• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python nltk.wordpunct_tokenize函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nltk.wordpunct_tokenize函数的典型用法代码示例。如果您正苦于以下问题:Python wordpunct_tokenize函数的具体用法?Python wordpunct_tokenize怎么用?Python wordpunct_tokenize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了wordpunct_tokenize函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: do_it

	def do_it(self, sources):

		for source in sources:
			words = nltk.wordpunct_tokenize(source.headline)
			words.extend(nltk.wordpunct_tokenize(source.summary))
			lowerwords=[x.lower() for x in words if len(x) > 1]
			self.ct += 1
			print self.ct, "TITLE",source.headline
			self.corpus.append(lowerwords)
			self.titles.append(source.headline)
			self.links.append(source.url)



		[[self.key_word_list.add(x) for x in self.top_keywords(self.nkeywords,doc,self.corpus)] for doc in self.corpus]

		self.ct=-1
		for doc in self.corpus:
		   self.ct+=1
		   print self.ct,"KEYWORDS"," ".join(self.top_keywords(self.nkeywords,doc,self.corpus))



		for document in self.corpus:
			vec=[]
			[vec.append(self.tfidf(word, document, self.corpus) if word in document else 0) for word in self.key_word_list]
			self.feature_vectors.append(vec)



		self.n=len(self.corpus)

		mat = numpy.empty((self.n, self.n))
		for i in xrange(0,self.n):
		  for j in xrange(0,self.n):
			mat[i][j] = nltk.cluster.util.cosine_distance(self.feature_vectors[i],self.feature_vectors[j])


		Z = linkage(mat, 'single')

		dendrogram(Z, color_threshold=self.t)





		clusters = self.extract_clusters(Z,self.t,self.n)
		
		stories = []

		for key in clusters:
			print "============================================="
			story = Story()  
			for id in clusters[key]:
				story.add_source(sources[id])
				print id,self.titles[id],sources[id].url
			stories.append(story)


		return stories
开发者ID:gitzain,项目名称:project-x,代码行数:60,代码来源:run2.py


示例2: getDomainUnigram

	def getDomainUnigram(self, directory = None):		
		collocations = set()  #collocation items
		ewordlists = list() #list of lists of words
		
		#extract words from essays
		if directory is not None:
			doclist = os.listdir(directory)
			for essay in doclist:
				dir_essay  = directory+'/'+essay
				etext = open(dir_essay,'r').read()
				tokens = nltk.wordpunct_tokenize(etext)
				tokens = [word.lower() for word in tokens]
				#stemming
				if self._stemoption ==True:
					st = PorterStemmer()
					tokens = [st.stem(t) for t in tokens]
				
				#extract the collocation for the given essay
				e_bigram = set(Mytext(tokens).collocations())
				collocations = collocations | e_bigram
				ewordlists.append(tokens)
				
		else: # using the mapped essay to calcuate the candidate bigrams
			#need to call mapessay fuction first
			for ins in self._data:
				if ins['essay'] is not None:
					etext = open(ins['essay'],'r').read()
					tokens = nltk.wordpunct_tokenize(etext)
					tokens = [word.lower() for word in tokens]
					#stemming
					if self._stemoption ==True:
						st = PorterStemmer()
						tokens = [st.stem(t) for t in tokens]
				
					#extract the collocation for the given essay
					e_bigram = set(Mytext(tokens).collocations())
					collocations = collocations | e_bigram
					ewordlists.append(tokens)
		
		#get collection of all essays under the specified directory / associated essays
		collection_text = TextCollection(ewordlists)
		
		itemlist = list()
		for (a, b) in collocations:
			itemlist.append(a)
			itemlist.append(b)
			
		itemlist = list(set(itemlist))	
		
		word_idf = []
		for i in range(len(itemlist)):
			word_idf.append((collection_text.idf(itemlist[i]), itemlist[i]))	
		
		word_idf = sorted(word_idf, key = operator.itemgetter(0))
		ave = 0
		if len(word_idf)!=0:
			ave = sum(map(operator.itemgetter(0), word_idf)) / len(word_idf)
			
		wlist =  [j for (i, j) in word_idf if i<ave]				
		return wlist
开发者ID:wencanluo,项目名称:Summarization,代码行数:60,代码来源:OrigReader.py


示例3: get_utterances

def get_utterances(utterances, line, category, wgram, cgram):
    tknzr = TweetTokenizer()
    gram_list = []
    # WORD GRAMS
    if wgram == 1:  # unigram
        wgram_list = tknzr.tokenize(line)
    elif wgram == 2:  # uni + bigram
        # unigram list
        tokens = nltk.wordpunct_tokenize(line)
        # bigram list
        finder = BigramCollocationFinder.from_words(tokens)
        scored = finder.score_ngrams(bigram_measures.raw_freq)
        bigram_list = sorted(bigram for bigram, score in scored)
        # res
        wgram_list = tknzr.tokenize(line) + bigram_list
    elif wgram == 3: # uni + bi + trigram
        # unigram list
        tokens = nltk.wordpunct_tokenize(line)
        # bigram list
        bi_finder = BigramCollocationFinder.from_words(tokens)
        bi_scored = bi_finder.score_ngrams(bigram_measures.raw_freq)
        bigram_list = sorted(bigram for bigram, biscore in bi_scored)  
        # trigram list
        tri_finder = TrigramCollocationFinder.from_words(tokens)
        tri_scored = tri_finder.score_ngrams(trigram_measures.raw_freq)
        trigram_list = sorted(trigram for trigram, triscore in tri_scored)
        # res
        wgram_list = tknzr.tokenize(line) + bigram_list + trigram_list
    
    # CHAR GRAMS
    cgram_list = []
    if cgram == 1:   # uni-chargram
        cgram_list = [line[i:i+1] for i in range(len(line)-1)]
    elif cgram == 2: # bi-chargram
        cgram_list = [line[i:i+2] for i in range(len(line)-1)]
    elif cgram == 3: # tri-chargram
        cgram_list = [line[i:i+3] for i in range(len(line)-1)]
        
    # RESULT
    if category == 'QA':            # non-task
        utterances.append((wgram_list + cgram_list, 0))
    elif category == 'Shopping':    # task
        utterances.append((wgram_list + cgram_list, 1))
    elif category == 'Travel':      # task
        utterances.append((wgram_list + cgram_list, 2))
    elif category == 'Hotel':       # task
        utterances.append((wgram_list + cgram_list, 3))
    elif category == 'Food':        # task
        utterances.append((wgram_list + cgram_list, 4))
    elif category == 'Art':         # task
        utterances.append((wgram_list + cgram_list, 5))
    elif category == 'Weather':     # task
        utterances.append((wgram_list + cgram_list, 6))
    elif category == 'Friends':     # task
        utterances.append((wgram_list + cgram_list, 7))
    elif category == 'Chat':        # chat
        utterances.append((wgram_list + cgram_list, 8))
    else:
        print utt_category,"ERROR"
开发者ID:SharleneL,项目名称:SpellErrorDetection,代码行数:59,代码来源:sklearn_lr_detect.py


示例4: getArticleKeywords

def getArticleKeywords(articles, maxLength=3):
    """ Parse titles of a number of articles and extract keywords that occur
    in them. A keyword is defined as a grouping of several words, with punctuation
    and stopwords (*nltk.corpus.stopwords.words('english')*) removed. Will 
    also add keywords from every input Article into the corresponding entry
    in articles list.
    
    Arguments
    ----------
    articles - a list of Articles.
    maxLength - int, the largest number of tokens per keyword.
    
    Returns
    ----------
    2-tuple with numpy.ndarrays of shape (len(articles),) with
        * strings of keywords
        * ints with the number of occurrences of the given keyword in all titles
    
    Example
    ----------
    "A general theory of the plasma of an arc" would return keywords:
        ['A', 'general', 'theory', 'of', 'the', 'plasma', 'of', 'an', 'arc',
        'A general', 'general theory', 'theory of', 'of the', 'the plasma',
        'plasma of', 'of an', 'an arc', 'A general theory', 'general theory of',
        'theory of the', 'of the plasma', 'the plasma of', 'plasma of an', 'of an arc']
    Out of these, ['A','of','the','an','of the','of an'] would be filtered out.
    """
    
    # Identify keywords.
    tokens=[]
    for title in [art.Title for art in articles]:
        tokens.extend(nltk.wordpunct_tokenize(title))
    
    # Filter out meaningless words and punctuation.
    tokens=filter(lambda s: not s.lower() in nltk.corpus.stopwords.words('english') and
        not s in string.punctuation, tokens)

    # Find keywords (length 1, 2, or 3) and how often they occur in all the titles.
    keywords,frequencies=findNGrams(tokens,lengths=range(1,maxLength+1))
    keywords=numpy.array(keywords)
    frequencies=numpy.array(frequencies)
    sortedIndices=frequencies.argsort()[::-1] # Go in descending order of frequencies.
    frequencies=frequencies[sortedIndices]
    keywords=keywords[sortedIndices]

    # Assign keywords to Articles.
    for i in range(len(articles)):
        artTitleTokens=nltk.wordpunct_tokenize(articles[i].Title) # The tokens of this article's title.
        # Filter out meaningless words and punctuation.
        artTitleTokens=filter(lambda s: not s.lower() in nltk.corpus.stopwords.words('english') and
            not s in string.punctuation, artTitleTokens)
        
        # Use the same algorithm but for this article only.
        artKeywords,artFreq=findNGrams(artTitleTokens,lengths=[1,2,3])
        articles[i].Keywords=artKeywords
    
    return keywords,frequencies
开发者ID:AleksanderLidtke,项目名称:AnalyseScinetificArticles,代码行数:57,代码来源:DownloadArticles.py


示例5: product_features

def product_features(product):
    name = nltk.FreqDist(normalize_words(nltk.wordpunct_tokenize(product['name'])))
    desc = nltk.FreqDist(normalize_words(nltk.wordpunct_tokenize(product['description'])))
    feats = {}
    for word in name.keys():
        feats['name(%s)' % word] = True

    for word in desc.keys():
        feats['description(%s)' % word] = True
    return feats
开发者ID:DistrictDataLabs,项目名称:intro-to-nltk,代码行数:10,代码来源:products.py


示例6: do_it

  def do_it(self):

    for feed in self.feeds:
        d = feedparser.parse(feed)
        for e in d['entries']:
           words = nltk.wordpunct_tokenize(self.clean_html(e['description']))
           words.extend(nltk.wordpunct_tokenize(e['title']))
           lowerwords=[x.lower() for x in words if len(x) > 1]
           self.ct += 1
           print self.ct, "TITLE",e['title']
           self.corpus.append(lowerwords)
           self.titles.append(e['title'])
           self.links.append(e['link'])



    [[self.key_word_list.add(x) for x in self.top_keywords(self.nkeywords,doc,self.corpus)] for doc in self.corpus]

    self.ct=-1
    for doc in self.corpus:
       self.ct+=1
       print self.ct,"KEYWORDS"," ".join(self.top_keywords(self.nkeywords,doc,self.corpus))



    for document in self.corpus:
        vec=[]
        [vec.append(self.tfidf(word, document, self.corpus) if word in document else 0) for word in self.key_word_list]
        self.feature_vectors.append(vec)



    self.n=len(self.corpus)

    mat = numpy.empty((self.n, self.n))
    for i in xrange(0,self.n):
      for j in xrange(0,self.n):
        mat[i][j] = nltk.cluster.util.cosine_distance(self.feature_vectors[i],self.feature_vectors[j])


    Z = linkage(mat, 'single')

    dendrogram(Z, color_threshold=self.t)





    clusters = self.extract_clusters(Z,self.t,self.n)
     
    for key in clusters:
       print "============================================="  
       for id in clusters[key]:
           print id,self.titles[id]
开发者ID:gitzain,项目名称:project-x,代码行数:54,代码来源:cluster.py


示例7: jaccard

def jaccard(sen_1, sen_2):
  tagged_sent = POSWrapper.pos_tag(nltk.wordpunct_tokenize(sen_1))
  words = [word for word,pos in tagged_sent if (pos == 'NN' or pos == 'NNS' or pos == 'JJ' or pos == '' or pos == 'VB' or pos == 'VBN' or pos == 'VBD' or pos == 'RB')]

  sen_set_1 = set(words)

  tagged_sent = POSWrapper.pos_tag(nltk.wordpunct_tokenize(sen_2))
  words = [word for word,pos in tagged_sent if (pos == 'NN' or pos == 'NNS' or pos == 'JJ' or pos == '' or pos == 'VB' or pos == 'VBN' or pos == 'VBD' or pos == 'RB')]

  sen_set_2 = set(words)

  jaccard_value = jaccard_distance(sen_set_1, sen_set_2)
  return jaccard_value
开发者ID:anhtukhtn,项目名称:Similarity,代码行数:13,代码来源:Literal.py


示例8: main

def main():
  stem = nltk.stem.LancasterStemmer()
  cleanword = lambda w : stem.stem(w.strip(w).lower())
  bib = btparse.load(sys.argv[1])
  aid = np.random.randint(len(bib))
  while ('abstract' in bib[aid].keys()) == False:
    aid = np.random.randint(len(bib))
  
  abstract = nltk.wordpunct_tokenize(bib[aid]['abstract']+" "+bib[aid]['title'])
  q_vec0 = sorted([x[0] for x in nltk.pos_tag(abstract) if x[1] in ("NN")])
  
  q_vec = []
  q_val  = []
  for w in q_vec0:
    w = cleanword(w)
    if len(w)>2 and w not in ignore_list and re.search('\\\\',w) == None:
      if (w in q_vec) == False:
        q_vec.append(w)
        q_val.append(1)
      else:
        q_val[-1] += 1
  
  q_val = np.array(q_val)/np.sqrt(np.dot(q_val,q_val))
  prob = np.zeros(len(bib))
  
  if pytools:
    progress = pytools.ProgressBar("Analysing",len(bib))
    progress.draw()
  for ind,entry in enumerate(bib):
    if ind != aid and ('abstract' in bib[ind].keys()):
      abstract = nltk.wordpunct_tokenize(bib[ind]['abstract']+" "+bib[ind]['title'])
      r_vec = sorted([x[0] for x in nltk.pos_tag(abstract) if x[1] in ("NN")])
      r_val = np.zeros(len(q_val))
      for w in r_vec:
        w = cleanword(w)
        if w in q_vec:
          r_val[q_vec.index(w)] += 1
      mod = np.dot(r_val,r_val)
      if mod > 0:
        prob[ind] = np.dot(r_val/np.sqrt(mod),q_val)
    if pytools: progress.progress()
  if pytools: print ""
  
  # sort based on probability (best first)
  inds_sort = np.argsort(prob)[::-1]
  
  print 'similar papers to:\n\t%s\n\t\tby: %s\n'%(bib[aid]['title'],bib[aid]['author'])
  for i in range(10):
    best = inds_sort[i]
    print '%3d.\t%s\n\t\tby: %s\n\t\tid = %3d, prob = %f\n'%(i+1,bib[best]['title'],bib[best]['author'],best,prob[best])
开发者ID:dfm,项目名称:pyarxiv,代码行数:50,代码来源:compareabstract-nltk.py


示例9: feedTech

def feedTech(request):
    corpus = []
    titles=[]
    ct = -1
    for feed in feeds:
        d = feedparser.parse(feed)
        for e in d['entries']:
            words = nltk.wordpunct_tokenize((e['description']))
            words.extend(nltk.wordpunct_tokenize(e['title']))
            lowerwords=[x.lower() for x in words if len(x) > 1]
            ct += 1
            print (ct, "TITLE",e['title'])
            corpus.append(lowerwords)
            titles.append(e['title'])
    return render(request, 'dash/feeds.html')
开发者ID:satyam07,项目名称:BlueDash,代码行数:15,代码来源:views.py


示例10: tag_files_for_cross_validation

def tag_files_for_cross_validation(file_list, tmp_models):
    # first clean CV files folder
    if os.path.exists(CV_FILES_PATH_DEFAULT):
        shutil.rmtree(CV_FILES_PATH_DEFAULT)
    if os.path.exists(CV_FILES_PATH_PUNCT):
        shutil.rmtree(CV_FILES_PATH_PUNCT)
    if os.path.exists(CV_FILES_PATH_LOWER):
        shutil.rmtree(CV_FILES_PATH_LOWER)
    if os.path.exists(CV_FILES_PATH_LOWER_PUNCT):
        shutil.rmtree(CV_FILES_PATH_LOWER_PUNCT)

    # then create new CV folders
    os.makedirs(CV_FILES_PATH_DEFAULT)
    os.makedirs(CV_FILES_PATH_PUNCT)
    os.makedirs(CV_FILES_PATH_LOWER)
    os.makedirs(CV_FILES_PATH_LOWER_PUNCT)

    for file_name in file_list:
        path = ORIGINAL_STORIES + '/' + file_name + '.txt'

        if not os.path.isfile(path):
            print('File ' + path + ' does not exist!')
            continue

        content = get_content(path)
        content_lower = content.lower()
        tokenized_content = nltk.wordpunct_tokenize(content)
        tokenized_content_punct = nltk.word_tokenize(content)
        tokenized_content_lower = nltk.wordpunct_tokenize(content_lower)
        tokenized_content_lower_punct = nltk.word_tokenize(content_lower)

        tagged_content = tag_tokens_with_model(tokenized_content, tmp_models.default, lowercase=False, message=False)
        tagged_file_path = CV_FILES_PATH_DEFAULT + '/' + file_name + '.tsv'
        write_tagged_content_to_file(tagged_content, tagged_file_path, message=False)

        tagged_content = tag_tokens_with_model(tokenized_content_punct, tmp_models.punct, lowercase=False,
                                               message=False)
        tagged_file_path = CV_FILES_PATH_PUNCT + '/' + file_name + '.tsv'
        write_tagged_content_to_file(tagged_content, tagged_file_path, message=False)

        tagged_content = tag_tokens_with_model(tokenized_content_lower, tmp_models.lower, lowercase=True, message=False)
        tagged_file_path = CV_FILES_PATH_LOWER + '/' + file_name + '.tsv'
        write_tagged_content_to_file(tagged_content, tagged_file_path, message=False)

        tagged_content = tag_tokens_with_model(tokenized_content_lower_punct, tmp_models.lower_punct, lowercase=True,
                                               message=False)
        tagged_file_path = CV_FILES_PATH_LOWER_PUNCT + '/' + file_name + '.tsv'
        write_tagged_content_to_file(tagged_content, tagged_file_path, message=False)
开发者ID:thorina,项目名称:strojno-ucenje,代码行数:48,代码来源:models.py


示例11: calculate_language_scores

def calculate_language_scores(text):
    """
    Calculate probability of given text to be written in several languages and
    return a dictionary that looks like {'french': 2, 'spanish': 4, 'english': 0}.

    :param text: Text to analyze.
    :type text: str

    :return: Dictionary with languages and unique stopwords seen in analyzed text.
    :rtype: dict(str -> int)

    :raises: TypeError
    """
    if not isinstance(text, basestring):
        raise TypeError("Expected basestring, got '%s' instead" % type(text))
    if not text:
        return {}

    languages_ratios = {}

    # Split the text into separate tokens, using natural language punctuation signs.
    tokens = wordpunct_tokenize(text)
    tokenized_words = [word.lower() for word in tokens]

    for language in stopwords.fileids():
        stopwords_set = set(stopwords.words(language))
        words_set = set(tokenized_words)
        common_elements = words_set.intersection(stopwords_set)
        languages_ratios[language] = len(common_elements)  # language "score"

    return languages_ratios
开发者ID:Autoscan,项目名称:golismero,代码行数:31,代码来源:natural_language.py


示例12: translateHinglishTweets

def translateHinglishTweets(tweets_text):
	counter = 0
	tweets_text_translated = []
	n = len(tweets_text)

	open_file = open("dictionary.pickle", "rb")
	dictionary = pickle.load(open_file)
	open_file.close()

	english_stopwords_set = set(stopwords.words('english'))

	for i in range(n):
		text = tweets_text[i]
		translated_text = ""
		tokens = wordpunct_tokenize(text)
		words = [word.lower() for word in tokens]
		for word in words:
			if word in english_stopwords_set:
				translated_text = translated_text + " " + word
			elif (word in dictionary):
				#print word + "-" + dictionary[word]
				translated_text = translated_text + " " + dictionary[word]
				counter = counter + 1
			else:
				translated_text = translated_text + " " + word
		tweets_text_translated.append(translated_text)

	#print counter
	return tweets_text_translated
开发者ID:anant14014,项目名称:TwitterHinglishTranslation,代码行数:29,代码来源:analyzeTweets.py


示例13: statScore

def statScore(text,d_index):
	tokens = nltk.wordpunct_tokenize(text)
	val = 0
	for token in tokens:
		w_index = vocabulary.index(token)
		val = val + self.stat_lte[w_index][d_index]
	return val
开发者ID:saurabhmaurya06,项目名称:ADM,代码行数:7,代码来源:sentenceScoring.py


示例14: tokenize

def tokenize(text):
    """This handles tokenizing and normalizing everything."""
    return [
        token.lower()
        for token in nltk.wordpunct_tokenize(text)
        if token.isalnum()
    ]
开发者ID:erochest,项目名称:c18sgml,代码行数:7,代码来源:add_pos.py


示例15: convert_to_weka

def convert_to_weka(src, des, voc):
    stemmer = nltk.LancasterStemmer()
    word_reg = re.compile('[0-9A-Za-z]+')
    
    des.write('@relation review_rate\n')
    des.write('\n')
    
    for word in voc:
        des.write('@attribute ' + word + ' real\n')
    des.write('@attribute rate {s1,s2,s3,s4,s5}\n')
    des.write('\n')
    
    des.write('@data\n')
    for line in iter(src.readline, ''):
        feature_vector = []
        try:
            rate, title, review = [item.strip() for item in line.split('\t')[5:8]]
        except (IndexError, ValueError):
            continue
        ws = set([])
        for w in nltk.wordpunct_tokenize(title + ' ' + review):
            m = word_reg.match(w)
            if m:
                ws.add(stemmer.stem(m.group(0).lower()))
        for w in voc:
            if w in ws:
                feature_vector.append('1')
            else:
                feature_vector.append('0')
        des.write(','.join(feature_vector) + ',' + 's' + str(int(math.ceil(float(rate)))) + '\n')
        
    return
开发者ID:yaocheng-cs,项目名称:misc,代码行数:32,代码来源:converter.py


示例16: findBestWorstDress

def findBestWorstDress(tweeters):
	possibleBestDress = []
	possibleWorstDress = []
	bestDressPat = re.compile(".*best dress.*",re.IGNORECASE)
	worstDressPat = re.compile(".*worst dress.*",re.IGNORECASE)
	pat = ""
	for twtr in tweeters:
		for twt in twtr.tweets:
			properNoun =[]
			if bestDressPat.match(twt.text):
				pat = "best"
			elif worstDressPat.match(twt.text):
				pat = "worst"
			else:
				continue
			firstHalfOfTweet = re.search("(?i).*(?=%s)" % pat,twt.text)
			tokenizedText = nltk.wordpunct_tokenize(firstHalfOfTweet.group())

			if tokenizedText:
				properNoun = extractProperNouns(tokenizedText)
				for pn in properNoun:
					if len(pn.split())==2 :
						if pat == 'best':
							possibleBestDress.append(pn)
						else:
							possibleWorstDress.append(pn)

	bestData = collections.Counter(possibleBestDress)
	worstData = collections.Counter(possibleWorstDress)
	print("\n\nList of Best Dressed:\n========================")
	for host in bestData.most_common()[0:5]:
		print(host[0])
	print("\n\nList of Worst Dressed:\n========================")
	for host in worstData.most_common()[0:5]:
		print(host[0])
开发者ID:ChosunOne,项目名称:Tweet_Analysis,代码行数:35,代码来源:gg.py


示例17: write_to_mod_html_file

def write_to_mod_html_file(sentences,locs,tex):
	global count
	g_dic = group_locs_by_sentences(locs)
	ll= []
	for l in g_dic.keys():
		ll.append(l)
	ll.sort(cmp=cmp_by_ind)
	for (x,y) in ll:
		l = g_dic[(x,y)]
		sen = sentences[x]
		slash_n_split = sen.splitlines()
		wds = reg_remove_special_chars.sub(r' ',slash_n_split[y])
		words = nltk.wordpunct_tokenize(wds)
		l.sort(cmp=cmp_by_ind)
		for (h,k) in l:
			words[h] = """<i style="color:red">"""+words[h]
			words[k] = words[k]+'</i>'
		
		words = ' '.join(words)
		slash_n_split[y] = words
		sentences[x] = '\n'.join(slash_n_split)
	t = '\n'.join(sentences)

	f = open('html/%d_mod.html'%count, "w")
	t = reg_replace_slashn.sub(r'<br/>',t)
	f.write(t)
	f.close()
	count +=1
开发者ID:sainath-vellal,项目名称:birdinginfo,代码行数:28,代码来源:4.py


示例18: word_feats

def word_feats(words):
    feats={}
    words=words.strip()
    hasbadw=0
    hasyou=0
    sentences=0
    for sentense in re.split(r' *[\.\?!]["\)\]]* *', words):
        sentences+=1
        for word in nltk.wordpunct_tokenize(sentense):
            for curse in badwords:
                if word.lower().endswith(curse.lower()) or word.lower().startswith(curse.lower()):
                    hasbadw+=1
                    break
                    
            if word.lower() in ("you","u","ur","your","urs","urz","yours"):
                hasyou+=1
        

    feats["you"]=hasyou
    feats["badw"]=hasbadw 
    feats["length"]= len(words)
    feats["caps"]=len(re.findall('[A-Z]', words))
    feats["smalls"]=len(re.findall('[a-z]', words))
    feats["sentences"]=sentences
    feats["capsratio"]=float(feats["caps"])/len(words)
    featslist=[]
    for k,v in feats.iteritems():
        featslist.append(v)
    return featslist
开发者ID:hrishikeshio,项目名称:insult,代码行数:29,代码来源:rf.py


示例19: _calculate_languages_ratios

def _calculate_languages_ratios(text): 
    """
    Calculate probability of given text to be written in several languages and
    return a dictionary that looks like {'french': 2, 'spanish': 4, 'english': 0}
    
    @param text: Text whose language want to be detected
    @type text: str
    
    @return: Dictionary with languages and unique stopwords seen in analyzed text
    @rtype: dict
    """

    languages_ratios = {}

    '''
    nltk.wordpunct_tokenize() splits all punctuations into separate tokens
    '''

    tokens = wordpunct_tokenize(text)
    words = [word.lower() for word in tokens]

    # Compute per language included in nltk number of unique stopwords appearing in analyzed text
    for language in stopwords.fileids():
        stopwords_set = set(stopwords.words(language))
        words_set = set(words)
        common_elements = words_set.intersection(stopwords_set)

        languages_ratios[language] = len(common_elements) # language "score"

    return languages_ratios
开发者ID:annamarie-g,项目名称:capstone_project,代码行数:30,代码来源:clean_dataframe.py


示例20: get_bigram_dict

def get_bigram_dict(filename):
    input_file = codecs.open(filename, 'r', encoding='utf8')
    content = input_file.read()
    dic = {}
    tokens = nltk.wordpunct_tokenize(content)
    finder = BigramCollocationFinder.from_words(tokens)
    return finder.ngram_fd
开发者ID:jasoncao11,项目名称:myscripts,代码行数:7,代码来源:bigram_fre.py



注:本文中的nltk.wordpunct_tokenize函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python nltk.CFG类代码示例发布时间:2022-05-27
下一篇:
Python nltk.word_tokenize函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap