowballStemmer的典型用法代码示例。如果您正苦于以下问题:Python SnowballStemmer类的具体用法?Python SnowballStemmer怎么用?Python SnowballStemmer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了SnowballStemmer类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: des_extrect

def des_extrect():
    filename_list = []
    file_stopwords = file('stopwords.txt', "r")
    stopwords = [line.strip() for line in file_stopwords.readlines()]  
    for file_name in os.listdir(DESCRIPTION_DIR):
        filename_list.append(file_name) 
    for filename in filename_list:
        path =  os.path.join(DESCRIPTION_DIR, filename)
        fr = file(path, 'r')
        fw = file(filename+'.des', 'w')
        soup = BeautifulSoup(fr.read())
        docs = soup.findAll('doc')
        for doc in docs:
            content = str(doc['title'] + doc.snippet.text)
            content =  re.sub("[\.\@\,\:\;\!\?\(\)]".decode("utf8"), "".decode("utf8"),content)
            stemmer = SnowballStemmer('english')
            content = content.split()
            pro_content = ''
            for w in content: 
                w = stemmer.stem(w)
                #去停用词
                if w not in stopwords:
                    pro_content += w + ' '
            fw.write(doc['rank'] + ' ' +pro_content+'\n')
        fw.close()
        fr.close()
开发者ID:delili,项目名称:WePS-2-Clustering,代码行数:26,代码来源:procress.py


示例2: text_token_data_generator

def text_token_data_generator():
    global id_text_index_map
    translation_table = string.maketrans(
        string.punctuation + string.uppercase, " " * len(string.punctuation) + string.lowercase
    )
    snowball_stemmer = SnowballStemmer("english")
    for f in glob.glob("json/text/*.json"):
        for line in open(f).readlines():
            extract_row = json.loads(line)
            id_text_index_map[extract_row["file_id"]] = len(id_text_index_map)
            visible_text = extract_row["visible_text"].encode("ascii", "ignore")
            visible_text = visible_text.translate(translation_table)
            visible_text = [
                snowball_stemmer.stem(word)
                for word in visible_text.split()
                if word not in ENGLISH_STOP_WORDS and len(word) > 1
            ]
            title = extract_row["title"].encode("ascii", "ignore")
            title = title.translate(translation_table)
            title = [
                "t^{}".format(snowball_stemmer.stem(word))
                for word in title.split()
                if word not in ENGLISH_STOP_WORDS and len(word) > 1
            ]
            visible_text.extend(title)
            yield " ".join(visible_text)
开发者ID:daxiongshu,项目名称:Dato-Sponsored-Page-Prediction,代码行数:26,代码来源:js2sp_converter.py


示例3: text_to_wordlist

def text_to_wordlist(text, remove_stopwords=False, stem_words=False):
    # Clean the text, with the option to remove stopwords and to stem words.
    
    # Convert words to lower case and split them
    text = text.lower().split()

    # Optionally, remove stop words
    if remove_stopwords:
        stops = set(stopwords.words("english"))
        text = [w for w in text if not w in stops]
    
    text = " ".join(text)
    
    #Remove Special Characters
    text=special_character_removal.sub('',text)
    
    #Replace Numbers
    text=replace_numbers.sub('n',text)

    # Optionally, shorten words to their stems
    if stem_words:
        text = text.split()
        stemmer = SnowballStemmer('english')
        stemmed_words = [stemmer.stem(word) for word in text]
        text = " ".join(stemmed_words)
    
    # Return a list of words
    return(text)
开发者ID:hitboys,项目名称:Toxic-Comment-Classification-Challenge,代码行数:28,代码来源:simple_lstm.py


示例4: ModelBuilder

class ModelBuilder():

    def __init__(self):
        self.model = {}
        self.stemmer = SnowballStemmer('english')

    def build(self):
        with open('data/candidate_synonyms.txt') as f:
            all_words = f.read().split('\n')
            for words in all_words:
                if words:
                    word, similar = words.split(',')
                    word, similar = self.stemmer.stem(word), self.stemmer.stem(similar)
                    if word not in self.model: self.model[word] = {}
                    self.model[word][similar] = 1
        return self

    def condense(self):
        condensed_model = {}
        for word, similars in self.model.items():
            for similar in similars:
                if self.model.get(similar, {}).has_key(word):
                    if condensed_model.has_key(word):
                        condensed_model[word].append(similar)
                    else:
                        condensed_model[word] = [similar]
        self.model = condensed_model
        return self
开发者ID:jayeshsidhwani,项目名称:simset_model,代码行数:28,代码来源:model_builder.py


示例5: frequency_analysis

def frequency_analysis(input_path, output_path, stopwords=None, n_most_common=50):
	recipes = []
	with open(input_path, 'r') as f:
		for i, line in enumerate(f):
			if line == '\n':
				break
			if i == 0:
				continue  # skip header
			fields = line.split('\t')
			recipes.append(fields[1].replace("\n", ""))
	recipe_text = re.sub("[^a-z ]", "", ' '.join(recipes))
	recipe_words = re.split("\s+", recipe_text)
	stemmer = SnowballStemmer("english")
	recipe_stems = [stemmer.stem(w) for w in recipe_words]
	if stopwords is not None:
		recipe_stems = filter(None, [s for s in recipe_stems if s not in stopwords])
	top_words = Counter(recipe_stems).most_common(n_most_common)

	# write to a file
	# do a second pass of the recipe to determine how many of the documents the term is in
	freq_table = open(output_path, 'wb')
	for elt in top_words:
		doc_freq = sum([elt[0] in recipe for recipe in recipes])
		freq_table.write(','.join([str(e) for e in elt]) +','+ str(doc_freq) + '\n')
	freq_table.close()
开发者ID:robert-giaquinto,项目名称:sentence_boundary_detection,代码行数:25,代码来源:frequency_analysis.py


示例6: norm_corpus

def norm_corpus(document_list):
    norm_doc_list = []
    
    # lowercase
    document_list = [word.lower() for word in document_list]

    
    # remove symbols in text
    symbols = ",.?!"
    for sym in symbols:
        document_list = [word.replace(sym,'') for word in document_list]
    
    
    # loop through each string i.e. review in the column
    for doc in document_list:
        doc = nltk.word_tokenize(doc)
        
        # remove stopwords
        doc = [word for word in doc if word not in stopwords.words('english')]
        
        # stem words
        stemmer = SnowballStemmer("english")
        doc = [stemmer.stem(word) for word in doc]
        
        # make tokenised text one string
        norm_doc = " ".join(doc)
        norm_doc_list.append(norm_doc)
    
    return norm_doc_list
开发者ID:mariaathena,项目名称:yelp_data_challenge,代码行数:29,代码来源:old_parse_tip_data.py


示例7: stemmed

def stemmed(text,language):
    stemmer= SnowballStemmer(language)
    tas=text.split()
    text=""
    for word in tas:
        text=" ".join((text,stemmer.stem(word)))
    return text.lstrip()
开发者ID:bobvdvelde,项目名称:inca,代码行数:7,代码来源:analysis.py


示例8: procesar

def procesar(request, identificador):
	lmtzr = WordNetLemmatizer()
	d = Documento.objects.get(id=identificador)
	
	#nltk.corpus.cess_esp.words()
	
	
	tokens = nltk.word_tokenize(d.contenido.replace('.', ' . '))
	#print tokens
	#scentence = d.contenido

	#scentence = scentence.lower() 

	words = tokens
	spanish_stemmer = SnowballStemmer('spanish')
	

	#This is the simple way to remove stop words
	important_words=[]
	for word in words:
		if word not in stopwords.words('spanish'):
		    important_words.append([word, lmtzr.lemmatize(word), spanish_stemmer.stem(word)])




	return render_to_response('templates/documentoProcesado.html', 
				{
					'original': d.contenido,
					'tokens': tokens,
					'important_words' : important_words,
					#'pos_tags': pos_tags,
					#'ne_chunks': ne_chunks.subtrees(),
				})
开发者ID:alexanderalfaro,项目名称:pqr,代码行数:34,代码来源:views.py


示例9: normalized_token

def normalized_token(token):
    """
    Use stemmer to normalize the token.
    建图时调用该函数,而不是在file_text改变词形的存储
    """
    stemmer = SnowballStemmer("english") 
    return stemmer.stem(token.lower())
开发者ID:carlsplace,项目名称:KeyphraseExtraction,代码行数:7,代码来源:ugly.py


示例10: preprocessing

def preprocessing(doc): #stop word as optional
        x = re.sub("[^a-zA-Z]", " ", doc) #only words
        x = x.lower().split()
        stemmer = SnowballStemmer("english") # use snowball
        stops = set(stopwords.words("english")) # set is faster than list
        x = [stemmer.stem(word) for word in x if word not in stops]
        return(x)
开发者ID:Kiminaka,项目名称:topic_model_intrusion_eval,代码行数:7,代码来源:evaluation_function.py


示例11: stemWordMatch2

def stemWordMatch2(question,sentence):


    question_tokens = set(nltk.word_tokenize(question))
    sentence_tokens=set(nltk.word_tokenize(sentence))

    #  Finding the match between two words from the same root  using Lancaster Stemmizer

    '''stemmer=LancasterStemmer()

    for i in sentence_tokens:
        stem_words_list.append(stemmer.stem(i))

    for i in question_tokens:
        question_words_list.append(stemmer.stem(i))

    #print 'Stem word list',stem_words_list
    #print 'Question word list', question_words_list

    stem_count=0
    for i in stem_words_list:
        #Finding the exact word match
        if i.lower() in [x.lower() for x in question_words_list]:
            #print 'Question word is',x
            #print 'Sentence word stem is :',i
            #print 'Match'
            stem_count=stem_count+6
    stem_word_match_counter.append(count)'''

    stem_word_match_counter=[]
    stem_words_list=[]
    question_words_list=[]

    #  Finding the match between two words from the same root  using Snowball Stemmizer

    snowball_stemmer = SnowballStemmer('english')

    for i in sentence_tokens:
        stem_words_list.append(snowball_stemmer.stem(i))

    for i in question_tokens:
        question_words_list.append(snowball_stemmer.stem(i))

    #print 'Stem word list',stem_words_list
    #print 'Question word list', question_words_list

    stem_count=0
    for i in stem_words_list:
        #Finding the exact word match
        if i.lower() in [x.lower() for x in question_words_list]:
            #print 'Question word is',x
            #print 'Sentence word stem is :',i
            #print 'Match'
            stem_count=stem_count+6
    #print 'Stem word count match score is :', stem_count

    return stem_count
开发者ID:AnirudhNarasimhamurthy,项目名称:Natural-Language-Processing-Fall-2015,代码行数:57,代码来源:WM.py


示例12: preprocess_tweets

def preprocess_tweets(tweets):
    stemmer = SnowballStemmer("english")
    stop = set(stopwords.words("english"))
    tweet_texts = [ " ".join(stemmer.stem(i) if len(i) > 1 else i
                                for i in ("".join(c for c in word if c not in string.punctuation)
                                            for word in tweet["text"].lower().split())
                                if i and i not in stop)
                    for tweet in tweets ]
    return list(set(tweet_texts))
开发者ID:jiwu14,项目名称:TweetAnalyzer,代码行数:9,代码来源:TweetAnalyzer.py


示例13: stem

    def stem(self, content):
        import re

        original_string = content
        new_content = re.sub('[^a-zA-Z0-9\n\.]', ' ', original_string)
        words = new_content.split()
        stemmer = SnowballStemmer('english')
        singles = [stemmer.stem(wordsa) for wordsa in words]
        return (' '.join(singles))
开发者ID:HarshSharma12,项目名称:fun-scripts,代码行数:9,代码来源:summary_tool_stemmed.py


示例14: __call__

 def __call__(self, doc ):
     snowball_stemmer = SnowballStemmer('english')
 	#tokenizer = RegexpTokenizer(r'\w+')
     #words=[self.wnl.lemmatize(t) for t in word_tokenize(doc)]
     words=[snowball_stemmer.stem(t) for t in word_tokenize(doc)]
     stop_words=set(stopwords.words('english'))
     stop_words.update(self.mystops)
     stop_words=list(stop_words)
     return [i.lower() for i in words if i not in stop_words]        
开发者ID:joswinkj,项目名称:question_answering,代码行数:9,代码来源:Tokenizers.py


示例15: stemLem

def stemLem(w):
	lemmatizer = WordNetLemmatizer()
	stemmer = SnowballStemmer("english")
	#stemmer = PorterStemmer()

	lem = lemmatizer.lemmatize(w)
	if len(w) > len(lem):
		return lem
	return stemmer.stem(w)
开发者ID:NSindre,项目名称:master-general,代码行数:9,代码来源:lemmatizeGeneralTerm.py


示例16: stemmed_top_user_words

def stemmed_top_user_words(usertxt, num=10):
	wl_usertxt = word_tokenize(usertxt.lower())
	num = min(num, len(wl_usertxt))

	snowball_stemmer = SnowballStemmer("english")
	stemmed_fl_usertxt = [snowball_stemmer.stem(w) for w in wl_usertxt if (len(w)>4 and w not in ewl)]
	fd_user_ls = [w[0] for w in FreqDist(Text(stemmed_fl_usertxt)).most_common(num)]

	return fd_user_ls
开发者ID:Reinaesaya,项目名称:munchee,代码行数:9,代码来源:text_mine.py


示例17: main

def main(input_file, dbname):
    """
        Main function. Connects to a database and reads a\
        CSV with the arousal and valence. Uses the sentiment \
        library to compute the sentiment of a new.

          :param input_file: the ANEW file
          :param dbname: the name of the database

    """

    # read ANEW file
    if not os.path.exists(input_file):
        logging.error('File %s does not exist', input_file)
        sys.exit(1)
    else:
        csvfile = open(input_file, 'r')
        reader = csv.reader(csvfile, delimiter=',')
        reader.next()  # skip headers
        stemmer = SnowballStemmer('spanish')
        anew = dict([(stemmer.stem(unicode(row[2], 'utf-8')),
                      {'valence': float(row[3]),
                       'arousal': float(row[5])}) for row in reader])

    couch = couchdb.Server()
    database = couch[dbname]
    logging.info('Established connection with the db %s', dbname)

    for element in database:
        doc = database.get(element)

        comments = " ".join([comment['cleaned_summary']
                            for comment in doc['comments']])
        description = " ".join([database.get(element)['title'],
                                doc['description']])

        sentiment_comments = get_sentiment(anew, comments)
        sentiment_description = get_sentiment(anew, description)

        if sentiment_comments is not None and sentiment_description is not None:
            logging.info('%s val: %.2f - %.2f aro: %.2f - %.2f : %s',
                         doc.id, sentiment_comments[0],
                         sentiment_description[0],
                         sentiment_comments[1],
                         sentiment_description[1],
                         doc['title'])
            doc['sentiments'] = {'comments':
                                {'valence': sentiment_comments[0],
                                 'arousal': sentiment_comments[1]},
                                 'description':
                                {'valence': sentiment_description[0],
                                 'arousal': sentiment_description[1]}}
            database.save(doc)

        else:
            logging.warn('%s could not be analyzed. skiping ...',
                         database.get(element)['title'])
开发者ID:albertfdp,项目名称:dtu-data-mining,代码行数:57,代码来源:sentiment.py


示例18: stem_text

    def stem_text(self):
        '''
        Perform stemming
        '''

        stemmer = SnowballStemmer("english")
        stemmed_sents = []
        for sent in self.tok_text:
            stemmed_sents.append([stemmer.stem(tok) for tok in sent])
        self.stem_text = stemmed_sents
开发者ID:emgrol,项目名称:false_review_detection,代码行数:10,代码来源:preprocess.py


示例19: prepare_request

def prepare_request(request, synonyms = False):
    #request = translate(request)
    request = re.sub(r"(\n)", " ", request.lower())
    request = re.sub(r"(-\n)", "", request)
    request = re.split("[^a-z0-9]", request)
    stop_words = stopwords.words('english')
    stemmer = SnowballStemmer('english')
    if synonyms == True:
        request = add_synonyms([word for word in request if word not in stop_words])
    request = [stemmer.stem(word) for word in request if (word not in stop_words) & (len(word) > 1) & (len(word) < 20)]
    return ' '.join(request)
开发者ID:Xsardas1000,项目名称:Search,代码行数:11,代码来源:vec_search.py


示例20: tokenize

def tokenize(resultList1):
    entrada=[]
    tokens = word_tokenize(resultList1)
    filtered_words = [w for w in tokens if not w in stopwords.words('spanish')]

    stemmer = SnowballStemmer('spanish')
    for i in filtered_words:
        stri = unicode(i,errors='replace')
        entrada.append(stemmer.stem(stri))

    return entrada
开发者ID:josearcosaneas,项目名称:RepositorioPara-la-entrega-del-TFG,代码行数:11,代码来源:ClasificadorResumen.py



注:本文中的nltk.stem.SnowballStemmer类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python stem.WordNetLemmatizer类代码示例发布时间:2022-05-27
下一篇:
Python stem.PorterStemmer类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap