• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python movie_reviews.words函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nltk.corpus.movie_reviews.words函数的典型用法代码示例。如果您正苦于以下问题:Python words函数的具体用法?Python words怎么用?Python words使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了words函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: train_with_movie_db

    def train_with_movie_db(self):
        """
        Training possible with movie reviews
        - this does not yield particularly good results
        """
        self.use_movie_reviews = True

        negids = movie_reviews.fileids('neg')
        posids = movie_reviews.fileids('pos')

        negfeats = [(self.feature_extraction_movie_reviews(movie_reviews.words(fileids=[f])),
                     "negative") for f in negids]
        posfeats = [(self.feature_extraction_movie_reviews(movie_reviews.words(fileids=[f])),
                     "positive") for f in posids]

        negcutoff = len(negfeats) * 3 / 4
        poscutoff = len(posfeats) * 3 / 4

        trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]
        testfeats = negfeats[negcutoff:] + posfeats[poscutoff:]

        DLOG("train on %d instances, test on %d instances" % (len(trainfeats), len(testfeats)))

        self.classifier = NaiveBayesClassifier.train(trainfeats)

        DLOG("accuracy: " + str(util.accuracy(self.classifier, testfeats)))
        DLOG(self.classifier.show_most_informative_features())
开发者ID:maagaard,项目名称:dmup,代码行数:27,代码来源:sentimentanalyzer.py


示例2: documentClassification

def documentClassification():

    from nltk.corpus import movie_reviews

    documents = [(list(movie_reviews.words(fileid)), category)
            for category in movie_reviews.categories()
            for fileid in movie_reviews.fileids(category)]

    random.shuffle(documents)

    all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
    word_features = all_words.keys()[:2000]

    def document_features(document):
        document_words = set(document)
        features = {}
        for word in word_features:
            features['contains(%s)' % word] = (word in document_words)
        return features

    print document_features(movie_reviews.words('pos/cv957_8737.txt')) 

    featuresets = [(document_features(d), c) for (d,c) in documents]
    train_set, test_set = featuresets[100:], featuresets[:100]
    classifier = nltk.NaiveBayesClassifier.train(train_set)

    print nltk.classify.accuracy(classifier, test_set)
    classifier.show_most_informative_features(5)
开发者ID:AkiraKane,项目名称:Python,代码行数:28,代码来源:c06_supervised_classification.py


示例3: category_by_movie

def category_by_movie():
    from nltk.corpus import movie_reviews as mr
    from nltk import FreqDist
    from nltk import NaiveBayesClassifier
    from nltk import classify
    from nltk.corpus import names
    from nltk.classify import apply_features
    import random

    documents = [(list(mr.words(f)), c) for c in mr.categories() for f in
mr.fileids(c)]
    random.shuffle(documents)

    all_words = FreqDist(w.lower() for w in mr.words())
    word_features = all_words.keys()[:2000]

    def document_features(document):
        document_words = set(document)
        features = {}
        for word in word_features:
            features['contains(%s)' % word] = (word in document_words)
        return features

    #print document_features(mr.words('pos/cv957_8737.txt'))
    #print documents[0]

    features = [(document_features(d), c) for (d, c) in documents]
    train_set, test_set = features[100:], features[:100]
    classifier = NaiveBayesClassifier.train(train_set)
    print classify.accuracy(classifier, train_set)
开发者ID:brenden17,项目名称:infinity,代码行数:30,代码来源:category_nltk.py


示例4: load_data

def load_data():
   global posfeats,negfeats
   negids = movie_reviews.fileids('neg')
   posids = movie_reviews.fileids('pos')
   negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
   posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
   return
开发者ID:sjayakum,项目名称:sentiment-analysis,代码行数:7,代码来源:NaiveBayesArticle.py


示例5: evaluate_classifier

def evaluate_classifier(featx):
    negids = movie_reviews.fileids('neg')
    posids = movie_reviews.fileids('pos')
 
    negfeats = [(featx(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
    posfeats = [(featx(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
 
    negcutoff = len(negfeats)*3/4
    poscutoff = len(posfeats)*3/4
 
    trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]
    testfeats = negfeats[negcutoff:] + posfeats[poscutoff:]
 
    classifier = NaiveBayesClassifier.train(trainfeats)
    refsets = collections.defaultdict(set)
    testsets = collections.defaultdict(set)
 
    for i, (feats, label) in enumerate(testfeats):
            refsets[label].add(i)
            observed = classifier.classify(feats)
            testsets[observed].add(i)
 
    print 'accuracy:', nltk.classify.util.accuracy(classifier, testfeats)
    print 'pos precision:', nltk.metrics.precision(refsets['pos'], testsets['pos'])
    print 'pos recall:', nltk.metrics.recall(refsets['pos'], testsets['pos'])
    print 'neg precision:', nltk.metrics.precision(refsets['neg'], testsets['neg'])
    print 'neg recall:', nltk.metrics.recall(refsets['neg'], testsets['neg'])
    classifier.show_most_informative_features()
开发者ID:zhougr1993,项目名称:Bayes_kick_momo_spam,代码行数:28,代码来源:test_sentiment.py


示例6: main

def main():
    negids = movie_reviews.fileids('neg')
    posids = movie_reviews.fileids('pos')
    negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
    posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
    negcutoff = int(len(negfeats) * 3 / 4)
    poscutoff = int(len(posfeats) * 3 / 4)
    trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]
    testfeats = negfeats[negcutoff:] + posfeats[poscutoff:]
    classifier = NaiveBayesClassifier.train(trainfeats)

    with open("output.json") as fin:
        sid = SentimentIntensityAnalyzer()
        data = json.load(fin)
    for key in data:
        reviews = data[key]["reviews"]
        for i in range(len(reviews)):
            text = reviews[i]["review"]
            sentiment_dict = {'positive_probability':0, 'label':'', 'negative_probability':0}
            prob = classifier.prob_classify(word_feats(text.split(" ")))
            classification = classifier.classify(word_feats(text.split(" ")))
            sentiment_dict['positive_probability'] = prob.prob('pos')
            sentiment_dict['negative_probability'] = prob.prob('neg')
            sentiment_dict['label'] = classification
            reviews[i]["sentiment"] = sentiment_dict
        data[key]["reviews"] = reviews
    with open('out_with_sentiment.json', 'w') as outfile:
        json.dump(data, outfile)
开发者ID:bifft2,项目名称:cs410FinalProject,代码行数:28,代码来源:sentiment.py


示例7: best_word_feats

 def best_word_feats(self, words):
     word_fd = FreqDist()
     label_word_fd = ConditionalFreqDist()
      
     for word in movie_reviews.words(categories=['pos']):
         word_fd.inc(word.lower())
         label_word_fd['pos'].inc(word.lower())
      
     for word in movie_reviews.words(categories=['neg']):
         word_fd.inc(word.lower())
         label_word_fd['neg'].inc(word.lower())
      
     # n_ii = label_word_fd[label][word]
     # n_ix = word_fd[word]
     # n_xi = label_word_fd[label].N()
     # n_xx = label_word_fd.N()
      
     pos_word_count = label_word_fd['pos'].N()
     neg_word_count = label_word_fd['neg'].N()
     total_word_count = pos_word_count + neg_word_count
      
     word_scores = {}
      
     for word, freq in word_fd.iteritems():
         pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
             (freq, pos_word_count), total_word_count)
         neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
             (freq, neg_word_count), total_word_count)
         word_scores[word] = pos_score + neg_score
      
     best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:10000]
     bestwords = set([w for w, s in best])
     return dict([(word, True) for word in words if word in bestwords])
开发者ID:dkaliyev,项目名称:TwitterAnalyser,代码行数:33,代码来源:NBClass.py


示例8: train

def train(test=False):

    negids = movie_reviews.fileids('neg')
    posids = movie_reviews.fileids('pos')


    negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
    posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]


    if(test):
        negcutoff = len(negfeats)*3/4
        poscutoff = len(posfeats)*3/4

        trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]
        testfeats = negfeats[negcutoff:] + posfeats[poscutoff:]

        print 'train on %d instances, test on %d instances' % (len(trainfeats), len(testfeats))

        classifier = NaiveBayesClassifier.train(trainfeats)
        print 'accuracy:', nltk.classify.util.accuracy(classifier, testfeats)

        classifier.show_most_informative_features()

    else:
        return NaiveBayesClassifier.train(negfeats+posfeats)
开发者ID:jnu,项目名称:texecutions,代码行数:26,代码来源:sentiment.py


示例9: maketrainset

 def maketrainset(movie_reviews, tokenizer, stemmer):
     negids = movie_reviews.fileids('neg')
     posids = movie_reviews.fileids('pos')
     negfeats = [(tokenizer(movie_reviews.words(fileids=[f]), stemmer), 'neg') for f in negids]
     posfeats = [(tokenizer(movie_reviews.words(fileids=[f]), stemmer), 'pos') for f in posids]
     trainfeats = negfeats + posfeats
     return trainfeats
开发者ID:askerry,项目名称:FGE_MISC,代码行数:7,代码来源:stimanalysisfuncs.py


示例10: GetHighInformationWordsChi

        def GetHighInformationWordsChi(num_bestwords):
            word_fd = FreqDist()
            label_word_fd = ConditionalFreqDist()
 
            for word in movie_reviews.words(categories=['pos']):
                word_fd[word.lower()] +=1
                label_word_fd['pos'][word.lower()] +=1
 
            for word in movie_reviews.words(categories=['neg']):
                word_fd[word.lower()] +=1
                label_word_fd['neg'][word.lower()] +=1
 
            pos_word_count = label_word_fd['pos'].N()
            neg_word_count = label_word_fd['neg'].N()
            total_word_count = pos_word_count + neg_word_count
 
            word_scores = {}
 
            for word, freq in word_fd.iteritems():
                pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
                    (freq, pos_word_count), total_word_count)
                neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
                    (freq, neg_word_count), total_word_count)
                word_scores[word] = pos_score + neg_score
 
            best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:num_bestwords]
            bestwords = set([w for w, s in best])
            return bestwords
开发者ID:ai2010,项目名称:machine_learning_for_the_web,代码行数:28,代码来源:views.py


示例11: setup

def setup():
    global bestwords

    word_fd = FreqDist()
    label_word_fd = ConditionalFreqDist()

    for word in movie_reviews.words(categories=['pos']):
        word_fd.inc(word.strip('\'"?,.').lower())
        label_word_fd['pos'].inc(word.lower())

    for word in movie_reviews.words(categories=['neg']):
        word_fd.inc(word.strip('\'"?,.').lower())
        label_word_fd['neg'].inc(word.lower())

    pos_word_count = label_word_fd['pos'].N()
    neg_word_count = label_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}

    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
            (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
            (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:10000]
    bestwords = set([w for w, s in best])
    return train(best_bigram_word_features)
开发者ID:seanfreiburg,项目名称:chicago_tweet_grabber,代码行数:30,代码来源:analyze_tweets.py


示例12: prepareSentimentClassifier

def prepareSentimentClassifier():

	documents = [(list(movie_reviews.words(fileid)), category)
		for category in movie_reviews.categories()
		for fileid in movie_reviews.fileids(category)]

	random.shuffle(documents)

	all_words = []
	for w in movie_reviews.words():
	    all_words.append(w.lower())

	all_words = nltk.FreqDist(all_words)
	
	global word_featuresSent
	word_featuresSent = list(all_words.keys())[:3000]

	featuresets = [(findFeaturesSentiment(rev), category) for (rev, category) in documents]
	
	training_set = featuresets[:1900]
	testing_set = featuresets[1900:]

	sentimentClassifier = nltk.NaiveBayesClassifier.train(training_set)

	print("Classifier accuracy percent:",(nltk.classify.accuracy(sentimentClassifier, testing_set))*100)

	return sentimentClassifier
开发者ID:koskinap,项目名称:Popularity_StyleOfPlay_DS2015_Group3_Soton,代码行数:27,代码来源:realTimeMatchAnalyzer.py


示例13: __init__

  def __init__(self):
    ## Best words feature extraction
    word_fd = FreqDist()
    label_word_fd = ConditionalFreqDist()
     
    for word in movie_reviews.words(categories=['pos']):
      word_fd.inc(word.lower())
      label_word_fd['pos'].inc(word.lower())
     
    for word in movie_reviews.words(categories=['neg']):
      word_fd.inc(word.lower())
      label_word_fd['neg'].inc(word.lower())

    pos_word_count = label_word_fd['pos'].N()
    neg_word_count = label_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count
     
    word_scores = {}
     
    for word, freq in word_fd.iteritems():
      pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
        (freq, pos_word_count), total_word_count)
      neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
        (freq, neg_word_count), total_word_count)
      word_scores[word] = pos_score + neg_score
     
    best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:10000]
    self.bestwords = set([w for w, s in best])
    self.train_classifier()
开发者ID:nginz,项目名称:blazor,代码行数:29,代码来源:sentiment_analyze.py


示例14: main

def main(argv):
    negids = movie_reviews.fileids('neg')
    posids = movie_reviews.fileids('pos')

    #print negids
 
    negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'negative') for f in negids]
    posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'positive') for f in posids]

    trainfeats =  posfeats+negfeats
    #print trainfeats
    #    break
    classifier = NaiveBayesClassifier.train(trainfeats)

    #classifier = pickle.load(open("classifier.p", "rb"))
    topicList = ["media", "sports", "news", "fashion", "finance", "politics"]
    for line in sys.stdin:
        try:
            tolk_posset = word_tokenize(line.rstrip())
            d = word_feats(tolk_posset)
            for topic in topicList:
                subjectFull = subj(line, topic)
                if not subjectFull == "No match":
                    #print d
                    print "LongValueSum:" + "" + str(line.split(":")[0])+","+subjectFull + "," + classifier.classify(d) + "\t" + "1"                    
        except:
                #print "Error"
                continue
开发者ID:BhavdeepSethi,项目名称:cloudBigData,代码行数:28,代码来源:sentiment.py


示例15: __init__

    def __init__(self):
        self.documents = [(list(movie_reviews.words(fileid)), category)
             for category in movie_reviews.categories()
             for fileid in movie_reviews.fileids(category)]
        random.shuffle(self.documents)

        all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
        word_features = all_words.keys()[:2000]
开发者ID:julius-jsr,项目名称:text_sum,代码行数:8,代码来源:docs.py


示例16: __init__

 def __init__(self, train1=True, train2=True, train3=True, train4=True):
     self.trainfeats = []        
     
     if train1:
         negids = movie_reviews.fileids('neg')
         posids = movie_reviews.fileids('pos')
          
         neg_movies = [(self.word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
         pos_movies = [(self.word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
         
         self.trainfeats = neg_movies + pos_movies
     
     if train2:
         f = open("out.txt", "r")
         
         negfeats = []
         posfeats = []
         for line in f:
             status = line[0]
             texto = line[2:]
 
             if status == '0':
                 negfeats.append((self.word_feats(texto.split(" ")), 'neg'))
             elif status == '1':
                 posfeats.append((self.word_feats(texto.split(" ")), 'pos'))               
     
         self.trainfeats += negfeats + posfeats
     
     if train3:    
         f = open("E:\\Workspace\\WS_TG\\analisador1\\AFINN\\AFINN-111.txt", 'r')
         for l in f:
             data = l.strip().split('\t')
             self.trainfeats.append( (self.word_feats(data[0]), 'neg' if int(data[1]) < 0 else 'pos'))
             
     if train4:
         f = open("E:\\Workspace\\WS_TG\\api\\trainning set.txt", 'r')
         pos = []
         neutral = []
         neg = []
         for line in f:
             if line.startswith("pos"):
                 pos.append(line)
             elif line.startswith("neutral"):
                 neutral.append(line)
             elif line.startswith("neg"):
                 neg.append(line)
                 
         print len(pos), len(neutral), len(neg)
         
         total = pos + neutral[:200] + neg
         
         for line in total:
             data = line.split(' .:. ')
             self.trainfeats.append( (self.word_feats(data[1].split()), data[0]) )
                    
     self.classifier = NaiveBayesClassifier.train(self.trainfeats)
     
     print self.classifier.show_most_informative_features(20)
开发者ID:phslfo,项目名称:TGSAT,代码行数:58,代码来源:analisador.py


示例17: __init__

 def __init__(self, load = False, loadFile = ""):
     if(load):
         self.loadClassifier(loadFile)
     else:
         negids = movie_reviews.fileids('neg')
         posids = movie_reviews.fileids('pos')
         negfeats = [(self.word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in movie_reviews.fileids('neg')]
         posfeats = [(self.word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in movie_reviews.fileids('pos')]
         trainfeats = negfeats + posfeats
         self.classifier = NaiveBayesClassifier.train(trainfeats)
开发者ID:rzsun,项目名称:Enquire,代码行数:10,代码来源:sentclassifier.py


示例18: build_classifier

 def build_classifier(self):
     documents = [(' '.join(movie_reviews.words(fileid)), category) for category in movie_reviews.categories() for fileid in movie_reviews.fileids(category)]
     random.shuffle(documents)
     
     all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words() if len(w) > 2)
     self.word_features = all_words.keys()[:2000]
     
     featuresets = [(self.document_features(d), c) for (d,c) in documents]
     classifier = nltk.NaiveBayesClassifier.train(featuresets)
     return classifier
开发者ID:hmason,项目名称:Color-Commentary-Teletype,代码行数:10,代码来源:teletype.py


示例19: train_classifiers

    def train_classifiers(self):
        negids = movie_reviews.fileids('neg')
        posids = movie_reviews.fileids('pos')
        negfeats = [(word_feats(
            movie_reviews.words(fileids=[f])), 'neg') for f in negids]
        posfeats = [(word_feats(
            movie_reviews.words(fileids=[f])), 'pos') for f in posids]
        trainfeats = negfeats + posfeats

        # train naive bayes
        self.classifier = NaiveBayesClassifier.train(trainfeats)
开发者ID:jlburgos,项目名称:DemiseAnalyzer,代码行数:11,代码来源:DemiseAnalyzer.py


示例20: train

def train(feature):
    negids = movie_reviews.fileids('neg')
    posids = movie_reviews.fileids('pos')

    negfeatures = [(feature(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
    posfeatures = [(feature(movie_reviews.words(fileids=[f])), 'pos') for f in posids]

    trainfeatures = negfeatures + posfeatures
    classifier = NaiveBayesClassifier.train(trainfeatures)

    return classifier
开发者ID:seanfreiburg,项目名称:chicago_tweet_grabber,代码行数:11,代码来源:analyze_tweets.py



注:本文中的nltk.corpus.movie_reviews.words函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python names.words函数代码示例发布时间:2022-05-27
下一篇:
Python movie_reviews.fileids函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap