• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python api.save_image函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nipy.io.api.save_image函数的典型用法代码示例。如果您正苦于以下问题:Python save_image函数的具体用法?Python save_image怎么用?Python save_image使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了save_image函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_save3

def test_save3():
    # A test to ensure that when a file is saved, the affine
    # and the data agree. In this case, things don't agree:
    # i) the pixdim is off
    # ii) makes the affine off
    step = np.array([3.45,2.3,4.5,6.9])
    shape = (13,5,7,3)
    mni_xyz = mni_csm(3).coord_names
    cmap = AT(CS('jkli'),
              CS(('t',) + mni_xyz[::-1]),
              from_matvec(np.diag([0,3,5,1]), step))
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    # with InTemporaryDirectory():
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        tmp = load_image(TMP_FNAME)
        # Detach image from file so we can delete it
        data = tmp.get_data().copy()
        img2 = api.Image(data, tmp.coordmap, tmp.metadata)
        del tmp
    assert_equal(tuple([img.shape[l] for l in [3,2,1,0]]), img2.shape)
    a = np.transpose(np.asarray(img), [3,2,1,0])
    assert_false(np.allclose(img.affine, img2.affine))
    assert_true(np.allclose(a, img2.get_data()))
开发者ID:fabianp,项目名称:nipy,代码行数:25,代码来源:test_save.py


示例2: test_save2b

def test_save2b():
    # A test to ensure that when a file is saved, the affine and the
    # data agree. This image comes from a NIFTI file This example has
    # a non-diagonal affine matrix for the spatial part, but is
    # 'diagonal' for the space part.  this should raise a warnings
    # about 'non-diagonal' affine matrix

    # make a 5x5 transformatio
    step = np.array([3.45,2.3,4.5,6.9])
    A = np.random.standard_normal((4,4))
    B = np.diag(list(step)+[1])
    B[:4,:4] = A

    shape = (13,5,7,3)
    cmap = api.AffineTransform.from_params('ijkt', 'xyzt', B)

    data = np.random.standard_normal(shape)

    img = api.Image(data, cmap)

    save_image(img, tmpfile.name)
    img2 = load_image(tmpfile.name)
    yield assert_false, np.allclose(img.affine, img2.affine)
    yield assert_true, np.allclose(img.affine[:3,:3], img2.affine[:3,:3])
    yield assert_equal, img.shape, img2.shape
    yield assert_true, np.allclose(np.asarray(img2), np.asarray(img))
开发者ID:Hiccup,项目名称:nipy,代码行数:26,代码来源:test_save.py


示例3: group_analysis

def group_analysis(design, contrast):
    """ Compute group analysis effect, t, sd for `design` and `contrast`

    Saves to disk in 'group' analysis directory

    Parameters
    ----------
    design : {'block', 'event'}
    contrast : str
        contrast name
    """
    array = np.array # shorthand
    # Directory where output will be written
    odir = futil.ensure_dir(futil.DATADIR, 'group', design, contrast)

    # Which subjects have this (contrast, design) pair?
    subj_con_dirs = futil.subj_des_con_dirs(design, contrast)
    if len(subj_con_dirs) == 0:
        raise ValueError('No subjects for %s, %s' % (design, contrast))

    # Assemble effects and sds into 4D arrays
    sds = []
    Ys = []
    for s in subj_con_dirs:
        sd_img = load_image(pjoin(s, "sd.nii"))
        effect_img = load_image(pjoin(s, "effect.nii"))
        sds.append(sd_img.get_data())
        Ys.append(effect_img.get_data())
    sd = array(sds)
    Y = array(Ys)

    # This function estimates the ratio of the fixed effects variance
    # (sum(1/sd**2, 0)) to the estimated random effects variance
    # (sum(1/(sd+rvar)**2, 0)) where rvar is the random effects variance.

    # The EM algorithm used is described in:
    #
    # Worsley, K.J., Liao, C., Aston, J., Petre, V., Duncan, G.H.,
    #    Morales, F., Evans, A.C. (2002). \'A general statistical
    #    analysis for fMRI data\'. NeuroImage, 15:1-15
    varest = onesample.estimate_varatio(Y, sd)
    random_var = varest['random']

    # XXX - if we have a smoother, use
    # random_var = varest['fixed'] * smooth(varest['ratio'])

    # Having estimated the random effects variance (and possibly smoothed it),
    # the corresponding estimate of the effect and its variance is computed and
    # saved.

    # This is the coordmap we will use
    coordmap = futil.load_image_fiac("fiac_00","wanatomical.nii").coordmap

    adjusted_var = sd**2 + random_var
    adjusted_sd = np.sqrt(adjusted_var)

    results = onesample.estimate_mean(Y, adjusted_sd) 
    for n in ['effect', 'sd', 't']:
        im = api.Image(results[n], copy(coordmap))
        save_image(im, pjoin(odir, "%s.nii" % n))
开发者ID:dohmatob,项目名称:nipy,代码行数:60,代码来源:ds105_example.py


示例4: save

 def save(self):
     """
     Save current Image data to disk
     """
     if not self.clobber and path.exists(self.filename):
         raise ValueError('trying to clobber existing file')
     save_image(self._im, self.filename)
     self._flushed = True
     del(self._im)
开发者ID:Hiccup,项目名称:nipy,代码行数:9,代码来源:model.py


示例5: test_save1

def test_save1():
    # A test to ensure that when a file is saved, the affine and the
    # data agree. This image comes from a NIFTI file

    img = load_image(funcfile)
    save_image(img, tmpfile.name)
    img2 = load_image(tmpfile.name)
    yield assert_true, np.allclose(img.affine, img2.affine)
    yield assert_equal, img.shape, img2.shape
    yield assert_true, np.allclose(np.asarray(img2), np.asarray(img))
开发者ID:Hiccup,项目名称:nipy,代码行数:10,代码来源:test_save.py


示例6: test_save1

def test_save1():
    # A test to ensure that when a file is saved, the affine and the
    # data agree. This image comes from a NIFTI file
    img = load_image(funcfile)
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        img2 = load_image(TMP_FNAME)
        assert_array_almost_equal(img.affine, img2.affine)
        assert_equal(img.shape, img2.shape)
        assert_array_almost_equal(img2.get_data(), img.get_data())
        del img2
开发者ID:fabianp,项目名称:nipy,代码行数:11,代码来源:test_save.py


示例7: fixed_effects

def fixed_effects(subj, design):
    """ Fixed effects (within subject) for FIAC model

    Finds run by run estimated model results, creates fixed effects results
    image per subject.

    Parameters
    ----------
    subj : int
        subject number 1..6 inclusive
    design : {'standard'}
        design type
    """
    # First, find all the effect and standard deviation images
    # for the subject and this design type
    path_dict = futil.path_info_design(subj, design)
    rootdir = path_dict['rootdir']
    # The output directory
    fixdir = pjoin(rootdir, "fixed")
    # Fetch results images from run estimations
    results = futil.results_table(path_dict)
    # Get our hands on the relevant coordmap to save our results
    coordmap = futil.load_image_fiac("_%02d" % subj,
                                     "wanatomical.nii").coordmap
    # Compute the "fixed" effects for each type of contrast
    for con in results:
        fixed_effect = 0
        fixed_var = 0
        for effect, sd in results[con]:
            effect = load_image(effect).get_data()
            sd = load_image(sd).get_data()
            var = sd ** 2

            # The optimal, in terms of minimum variance, combination of the
            # effects has weights 1 / var
            #
            # XXX regions with 0 variance are set to 0
            # XXX do we want this or np.nan?
            ivar = np.nan_to_num(1. / var)
            fixed_effect += effect * ivar
            fixed_var += ivar

        # Now, compute the fixed effects variance and t statistic
        fixed_sd = np.sqrt(fixed_var)
        isd = np.nan_to_num(1. / fixed_sd)
        fixed_t = fixed_effect * isd

        # Save the results
        odir = futil.ensure_dir(fixdir, con)
        for a, n in zip([fixed_effect, fixed_sd, fixed_t],
                        ['effect', 'sd', 't']):
            im = api.Image(a, copy(coordmap))
            save_image(im, pjoin(odir, '%s.nii' % n))
开发者ID:dohmatob,项目名称:nipy,代码行数:53,代码来源:ds105_example.py


示例8: test_write

def test_write():
    fname = "myfile.nii"
    img = load_image(funcfile)
    with InTemporaryDirectory():
        save_image(img, fname)
        test = FmriImageList.from_image(load_image(fname))
        assert_equal(test[0].affine.shape, (4, 4))
        assert_equal(img[0].affine.shape, (5, 4))
        # Check the affine...
        A = np.identity(4)
        A[:3, :3] = img[:, :, :, 0].affine[:3, :3]
        A[:3, -1] = img[:, :, :, 0].affine[:3, -1]
        assert_true(np.allclose(test[0].affine, A))
        del test
开发者ID:Lx37,项目名称:nipy,代码行数:14,代码来源:test_fmri.py


示例9: test_space_time_realign

def test_space_time_realign():
    path, fname = psplit(funcfile)
    original_affine = load_image(funcfile).affine
    path, fname = psplit(funcfile)
    froot, _ = fname.split('.', 1)
    with InTemporaryDirectory():
        # Make another image with .nii extension and extra dot in filename
        save_image(load_image(funcfile), 'my.test.nii')
        for in_fname, out_fname in ((funcfile, froot + '_mc.nii.gz'),
                                    ('my.test.nii', 'my.test_mc.nii.gz')):
            xforms = reg.space_time_realign(in_fname, 2.0, out_name='.')
            assert_true(np.allclose(xforms[0].as_affine(), np.eye(4), atol=1e-7))
            assert_false(np.allclose(xforms[-1].as_affine(), np.eye(4), atol=1e-3))
            img = load_image(out_fname)
            npt.assert_almost_equal(original_affine, img.affine)
开发者ID:Naereen,项目名称:nipy,代码行数:15,代码来源:test_scripting.py


示例10: test_save2

def test_save2():
    # A test to ensure that when a file is saved, the affine and the
    # data agree. This image comes from a NIFTI file 
    shape = (13,5,7,3)
    step = np.array([3.45,2.3,4.5,6.93])
    cmap = api.AffineTransform.from_start_step('ijkt', 'xyzt', [1,3,5,0], step)
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        img2 = load_image(TMP_FNAME)
        assert_array_almost_equal(img.affine, img2.affine)
        assert_equal(img.shape, img2.shape)
        assert_array_almost_equal(img2.get_data(), img.get_data())
        del img2
开发者ID:fabianp,项目名称:nipy,代码行数:15,代码来源:test_save.py


示例11: fixed_effects

def fixed_effects(subj, design):
    """
    Fixed effects (within subject) for FIAC model
    """

    # First, find all the effect and standard deviation images
    # for the subject and this design type

    path_dict = futil.path_info2(subj, design)
    rootdir = path_dict['rootdir']
    # The output directory
    fixdir = pjoin(rootdir, "fixed")

    results = futil.results_table(path_dict)

    # Get our hands on the relevant coordmap to
    # save our results
    coordmap = futil.load_image_fiac("fiac_%02d" % subj,
                                     "wanatomical.nii").coordmap

    # Compute the "fixed" effects for each type of contrast
    for con in results:
        fixed_effect = 0
        fixed_var = 0
        for effect, sd in results[con]:
            effect = load_image(effect); sd = load_image(sd)
            var = np.array(sd)**2

            # The optimal, in terms of minimum variance, combination of the
            # effects has weights 1 / var
            #
            # XXX regions with 0 variance are set to 0
            # XXX do we want this or np.nan?
            ivar = np.nan_to_num(1. / var)
            fixed_effect += effect * ivar
            fixed_var += ivar

        # Now, compute the fixed effects variance and t statistic
        fixed_sd = np.sqrt(fixed_var)
        isd = np.nan_to_num(1. / fixed_sd)
        fixed_t = fixed_effect * isd

        # Save the results
        odir = futil.ensure_dir(fixdir, con)
        for a, n in zip([fixed_effect, fixed_sd, fixed_t],
                        ['effect', 'sd', 't']):
            im = api.Image(a, coordmap.copy())
            save_image(im, pjoin(odir, '%s.nii' % n))
开发者ID:FNNDSC,项目名称:nipy,代码行数:48,代码来源:fiac_example.py


示例12: group_analysis

def group_analysis(design, contrast):
    """
    Compute group analysis effect, sd and t
    for a given contrast and design type
    """
    array = np.array # shorthand
    # Directory where output will be written
    odir = futil.ensure_dir(futil.DATADIR, 'group', design, contrast)

    # Which subjects have this (contrast, design) pair?
    subjects = futil.subject_dirs(design, contrast)

    sd = array([array(load_image(pjoin(s, "sd.nii"))) for s in subjects])
    Y = array([array(load_image(pjoin(s, "effect.nii"))) for s in subjects])

    # This function estimates the ratio of the
    # fixed effects variance (sum(1/sd**2, 0))
    # to the estimated random effects variance
    # (sum(1/(sd+rvar)**2, 0)) where
    # rvar is the random effects variance.

    # The EM algorithm used is described in 
    #
    # Worsley, K.J., Liao, C., Aston, J., Petre, V., Duncan, G.H., 
    #    Morales, F., Evans, A.C. (2002). \'A general statistical 
    #    analysis for fMRI data\'. NeuroImage, 15:1-15

    varest = onesample.estimate_varatio(Y, sd)
    random_var = varest['random']

    # XXX - if we have a smoother, use
    # random_var = varest['fixed'] * smooth(varest['ratio'])

    # Having estimated the random effects variance (and
    # possibly smoothed it), the corresponding
    # estimate of the effect and its variance is
    # computed and saved.

    # This is the coordmap we will use
    coordmap = futil.load_image_fiac("fiac_00","wanatomical.nii").coordmap

    adjusted_var = sd**2 + random_var
    adjusted_sd = np.sqrt(adjusted_var)

    results = onesample.estimate_mean(Y, adjusted_sd) 
    for n in ['effect', 'sd', 't']:
        im = api.Image(results[n], coordmap.copy())
        save_image(im, pjoin(odir, "%s.nii" % n))
开发者ID:FNNDSC,项目名称:nipy,代码行数:48,代码来源:fiac_example.py


示例13: test_save2

def test_save2():
    # A test to ensure that when a file is saved, the affine and the
    # data agree. This image comes from a NIFTI file 

    shape = (13,5,7,3)
    step = np.array([3.45,2.3,4.5,6.93])

    cmap = api.AffineTransform.from_start_step('ijkt', 'xyzt', [1,3,5,0], step)

    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    save_image(img, tmpfile.name)
    img2 = load_image(tmpfile.name)
    yield assert_true, np.allclose(img.affine, img2.affine)
    yield assert_equal, img.shape, img2.shape
    yield assert_true, np.allclose(np.asarray(img2), np.asarray(img))
开发者ID:Hiccup,项目名称:nipy,代码行数:16,代码来源:test_save.py


示例14: test_save4

def test_save4():
    # Same as test_save3 except we have reordered the 'ijk' input axes.
    shape = (13,5,7,3)
    step = np.array([3.45,2.3,4.5,6.9])
    # When the input coords are in the 'ljki' order, the affines get
    # rearranged.  Note that the 'start' below, must be 0 for
    # non-spatial dimensions, because we have no way to store them in
    # most cases.  For example, a 'start' of [1,5,3,1] would be lost on
    # reload
    mni_xyz = mni_csm(3).coord_names
    cmap = AT(CS('tkji'),
              CS((('t',) + mni_xyz[::-1])),
              from_matvec(np.diag([2., 3, 5, 1]), step))
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        tmp = load_image(TMP_FNAME)
        data = tmp.get_data().copy()
        # Detach image from file so we can delete it
        img2 = api.Image(data, tmp.coordmap, tmp.metadata)
        del tmp
    P = np.array([[0,0,0,1,0],
                  [0,0,1,0,0],
                  [0,1,0,0,0],
                  [1,0,0,0,0],
                  [0,0,0,0,1]])
    res = np.dot(P, np.dot(img.affine, P.T))
    # the step part of the affine should be set correctly
    assert_array_almost_equal(res[:4,:4], img2.affine[:4,:4])
    # start in the spatial dimensions should be set correctly
    assert_array_almost_equal(res[:3,-1], img2.affine[:3,-1])
    # start in the time dimension should be 3.45 as in img, because NIFTI stores
    # the time offset in hdr[``toffset``]
    assert_not_equal(res[3,-1], img2.affine[3,-1])
    assert_equal(res[3,-1], 3.45)
    # shapes should be reversed because img has coordinates reversed
    assert_equal(img.shape[::-1], img2.shape)
    # data should be transposed because coordinates are reversed
    assert_array_almost_equal(
           np.transpose(np.asarray(img2),[3,2,1,0]),
           np.asarray(img))
    # coordinate names should be reversed as well
    assert_equal(img2.coordmap.function_domain.coord_names,
                 img.coordmap.function_domain.coord_names[::-1])
    assert_equal(img2.coordmap.function_domain.coord_names,
                 ('i', 'j', 'k', 't'))
开发者ID:fabianp,项目名称:nipy,代码行数:47,代码来源:test_save.py


示例15: test_write

def test_write():
    fp, fname = mkstemp('.nii')
    img = load_image(funcfile)
    save_image(img, fname)
    test = FmriImageList.from_image(load_image(fname))
    yield assert_equal, test[0].affine.shape, (4,4)
    yield assert_equal, img[0].affine.shape, (5,4)

    # Check the affine...
    A = np.identity(4)
    A[:3,:3] = img[:,:,:,0].affine[:3,:3]
    A[:3,-1] = img[:,:,:,0].affine[:3,-1]
    yield assert_true, np.allclose(test[0].affine, A)

    # Under windows, if you don't close before delete, you get a
    # locking error.
    os.close(fp)
    os.remove(fname)
开发者ID:Garyfallidis,项目名称:nipy,代码行数:18,代码来源:test_fmri.py


示例16: test_save2b

def test_save2b():
    # A test to ensure that when a file is saved, the affine and the
    # data agree. This image comes from a NIFTI file.  This example has a
    # non-diagonal affine matrix for the spatial part, but is 'diagonal' for the
    # space part.
    #
    # make a 5x5 transformation (for 4d image)
    step = np.array([3.45, 2.3, 4.5, 6.9])
    A = np.random.standard_normal((3,3))
    B = np.diag(list(step)+[1])
    B[:3, :3] = A
    shape = (13,5,7,3)
    cmap = api.vox2mni(B)
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        img2 = load_image(TMP_FNAME)
        assert_array_almost_equal(img.affine, img2.affine)
        assert_equal(img.shape, img2.shape)
        assert_array_almost_equal(img2.get_data(), img.get_data())
        del img2
开发者ID:fabianp,项目名称:nipy,代码行数:22,代码来源:test_save.py


示例17: test_save2b

def test_save2b():
    # A test to ensure that when a file is saved, the affine and the
    # data agree. This image comes from a NIFTI file This example has
    # a non-diagonal affine matrix for the spatial part, but is
    # 'diagonal' for the space part.  this should raise a warnings
    # about 'non-diagonal' affine matrix

    # make a 5x5 transformation
    step = np.array([3.45,2.3,4.5,6.9])
    A = np.random.standard_normal((4,4))
    B = np.diag(list(step)+[1])
    B[:4,:4] = A
    shape = (13,5,7,3)
    cmap = api.AffineTransform.from_params('ijkt', 'xyzt', B)
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        img2 = load_image(TMP_FNAME)
        assert_false(np.allclose(img.affine, img2.affine))
        assert_array_almost_equal(img.affine[:3,:3], img2.affine[:3,:3])
        assert_equal(img.shape, img2.shape)
        assert_array_almost_equal(img2.get_data(), img.get_data())
        del img2
开发者ID:FNNDSC,项目名称:nipy,代码行数:24,代码来源:test_save.py


示例18: run_model


#.........这里部分代码省略.........
                       cons['object_%s_0' % obj2],
                       cons['object_%s_1' % obj1] - 
                       cons['object_%s_1' % obj2]])


        cons['%s_vs_%s_t' % (obj1, obj2)] = (cons['object_%s_0' % obj1] - 
                                             cons['object_%s_0' % obj2])

    #----------------------------------------------------------------------
    # Data loading
    #----------------------------------------------------------------------

    # Load in the fMRI data, saving it as an array.  It is transposed to have
    # time as the first dimension, i.e. fmri[t] gives the t-th volume.
    fmri_im = futil.get_fmri(path_info) # an Image
    fmri_im = rollimg(fmri_im, 't')
    fmri = fmri_im.get_data() # now, it's an ndarray

    nvol, volshape = fmri.shape[0], fmri.shape[1:]
    nx, sliceshape = volshape[0], volshape[1:]

    #----------------------------------------------------------------------
    # Model fit
    #----------------------------------------------------------------------

    # The model is a two-stage model, the first stage being an OLS (ordinary
    # least squares) fit, whose residuals are used to estimate an AR(1)
    # parameter for each voxel.
    m = OLSModel(X)
    ar1 = np.zeros(volshape)

    # Fit the model, storing an estimate of an AR(1) parameter at each voxel
    for s in range(nx):
        d = np.array(fmri[:,s])
        flatd = d.reshape((d.shape[0], -1))
        result = m.fit(flatd)
        ar1[s] = ((result.resid[1:] * result.resid[:-1]).sum(0) /
                  (result.resid**2).sum(0)).reshape(sliceshape)

    # We round ar1 to nearest one-hundredth and group voxels by their rounded
    # ar1 value, fitting an AR(1) model to each batch of voxels.

    # XXX smooth here?
    # ar1 = smooth(ar1, 8.0)
    ar1 *= 100
    ar1 = ar1.astype(np.int) / 100.

    # We split the contrasts into F-tests and t-tests.
    # XXX helper function should do this
    fcons = {}; tcons = {}
    for n, v in cons.items():
        v = np.squeeze(v)
        if v.ndim == 1:
            tcons[n] = v
        else:
            fcons[n] = v

    # Setup a dictionary to hold all the output
    # XXX ideally these would be memmap'ed Image instances
    output = {}
    for n in tcons:
        tempdict = {}
        for v in ['sd', 't', 'effect']:
            tempdict[v] = np.memmap(NamedTemporaryFile(prefix='%s%s.nii'
                                    % (n,v)), dtype=np.float,
                                    shape=volshape, mode='w+')
        output[n] = tempdict

    for n in fcons:
        output[n] = np.memmap(NamedTemporaryFile(prefix='%s%s.nii'
                                    % (n,v)), dtype=np.float,
                                    shape=volshape, mode='w+')

    # Loop over the unique values of ar1
    for val in np.unique(ar1):
        armask = np.equal(ar1, val)
        m = ARModel(X, val)
        d = fmri[:,armask]
        results = m.fit(d)

        # Output the results for each contrast
        for n in tcons:
            resT = results.Tcontrast(tcons[n])
            output[n]['sd'][armask] = resT.sd
            output[n]['t'][armask] = resT.t
            output[n]['effect'][armask] = resT.effect
        for n in fcons:
            output[n][armask] = results.Fcontrast(fcons[n]).F

    # Dump output to disk
    odir = futil.output_dir(path_info,tcons,fcons)
    # The coordmap for a single volume in the time series
    vol0_map = fmri_im[0].coordmap
    for n in tcons:
        for v in ['t', 'sd', 'effect']:
            im = Image(output[n][v], vol0_map)
            save_image(im, pjoin(odir, n, '%s.nii' % v))
    for n in fcons:
        im = Image(output[n], vol0_map)
        save_image(im, pjoin(odir, n, "F.nii"))
开发者ID:dohmatob,项目名称:nipy,代码行数:101,代码来源:ds105_example.py


示例19: range

mappedTrkFile = '/chb/tmp/kihotest_mapped.trk'


# volume
testArr = np.zeros( ( 10, 10, 10 ) )

r = 0
for i in range( testArr.shape[0] ):
  for j in range( testArr.shape[1] ):
    for k in range( testArr.shape[2] ):
      r += 1
      testArr[i, j, k] = r

img = image.fromarray( testArr, 'ijk', 'xyz' )

save_image( img, volFile )


# trk file
fibers = []

# 2,5,6
# 3,5,7
# 2,6,7
# 8,7,3
# 9,5,4
points = np.array( [[2, 5, 6], [3, 5, 7], [2, 6, 7], [8, 7, 3], [9, 5, 4]], dtype=np.float32 )

fibers.append( ( points, None, None ) )

io.saveTrk( trkFile, fibers, None, None, True )
开发者ID:FNNDSC,项目名称:scripts,代码行数:31,代码来源:kihotest.py


示例20: load_image

img_roi = load_image(roi)
img_roi = Image(img_roi.get_data().astype(np.float64), img_roi.coordmap, img_roi.header)
ind_roi = img_roi.get_data().astype(bool) & img_mask.get_data().astype(bool)
ind_noroi = ~img_roi.get_data().astype(bool) & img_mask.get_data().astype(bool)

roi_data = np.random.randn(np.sum(ind_roi))

for i in range(1, n_subjects+1):

    print('subject %02g' % i)

    s_dir = os.path.join(root, '%02g' % i)
    if not os.path.isdir(s_dir):
        os.makedirs(s_dir)
    roi_dir = os.path.join(s_dir, 'roi')
    if not os.path.isdir(roi_dir):
        os.makedirs(roi_dir)

    if mode == 'SVR':
        img_mask.get_data()[ind_roi] = (i - (i > n_subjects / 2) * n_subjects / 2) * roi_data + 0.4*np.random.randn(roi_data.shape[0])
        y = (i - (i > n_subjects / 2) * n_subjects / 2)
    else:
        img_mask.get_data()[ind_roi] = (1 + (i > n_subjects / 2)) * roi_data + 0.4\
                                                                               *np.random.randn(roi_data.shape[0])
        y = 1 + (i > n_subjects / 2)
    img_mask.get_data()[ind_noroi] = np.random.randn(np.sum(ind_noroi))
    img_mask = smooth(img_mask, fwhm)

    save_image(img_mask, os.path.join(roi_dir, roi_name))

    json.dump({'y': y}, open(os.path.join(s_dir, 'y_%s.json' % mode), 'w+'))
开发者ID:m-guggenmos,项目名称:decog,代码行数:31,代码来源:validation_data.py



注:本文中的nipy.io.api.save_image函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python imageformats.load函数代码示例发布时间:2022-05-27
下一篇:
Python api.load_image函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap