本文整理汇总了Python中neurosynth.base.dataset.Dataset类的典型用法代码示例。如果您正苦于以下问题:Python Dataset类的具体用法?Python Dataset怎么用?Python Dataset使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Dataset类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: neurosynthInit
def neurosynthInit(dbsize):
print "Initializing Neurosynth database..."
dataset = Dataset('data/' + dbsize + 'terms/database.txt')
dataset.add_features('data/' + dbsize + 'terms/features.txt')
#print "Loading standard space brain..."
#img = nb.load("data/MNI152_T1_2mm_brain.nii.gz")
#standard = img.get_data()
return dataset
开发者ID:vsoch,项目名称:neuro2gene,代码行数:9,代码来源:neuro2gene.py
示例2: test_dataset_save_and_load
def test_dataset_save_and_load(self):
# smoke test of saving and loading
t = tempfile.mktemp()
self.dataset.save(t, keep_mappables=True)
self.assertTrue(os.path.exists(t))
dataset = Dataset.load(t)
self.assertIsNotNone(dataset)
self.assertIsNotNone(dataset.mappables)
self.assertEqual(len(dataset.mappables), 5)
# Now with the mappables deleted
dataset.save(t)
self.assertTrue(os.path.exists(t))
dataset = Dataset.load(t)
self.assertEqual(len(dataset.mappables), 0)
os.unlink(t)
开发者ID:chrisfilo,项目名称:Neurosynth,代码行数:15,代码来源:test_base.py
示例3: _getdata
def _getdata():
"""Downloads data from neurosynth and returns it as a Dataset.
Also pickles the dataset for future use."""
LOG.warning("Downloading and processing Neurosynth database")
os.makedirs("data", exist_ok=True)
from neurosynth.base.dataset import download
download(path="data", unpack=True)
data = Dataset("data/database.txt")
data.add_features("data/features.txt")
data.save("data/dataset.pkl")
return data
开发者ID:fredcallaway,项目名称:brain_matrix,代码行数:15,代码来源:brain_matrix.py
示例4: create_voxel_x_feature_matrix
def create_voxel_x_feature_matrix(path_to_dataset, path_to_image_files):
dataset = Dataset.load(path_to_dataset)
feature_list = dataset.get_feature_names()
vox_feat_matrix = zeros((dataset.volume.num_vox_in_mask, len(feature_list)), dtype=int16)
for (i,feature) in enumerate(feature_list):
image_path = path_to_image_files + feature + '_pFgA_z.nii.gz'
vox_feat_matrix[:,i] = dataset.volume.mask(image_path)
return vox_feat_matrix
开发者ID:acley,项目名称:neuro-data-matrix-factorization,代码行数:8,代码来源:voxel-x-feature-matrix.py
示例5: generate_maps
def generate_maps(terms,output_dir):
f,d = download_data()
features = pandas.read_csv(f,sep="\t")
database = pandas.read_csv(d,sep="\t")
output_dir = "%s/maps" %(output_dir)
print "Deriving pickled maps to extract relationships from..."
dataset = Dataset(d)
dataset.add_features(f)
for t in range(len(terms)):
term = terms[t]
print "Generating P(term|activation) for term %s, %s of %s" %(term,t,len(terms))
ids = dataset.get_ids_by_features(term)
maps = meta.MetaAnalysis(dataset,ids)
term_name = term.replace(" ","_")
pickle.dump(maps.images["pFgA_z"],open("%s/%s_pFgA_z.pkl" %(output_dir,term_name),"wb"))
开发者ID:word-fish,项目名称:wordfish-plugins,代码行数:18,代码来源:functions.py
示例6: test_dataset_save_and_load
def test_dataset_save_and_load(self):
# smoke test of saving and loading
t = tempfile.mktemp()
self.dataset.save(t)
self.assertTrue(os.path.exists(t))
dataset = Dataset.load(t)
self.assertIsNotNone(dataset)
self.assertEqual(len(dataset.image_table.ids), 5)
os.unlink(t)
开发者ID:MQMQ0229,项目名称:neurosynth,代码行数:9,代码来源:test_base.py
示例7: __init__
def __init__(self, db, dataset=None, studies=None, features=None,
reset_db=False, reset_dataset=False, download_data=True):
"""
Initialize instance from a pickled Neurosynth Dataset instance or a
pair of study and analysis .txt files.
Args:
db: the SQLAlchemy database connection to use.
dataset: an optional filename of a pickled neurosynth Dataset
instance.
Note that the Dataset must contain the list of Mappables (i.e.,
save() must have been called with keep_mappables set to
True).
studies: name of file containing activation data. If passed, a new
Dataset instance will be constructed.
features: name of file containing feature data.
reset_db: if True, will drop and re-create all database tables
before adding new content. If False (default), will add content
incrementally.
reset_dataset: if True, will regenerate the pickled Neurosynth
dataset.
download_data: if True, ignores any existing files and downloads
the latest Neurosynth data files from GitHub.
"""
if (studies is not None and not os.path.exists(studies)) \
or settings.RESET_ASSETS:
print "WARNING: RESETTING ALL NEUROSYNTH ASSETS!"
self.reset_assets(download_data)
# Load or create Neurosynth Dataset instance
if dataset is None or reset_dataset or (isinstance(dataset, basestring) and not os.path.exists(dataset)):
print "\tInitializing a new Dataset..."
if (studies is None) or (features is None):
raise ValueError(
"To generate a new Dataset instance, both studies and "
"analyses must be provided.")
dataset = Dataset(studies)
dataset.add_features(features)
dataset.save(settings.PICKLE_DATABASE, keep_mappables=True)
else:
print "\tLoading existing Dataset..."
dataset = Dataset.load(dataset)
if features is not None:
dataset.add_features(features)
self.dataset = dataset
self.db = db
if reset_db:
print "WARNING: RESETTING DATABASE!!!"
self.reset_database()
开发者ID:UCL-CS35,项目名称:incdb-poc,代码行数:53,代码来源:database_builder.py
示例8: extract_relations
def extract_relations(terms,maps_dir,output_dir):
if isinstance(terms,str):
terms = [terms]
f,d = download_data()
features = pandas.read_csv(f,sep="\t")
database = pandas.read_csv(d,sep="\t")
allterms = features.columns.tolist()
allterms.pop(0) #pmid
dataset = Dataset(d)
dataset.add_features(f)
image_matrix = pandas.DataFrame(columns=range(228453))
for t in range(len(allterms)):
term = allterms[t]
term_name = term.replace(" ","_")
pickled_map = "%s/%s_pFgA_z.pkl" %(maps_dir,term_name)
if not os.path.exists(pickled_map):
print "Generating P(term|activation) for term %s" %(term)
ids = dataset.get_ids_by_features(term)
maps = meta.MetaAnalysis(dataset,ids)
pickle.dump(maps.images["pFgA_z"],open(pickled_map,"wb"))
map_data = pickle.load(open(pickled_map,"rb"))
image_matrix.loc[term] = map_data
sims = pandas.DataFrame(columns=image_matrix.index)
tuples = []
for t1 in range(len(terms)):
term1 = terms[t1]
print "Extracting NeuroSynth relationships for term %s..." %(term1)
for t2 in range(len(terms)):
term2 = terms[t2]
if t1<t2:
score = pearsonr(image_matrix.loc[term1],image_matrix.loc[term2])[0]
tuples.append((term1,term2,score))
save_relations(output_dir=output_dir,relations=tuples)
开发者ID:word-fish,项目名称:wordfish-plugins,代码行数:38,代码来源:functions.py
示例9: TestAnalysis
class TestAnalysis(unittest.TestCase):
def setUp(self):
""" Create a new Dataset and add features. """
self.dataset = Dataset('data/test_dataset.txt')
self.dataset.add_features('data/test_features.txt')
def test_meta_analysis(self):
""" Test full meta-analysis stream. """
pass
def test_decoder(self):
pass
def test_coactivation(self):
""" Test seed-based coactivation. """
pass
def test_roi_averaging(self):
pass
def test_get_random_voxels(self):
pass
开发者ID:wanirepo,项目名称:Neurosynth,代码行数:23,代码来源:test_analysis.py
示例10: import_neurosynth_git
def import_neurosynth_git(self):
# Add the appropriate neurosynth git folder to the python path.
sys.path.append(self.npath)
from neurosynth.base.dataset import Dataset
from neurosynth.analysis import meta
# Try to load a pickle if it exists. Create a new dataset instance
# if it doesn't.
try:
self.dataset = cPickle.load(
open(self.npath+os.sep+'data/dataset.pkl', 'rb'))
except IOError:
# Create Dataset instance from a database file.
self.dataset = Dataset(self.npath+os.sep+'data/database.txt')
# Load features from file
self.dataset.add_features(self.npath+os.sep+'data/features.txt')
# Get names of features.
self.feature_list = self.dataset.get_feature_names()
开发者ID:law826,项目名称:Neurosynth_SNA,代码行数:20,代码来源:Neurosynth_SNA.py
示例11: __init__
def __init__(
self,
metric="emd",
image_type="pAgF",
name=None,
multi=True,
image_transform="block_reduce",
downsample=8,
auto_save=True,
):
self.image_type = image_type
self.multi = multi
self.downsample = downsample
self.auto_save = auto_save
if callable(metric):
self.metric = metric
elif metric == "emd":
self.metric = euclidean_emd
else:
raise ValueError("{metric} is not a valid metric".format(**locals()))
if callable(image_transform):
self.image_transform = image_transform
elif image_transform == "block_reduce":
from functools import partial
self.image_transform = partial(block_reduce, factor=downsample)
# def block_reduce_transform(image):
# """The default transformation."""
# return block_reduce(image, downsample, blur)
# self.image_transform = block_reduce_transform
else:
raise ValueError(("{image_transform} is not a valid" "transform function").format(**locals()))
self.name = name if name else time.strftime("analysis_from_%m-%d_%H-%M-%S")
try:
self.data = Dataset.load("data/dataset.pkl")
except FileNotFoundError:
self.data = _getdata()
开发者ID:fredcallaway,项目名称:brain_matrix,代码行数:40,代码来源:brain_matrix.py
示例12: Masker
from sklearn.cluster import KMeans, DBSCAN, MiniBatchKMeans
from sklearn import metrics
from scipy import stats
base_path = '/home/pauli/Development/neurobabel/'
test_data_path = base_path + 'ACE/'
masker_filename = base_path + 'atlases/whs_sd/WHS_SD_rat_one_sm_v2.nii.gz'
atlas_filename = base_path + 'atlases/whs_sd/WHS_SD_rat_atlas_brain_sm_v2.nii.gz'
mask = nib.load(masker_filename)
masker = Masker(mask)
r = 1.0
transform = {'BREGMA': transformations.bregma_to_whs()}
target = 'WHS'
# load data set
dataset = Dataset(os.path.join(test_data_path, 'db_bregma_cog_atlas_export.txt'), masker=masker_filename, r=r, transform=transform, target=target)
dataset.feature_table = FeatureTable(dataset)
dataset.add_features(os.path.join(test_data_path, "db_bregma_cog_atlas_features.txt")) # add features
fn = dataset.get_feature_names()
features = dataset.get_feature_data()
n_xyz, n_articles = dataset.image_table.data.shape
# do topic modeling (LSA)
n_components = 20
svd = TruncatedSVD(n_components=n_components)
X = svd.fit_transform(features)
X_orig = X.copy()
X = StandardScaler().fit_transform(X_orig)
# db = DBSCAN(eps=10.0, min_samples=10).fit(X)
开发者ID:wmpauli,项目名称:neurosynth,代码行数:31,代码来源:cluster_analysis.py
示例13: get_test_dataset
def get_test_dataset():
test_data_path = get_test_data_path()
dataset = Dataset(test_data_path + 'test_dataset.txt')
dataset.add_features(test_data_path + 'test_features.txt')
return dataset
开发者ID:jdnc,项目名称:ml-project,代码行数:5,代码来源:utils.py
示例14: setUp
def setUp(self):
""" Create a new Dataset and add features. """
self.dataset = Dataset('data/test_dataset.txt')
self.dataset.add_features('data/test_features.txt')
开发者ID:poldrack,项目名称:Neurosynth,代码行数:4,代码来源:test_base.py
示例15: TestBase
class TestBase(unittest.TestCase):
def setUp(self):
""" Create a new Dataset and add features. """
self.dataset = Dataset('data/test_dataset.txt')
self.dataset.add_features('data/test_features.txt')
def test_dataset_initializes(self):
""" Test whether dataset initializes properly. """
self.assertIsNotNone(self.dataset.volume)
self.assertIsNotNone(self.dataset.image_table)
self.assertEqual(len(self.dataset.mappables), 5)
self.assertIsNotNone(self.dataset.volume)
self.assertIsNotNone(self.dataset.r)
def test_image_table_loads(self):
""" Test ImageTable initialization. """
self.assertIsNotNone(self.dataset.image_table)
it = self.dataset.image_table
self.assertEqual(len(it.ids), 5)
self.assertIsNotNone(it.volume)
self.assertIsNotNone(it.r)
self.assertEqual(it.data.shape, (228453, 5))
# Add tests for values in table
def test_feature_table_loads(self):
""" Test FeatureTable initialization. """
tt = self.dataset.feature_table
self.assertIsNotNone(tt)
self.assertEqual(len(self.dataset.list_features()), 5)
self.assertEqual(tt.data.shape, (5,5))
self.assertEqual(tt.feature_names[3], 'f4')
self.assertEqual(tt.data[0,0], 0.0003)
def test_feature_search(self):
""" Test feature-based Mappable search. Tests both the FeatureTable method
and the Dataset wrapper. """
tt = self.dataset.feature_table
features = tt.search_features(['f*'])
self.assertEqual(len(features), 4)
d = self.dataset
ids = d.get_ids_by_features(['f*'], threshold=0.001)
self.assertEqual(len(ids), 4)
img_data = d.get_ids_by_features(['f1', 'f3', 'g1'], 0.001, func='max', get_image_data=True)
self.assertEqual(img_data.shape, (228453, 5))
def test_selection_by_mask(self):
""" Test mask-based Mappable selection.
Only one peak in the test dataset (in study5) should be within the sgACC. """
ids = self.dataset.get_ids_by_mask('data/sgacc_mask.nii.gz')
self.assertEquals(len(ids), 1)
self.assertEquals('study5', ids[0])
def test_selection_by_peaks(self):
""" Test peak-based Mappable selection. """
ids = self.dataset.get_ids_by_peaks(np.array([[3, 30, -9]]))
self.assertEquals(len(ids), 1)
self.assertEquals('study5', ids[0])
# def test_invalid_coordinates_ignored(self):
""" Test dataset contains 3 valid coordinates and one outside mask. But this won't work
开发者ID:poldrack,项目名称:Neurosynth,代码行数:61,代码来源:test_base.py
示例16: shuffle_data
###
# This script shuffle the classification labels and reruns classification many times to get data to calculate a confidence interval around the null hypothesis
from sklearn.linear_model import RidgeClassifier
from base.classifiers import OnevsallClassifier
from neurosynth.base.dataset import Dataset
from sklearn.metrics import roc_auc_score
import pickle
from random import shuffle
def shuffle_data(classifier):
for region in classifier.c_data:
shuffle(region[1])
d_abs_topics_filt = Dataset.load('../data/datasets/abs_topics_filt_july.pkl')
results = []
clf = OnevsallClassifier(d_abs_topics_filt, '../masks/Ward/50.nii.gz', cv='4-Fold',
thresh=10, thresh_low=0, memsave=True, classifier=RidgeClassifier())
clf.load_data(None, None)
clf.initalize_containers(None, None, None)
for i in range(0, 500):
shuffle_data(clf)
clf.classify(scoring=roc_auc_score, processes=8, class_weight=None)
results = list(clf.class_score) + results
print(i),
开发者ID:margulies,项目名称:NS_Classify,代码行数:30,代码来源:resample_ova.py
示例17: Masker
from neurosynth.analysis import meta
base_path = '/home/pauli/Development/neurobabel/'
test_data_path = base_path + 'ACE/'
masker_filename = base_path + 'atlases/whs_sd/WHS_SD_rat_one_sm_v2.nii.gz'
atlas_filename = base_path + 'atlases/whs_sd/WHS_SD_rat_atlas_brain_sm_v2.nii.gz'
mask = nb.load(masker_filename)
masker = Masker(mask)
r = 1.0
# transform = {'BREGMA': transformations.bregma_to_whs()}
#transform = {'BREGMA': transformations.identity()}
transform = {'BREGMA': transformations.bregma_to_whs()}
target = 'WHS'
# load data set
dataset = Dataset(os.path.join(test_data_path, 'db_bregma_export.txt'), masker=masker_filename, r=r, transform=transform, target=target)
dataset.feature_table = FeatureTable(dataset)
dataset.add_features(os.path.join(test_data_path, "db_bregma_features.txt")) # add features
fn = dataset.get_feature_names()
def get_whs_labels(filename=os.path.join(base_path, "atlases/whs_sd/WHS_SD_rat_atlas_v2.label")):
''' load the names of all labelled areas in the atlas (e.g. brainstem), return list of them '''
in_file = open(filename, 'r')
lines = in_file.readlines()
labels = {}
for line in lines:
start = line.find("\"") + 1
if start > 0:
stop = line.find("\"", start)
label = line[start:stop]
idx = line.split()[0]
开发者ID:wmpauli,项目名称:neurosynth,代码行数:31,代码来源:create_bregma_dataset.py
示例18: __init__
class NeurosynthMerge:
def __init__(self, thesaurus, npath, outdir, test_mode=False):
"""
Generates a new set of images using the neurosynth repository combining
across terms in a thesarus.
Args:
- thesaurus: A list of tuples where:[('term that will be the name
of the file', 'the other term', 'expression combining the
terms')]
- the last expression is alphanumeric and separated by:
(& for and) (&~ for andnot) (| for or)
- npath: directory where the neurosynth git repository is locally
on your machine (https://github.com/neurosynth/neurosynth)
- outdir: directory where the generated images will be saved
- test_mode: when true, the code will run an abridged version for
test purposes (as implemented by test.Neurosynth.py)
"""
self.thesaurus = thesaurus
self.npath = npath
self.outdir = outdir
self.import_neurosynth_git()
from neurosynth.analysis import meta
# Take out first two terms from the feature_list and insert the third
# term from the tuple.
for triplet in thesaurus:
self.feature_list = [feature for feature in self.feature_list \
if feature not in triplet]
self.feature_list.append(triplet[-1])
# This makes an abridged version of feature_list for testing purposes.
if test_mode:
self.feature_list = [triplet[-1] for triplet in thesaurus]
# Run metanalyses on the new features set and save the results to the
#outdir.
for feature in self.feature_list:
self.ids = self.dataset.get_ids_by_expression(feature,
threshold=0.001)
ma = meta.MetaAnalysis(self.dataset, self.ids)
# Parse the feature name (to avoid conflicts with illegal
#characters as file names)
regex = re.compile('\W+')
split = re.split(regex, feature)
feat_fname = split[0]
# Save the results (many different types of files)
ma.save_results(self.outdir+os.sep+feat_fname)
def import_neurosynth_git(self):
# Add the appropriate neurosynth git folder to the python path.
sys.path.append(self.npath)
from neurosynth.base.dataset import Dataset
from neurosynth.analysis import meta
# Try to load a pickle if it exists. Create a new dataset instance
# if it doesn't.
try:
self.dataset = cPickle.load(
open(self.npath+os.sep+'data/dataset.pkl', 'rb'))
except IOError:
# Create Dataset instance from a database file.
self.dataset = Dataset(self.npath+os.sep+'data/database.txt')
# Load features from file
self.dataset.add_features(self.npath+os.sep+'data/features.txt')
# Get names of features.
self.feature_list = self.dataset.get_feature_names()
开发者ID:law826,项目名称:Neurosynth_SNA,代码行数:72,代码来源:Neurosynth_SNA.py
示例19: __init__
# -*- coding: utf-8 -*-
# Here I use Yeo to test Neurosynth's classify functions
from neurosynth.base.dataset import Dataset
from neurosynth.analysis import classify
import os
import itertools
import re
import numpy as np
import pdb
import sys
from nipype.interfaces import fsl
from sklearn.ensemble import GradientBoostingClassifier
dataset = Dataset.load('../data/pickled.pkl')
masklist = ['7Networks_Liberal_1.nii.gz', '7Networks_Liberal_2.nii.gz',
'7Networks_Liberal_3.nii.gz', '7Networks_Liberal_4.nii.gz',
'7Networks_Liberal_5.nii.gz', '7Networks_Liberal_6.nii.gz',
'7Networks_Liberal_7.nii.gz']
rootdir = '../masks/Yeo_JNeurophysiol11_MNI152/standardized/'
class maskClassifier:
def __init__(self, classifier=GradientBoostingClassifier(), param_grid={'max_features': np.arange(2, 140, 44), 'n_estimators': np.arange(5, 141, 50),
'learning_rate': np.arange(0.05, 1, 0.1)}, thresh = 0.08)
diffs = {}
开发者ID:margulies,项目名称:NS_Classify,代码行数:31,代码来源:Yeo_Test.py
示例20: Exception
from sklearn.metrics import roc_auc_score
import sys
from base.mv import bootstrap_mv_full
from neurosynth.base.dataset import Dataset
dataset = Dataset.load("../permutation_clustering/abs_60topics_filt_jul.pkl")
from sklearn.linear_model import LassoLarsIC
print sys.argv
try:
cmd, iterations, job_id = sys.argv
except:
raise Exception("Incorect number of arguments")
import csv
cognitive_topics = ['topic' + topic[0] for topic in csv.reader(open('topic_keys60-july_cognitive.csv', 'rU')) if topic[1] == "T"]
results = bootstrap_mv_full(dataset, LassoLarsIC(), roc_auc_score,
'../permutation_clustering/results/medial_fc_30_kmeans/kmeans_k9/cluster_labels.nii.gz', features=cognitive_topics, processes=None,
boot_n=int(iterations), outfile='results/bootstrap_full_mv_' + str(iterations) + '_mFC__LASSO_LARS_60_ ' + str(job_id) + '.csv')
开发者ID:csddzh,项目名称:NS_Classify,代码行数:20,代码来源:perm_complexity.py
注:本文中的neurosynth.base.dataset.Dataset类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论