本文整理汇总了Python中neuralnilm.RealApplianceSource类的典型用法代码示例。如果您正苦于以下问题:Python RealApplianceSource类的具体用法?Python RealApplianceSource怎么用?Python RealApplianceSource使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了RealApplianceSource类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: exp_g
def exp_g(name):
global source
try:
a = source
except NameError:
source = RealApplianceSource(**source_dict)
source.lag = 5
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(experiment_name=name, source=source))
net_dict_copy['layers_config'] = [
{
'type': LSTMLayer,
'num_units': 200,
'gradient_steps': GRADIENT_STEPS,
'peepholes': False,
'W_in_to_cell': Normal(std=1.)
},
{
'type': DenseLayer,
'num_units': source.n_outputs,
'nonlinearity': None,
'W': Normal(std=(1/sqrt(200)))
}
]
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:26,代码来源:e262.py
示例2: exp_a
def exp_a(name):
# 3 appliances
global source
source_dict_copy = deepcopy(source_dict)
source_dict_copy['reshape_target_to_2D'] = False
source = RealApplianceSource(**source_dict_copy)
source.reshape_target_to_2D = False
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(
experiment_name=name,
source=source
))
N = 50
net_dict_copy['layers_config'] = [
{
'type': BidirectionalRecurrentLayer,
'num_units': N,
'gradient_steps': GRADIENT_STEPS,
'W_in_to_hid': Normal(std=1.),
'nonlinearity': tanh
},
{
'type': FeaturePoolLayer,
'ds': 4, # number of feature maps to be pooled together
'axis': 1, # pool over the time axis
'pool_function': T.max
},
{
'type': BidirectionalRecurrentLayer,
'num_units': N,
'gradient_steps': GRADIENT_STEPS,
'W_in_to_hid': Normal(std=1/sqrt(N)),
'nonlinearity': tanh
},
{
'type': DenseLayer,
'W': Normal(std=1/sqrt(N)),
'num_units': source.n_outputs,
'nonlinearity': None
}
]
net_dict_copy['layer_changes'] = {
5001: {
'remove_from': -2,
'callback': callback,
'new_layers': [
{
'type': MixtureDensityLayer,
'num_units': source.n_outputs,
'num_components': 2
}
]
}
}
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:57,代码来源:e305.py
示例3: exp_a
def exp_a(name):
global source
source_dict_copy = deepcopy(source_dict)
source = RealApplianceSource(**source_dict_copy)
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(
experiment_name=name,
source=source
))
N = 512
output_shape = source.output_shape_after_processing()
net_dict_copy['layers_config'] = [
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1) # (batch, features, time)
},
{
'type': Conv1DLayer, # convolve over the time axis
'num_filters': 32,
'filter_length': 4,
'stride': 1,
'nonlinearity': rectify,
'border_mode': 'same'
},
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1) # back to (batch, time, features)
},
{
'type': DenseLayer,
'num_units': N * 2,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': N,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': N // 2,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': output_shape[1] * output_shape[2],
'nonlinearity': sigmoid
}
]
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:51,代码来源:e354.py
示例4: exp_a
def exp_a(name):
global source
source_dict_copy = deepcopy(source_dict)
source = RealApplianceSource(**source_dict_copy)
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(
experiment_name=name,
source=source
))
output_shape = source.output_shape_after_processing()
net_dict_copy['layers_config'] = [
{
'type': BLSTMLayer,
'num_units': 40,
'gradient_steps': GRADIENT_STEPS,
'peepholes': False,
'nonlinearity_cell': rectify,
'nonlinearity_out': rectify
},
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1)
},
{
'type': Conv1DLayer,
'num_filters': 20,
'filter_length': 4,
'stride': 4,
'nonlinearity': rectify
},
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1)
},
{
'type': BLSTMLayer,
'num_units': 80,
'gradient_steps': GRADIENT_STEPS,
'peepholes': False,
'nonlinearity_cell': rectify,
'nonlinearity_out': rectify
},
{
'type': DenseLayer,
'num_units': source.n_outputs,
'nonlinearity': T.nnet.softplus
}
]
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:50,代码来源:e364.py
示例5: exp_a
def exp_a(name):
global source
source_dict_copy = deepcopy(source_dict)
source = RealApplianceSource(**source_dict_copy)
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(
experiment_name=name,
source=source
))
N = 1024
NUM_FILTERS = 128
FILTER_LENGTH = 64
output_shape = source.output_shape()
net_dict_copy['layers_config'] = [
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1) # (batch, features, time)
},
{
'type': Conv1DLayer, # convolve over the time axis
'num_filters': NUM_FILTERS,
'filter_length': FILTER_LENGTH,
'stride': 1,
'nonlinearity': rectify,
'W': Normal(std=1/sqrt(FILTER_LENGTH)),
'border_mode': 'same'
},
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1) # back to (batch, time, features)
},
{
'type': DenseLayer,
'num_units': output_shape[1] * output_shape[2],
'W': Normal(std=1/sqrt(N)),
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': source.output_shape()[1] * source.output_shape()[2],
'W': Normal(std=1/sqrt(N)),
'nonlinearity': T.nnet.softplus
}
]
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:47,代码来源:e345.py
示例6: exp_c
def exp_c(name):
global source
source_dict_copy = deepcopy(source_dict)
source_dict_copy['random_window'] = 256
source = RealApplianceSource(**source_dict_copy)
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(
experiment_name=name,
source=source,
learning_rate=1e-5
))
N = 512 * 8
output_shape = source.output_shape_after_processing()
net_dict_copy['layers_config'] = [
{
'type': DenseLayer,
'num_units': N * 2,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': N,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': N // 2,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': N // 4,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': output_shape[1] * output_shape[2],
'nonlinearity': sigmoid
}
]
net = Net(**net_dict_copy)
net.load_params(30000)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:43,代码来源:e359.py
示例7: exp_b
def exp_b(name):
global source
try:
a = source
except NameError:
source = RealApplianceSource(**source_dict)
source.lag = 5
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(experiment_name=name, source=source))
net_dict_copy['layers_config'].append(
{
'type': DenseLayer,
'num_units': source.n_outputs,
'nonlinearity': None,
'W': Normal(std=(1/sqrt(100)))
}
)
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:19,代码来源:e262.py
示例8: exp_a
def exp_a(name):
# conv, conv
global source
source_dict_copy = deepcopy(source_dict)
source_dict_copy.update(dict(logger=logging.getLogger(name)))
source = RealApplianceSource(**source_dict_copy)
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(experiment_name=name, source=source))
NUM_FILTERS = 16
target_seq_length = source.output_shape_after_processing()[1]
net_dict_copy["layers_config"] = [
{"type": DimshuffleLayer, "pattern": (0, 2, 1)}, # (batch, features, time)
{
"type": Conv1DLayer, # convolve over the time axis
"num_filters": NUM_FILTERS,
"filter_size": 4,
"stride": 1,
"nonlinearity": None,
"border_mode": "valid",
},
{
"type": Conv1DLayer, # convolve over the time axis
"num_filters": NUM_FILTERS,
"filter_size": 4,
"stride": 1,
"nonlinearity": None,
"border_mode": "valid",
},
{"type": DimshuffleLayer, "pattern": (0, 2, 1)}, # back to (batch, time, features)
{"type": DenseLayer, "num_units": 512, "nonlinearity": rectify},
{"type": DenseLayer, "num_units": 512, "nonlinearity": rectify},
{"type": DenseLayer, "num_units": 512, "nonlinearity": rectify},
{"type": DenseLayer, "num_units": target_seq_length, "nonlinearity": None},
]
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:36,代码来源:e529.py
示例9: exp_a
def exp_a(name):
# conv, conv
global source
source_dict_copy = deepcopy(source_dict)
source_dict_copy.update(dict(
logger=logging.getLogger(name)
))
source = RealApplianceSource(**source_dict_copy)
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(
experiment_name=name,
source=source
))
NUM_FILTERS = 16
target_seq_length = source.output_shape_after_processing()[1]
net_dict_copy['layers_config'] = [
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1) # (batch, features, time)
},
{
'type': Conv1DLayer, # convolve over the time axis
'num_filters': NUM_FILTERS,
'filter_size': 4,
'stride': 1,
'nonlinearity': None,
'border_mode': 'valid'
},
{
'type': Conv1DLayer, # convolve over the time axis
'num_filters': NUM_FILTERS,
'filter_size': 4,
'stride': 1,
'nonlinearity': None,
'border_mode': 'valid'
},
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1) # back to (batch, time, features)
},
{
'type': DenseLayer,
'num_units': 512,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': 512,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': 512,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': target_seq_length,
'nonlinearity': None
}
]
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:63,代码来源:e526.py
示例10: outputs
# create new source, based on net's source,
# but with 5 outputs (so each seq includes entire appliance activation,
# and to make it easier to plot every appliance),
# and long seq length,
# then make one long mains by concatenating each seq
source_dict_copy = deepcopy(source_dict)
source_dict_copy.update(dict(
logger=logger,
seq_length=2048,
border=100,
output_one_appliance=False,
input_stats=input_stats,
target_is_start_and_end_and_mean=False,
window=("2014-12-10", None)
))
mains_source = RealApplianceSource(**source_dict_copy)
mains_source.start()
N_BATCHES = 1
logger.info("Preparing synthetic mains data for {} batches.".format(N_BATCHES))
mains = None
targets = None
TARGET_I = 2
for batch_i in range(N_BATCHES):
batch = mains_source.queue.get(timeout=30)
mains_batch, targets_batch = batch.data
if mains is None:
mains = mains_batch
targets = targets_batch[:, :, TARGET_I]
else:
mains = np.concatenate((mains, mains_batch))
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:31,代码来源:disag_545b.py
示例11: exp_a
def exp_a(name):
# conv, conv
global source
source_dict_copy = deepcopy(source_dict)
source_dict_copy.update(dict(
logger=logging.getLogger(name)
))
source = RealApplianceSource(**source_dict_copy)
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(
experiment_name=name,
source=source
))
NUM_FILTERS = 16
target_seq_length = source.output_shape_after_processing()[1]
net_dict_copy['layers_config'] = [
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1) # (batch, features, time)
},
{
'type': Conv1DLayer, # convolve over the time axis
'num_filters': NUM_FILTERS,
'filter_size': 4,
'stride': 1,
'nonlinearity': None,
'border_mode': 'valid'
},
# Need to do ugly dimshuffle, reshape, reshape, dimshuffle
# to get output of first Conv1DLayer ready for
# ConcatLayer
# {
# 'type': DimshuffleLayer,
# 'pattern': (0, 2, 1), # back to (batch, time, features)
# 'label': 'dimshuffle1'
# },
# {
# 'type': ReshapeLayer,
# 'shape': (N_SEQ_PER_BATCH, -1),
# 'label': 'reshape0'
# },
# {
# 'type': ReshapeLayer,
# 'shape': (N_SEQ_PER_BATCH, NUM_FILTERS, -1)
# },
# {
# 'type': DimshuffleLayer,
# 'pattern': (0, 2, 1), # back to (batch, time, features)
# 'label': 'dimshuffle2'
# },
{
'type': Conv1DLayer, # convolve over the time axis
'num_filters': NUM_FILTERS,
'filter_size': 4,
'stride': 1,
'nonlinearity': None,
'border_mode': 'valid'
},
{
'type': DimshuffleLayer,
'pattern': (0, 2, 1), # back to (batch, time, features)
'label': 'dimshuffle3'
},
{
'type': DenseLayer,
'num_units': 512,
'nonlinearity': rectify,
'label': 'dense0'
},
{
'type': DenseLayer,
'num_units': 512,
'nonlinearity': rectify,
'label': 'dense1'
},
{
'type': DenseLayer,
'num_units': 512,
'nonlinearity': rectify,
'label': 'dense2'
},
{
'type': ConcatLayer,
'axis': 1,
'incomings': ['dense0', 'dense2']
},
{
'type': DenseLayer,
'num_units': 512,
'nonlinearity': rectify
},
{
'type': DenseLayer,
'num_units': target_seq_length,
'nonlinearity': None
}
]
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:99,代码来源:e532.py
示例12: exp_a
def exp_a(name):
global source
source_dict_copy = deepcopy(source_dict)
source = RealApplianceSource(**source_dict_copy)
source.subsample_target = 4
net_dict_copy = deepcopy(net_dict)
net_dict_copy.update(dict(experiment_name=name, source=source))
net_dict_copy['layers_config'] = [
{
'type': BidirectionalRecurrentLayer,
'num_units': 25,
'gradient_steps': GRADIENT_STEPS,
'W_in_to_hid': Normal(std=1.),
'nonlinearity': tanh
},
{
'type': FeaturePoolLayer,
'ds': 2, # number of feature maps to be pooled together
'axis': 1, # pool over the time axis
'pool_function': T.mean
},
{
'type': BidirectionalRecurrentLayer,
'num_units': 10,
'gradient_steps': GRADIENT_STEPS,
'W_in_to_hid': Normal(std=1/sqrt(25)),
'nonlinearity': tanh
},
{
'type': FeaturePoolLayer,
'ds': 2, # number of feature maps to be pooled together
'axis': 1, # pool over the time axis
'pool_function': T.mean
},
{
'type': BidirectionalRecurrentLayer,
'num_units': 5,
'gradient_steps': GRADIENT_STEPS,
'W_in_to_hid': Normal(std=1/sqrt(10)),
'nonlinearity': tanh
},
{
'type': BidirectionalRecurrentLayer,
'num_units': 10,
'gradient_steps': GRADIENT_STEPS,
'W_in_to_hid': Normal(std=1/sqrt(5)),
'nonlinearity': tanh
},
{
'type': BidirectionalRecurrentLayer,
'num_units': 25,
'gradient_steps': GRADIENT_STEPS,
'W_in_to_hid': Normal(std=1/sqrt(10)),
'nonlinearity': tanh
},
{
'type': DenseLayer,
'num_units': source.n_outputs,
'nonlinearity': None,
'W': Normal(std=(1/sqrt(25)))
}
]
net = Net(**net_dict_copy)
return net
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:64,代码来源:e274.py
示例13: outputs
# Generate mains data
# create new source, based on net's source,
# but with 5 outputs (so each seq includes entire appliance activation,
# and to make it easier to plot every appliance),
# and long seq length,
# then make one long mains by concatenating each seq
source_dict_copy = deepcopy(source_dict)
source_dict_copy.update(dict(
logger=logger,
seq_length=2000,
output_one_appliance=False,
input_stats=net.source.input_stats,
target_is_start_and_end_and_mean=False,
window=("2013-03-18", "2013-05-18")
))
mains_source = RealApplianceSource(**source_dict_copy)
N_BATCHES = 1
logger.info("Preparing synthetic mains data for {} batches.".format(N_BATCHES))
mains = None
targets = None
for batch_i in range(N_BATCHES):
mains_batch, targets_batch = mains_source._gen_data()
mains_batch, targets_batch = mains_source._process_data(
mains_batch, targets_batch)
if mains is None:
mains = mains_batch
targets = targets_batch[:, :, 0]
else:
mains = np.concatenate((mains, mains_batch))
targets = np.concatenate((targets, targets_batch[:, :, 0]))
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:31,代码来源:disag_534.py
注:本文中的neuralnilm.RealApplianceSource类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论