• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python neuralnet.NeuralNet类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中neuralnet.NeuralNet的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet类的具体用法?Python NeuralNet怎么用?Python NeuralNet使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了NeuralNet类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: cross_validation_2

def cross_validation_2(folds, epochs, learn_rate, n):
    averages = []
    timings = []

    
    for i in xrange(10):
        averages.append([])
        timings.append([])
        start_t = time.time()
        for j in xrange(10):
            test_vals = []
            for x in xrange(len(folds.keys())):
                test_index = x%n
                test_set = folds[test_index]

                train_set = []
                for k,v in folds.items():
                    if k != test_index: train_set += v
        
                nn = NeuralNet(9, [j+1,i+1], 1, learn_rate)
                nn.train(train_set, None, epochs)
                test_vals.append(nn.test(test_set, None, False))

            print "average: ", sum(test_vals) / len(test_vals)
            print ""


            timings[i].append(time.time()-start_t)
            averages[i].append(sum(test_vals)/len(test_vals))        

            print timings[i]
            print averages[i]
    
    return averages, timings
开发者ID:ACAHNN,项目名称:ann_project,代码行数:34,代码来源:ann_data.py


示例2: main

def main():
    """Testing file to show neural network can learn linearly separable
    data."""
    data = np.genfromtxt("training.csv", delimiter=',').tolist()

    shuffle(data)

    # NOTE: We have to wrap every target value into a tuple, for the
    # purpose of being able to classify n-tuples later
    targets = list((sample[-1] if sample[-1] == 1 else 0,) for sample in data)
    features = list(sample[:-1] for sample in data)
    print "Starting to train..."
    start = time()

    num_features = len(features[0])  # Subtract one because of target values
    nn = NeuralNet(num_features, max_epochs=2, default_bias="random",
                   learn_rate=.85, scale=0.1, verbose=True)
    nn.train(features, targets)
    print "Done with training. Took {0} seconds to train." \
            .format(round(time() - start, 2))

    print "Beginning with scoring..."
    start = time()
    scored_data = np.genfromtxt("data_features.csv", delimiter=",")
    correct = np.genfromtxt("data_targets.csv", delimiter=",")
    prediction = nn.score_data(scored_data)
    print "Done with scoring. Took {0} seconds to score the dataset" \
            .format(round(time() - start, 2))
    num_incorrect = sum(1 for i in xrange(len(correct)) \
                        if correct[i] != prediction[i])
    print "Total number incorrect: {0}".format(num_incorrect)
开发者ID:hlin117,项目名称:FF-Neural-Net,代码行数:31,代码来源:main.py


示例3: main

def main():
    scriptdir = os.path.dirname(os.path.realpath(__file__))
    data = scriptdir+'/../data/cwi_training/cwi_training.txt.lbl.conll'
    testdata = scriptdir+'/../data/cwi_testing/cwi_testing.gold.txt.lbl.conll'
    pickled_data = scriptdir+'/../data.pickle'
    parser = argparse.ArgumentParser()
    parser.add_argument('--threshold', '-t', type=float, help='Threshold for predicting 0/1. If not specified, the optimal threshold will first be computed as the median of all CV splits. May take a while.')
    parser.add_argument('--iterations', '-i', type=int, default=50, help='Training iterations.')
    parser.add_argument('--hidden-layers', '-l', dest='layers', required=True, type=int, nargs='+', help='List of layer sizes')
    parser.add_argument('--cv-splits', '-c', dest='splits', type=int, help='No. of crossvalidation splits. If not specified, no CV will be performed.')
    parser.add_argument('--data', '-d', default=data, help='Features and labels')
    parser.add_argument('--testdata', '-y', default=testdata,  help='Test data (not needed for crossval).')
    parser.add_argument('--verbose', '-v', dest='verbose', action='store_true', help='Print average loss at every training iteration.')
    parser.add_argument('--output', '-o', help="Output file")
    parser.add_argument('--features', '-f', dest='features', default=[], type=str, nargs='+', help='List of feature types')

    args = parser.parse_args()
    # X, y = load_pickled(args.data)
    combined_data = 'X_y_all.txt'
    cutoff = combine_data(args.data, args.testdata, combined_data)
    X, y, _ = feats_and_classify.collect_features(combined_data, True, args.features)
    X_tr = X[:cutoff]
    y_tr = y[:cutoff]
    X_te = X[cutoff:]
    y_te = y[cutoff:]
    conf = NeuralNetConfig(X=X, y=y, layers=args.layers, iterations=args.iterations, verbose=args.verbose)

    if args.splits:
        if args.threshold:
            crossval(X_tr,y_tr,args.splits, conf, t=args.threshold)
        else:
            # compute optimal threshold for each CV split
            print '### Computing optimal threshold... '
            ts = crossval(X_tr,y_tr,args.splits, conf)
            avg = np.average(ts)
            med = np.median(ts)
            print '\nThresholds for crossval splits:', ts
            print 'Mean threshold', avg
            print 'Median threshold', med
            print 'Threshold st.dev.', np.std(ts)
            # Run CV with fixed avg/median threshold
            print '\n\n### Running with avg. threshold... '
            crossval(X_tr,y_tr,args.splits, conf, t=avg)
            print '\n\n### Running with med. threshold... '
            crossval(X_tr,y_tr,args.splits, conf, t=med)
    else:
        
        nn = NN(conf)
        nn.train(X_tr,y_tr,args.iterations)
        if args.testdata:
            # X_test, y_test = load_pickled(args.testdata)
            pred = nn.get_output(X_te)
            if args.output:
                with open(args.output, 'w') as of:
                    for p in pred:
                        of.write('%f\n'%p)
            t, res = nn.test(X_te,y_te,args.threshold)
            resout = "G: %f, R: %f, A: %f, P: %f\n"%res
            sys.stderr.write('%s %f\n'%(' '.join(args.features), t))
            sys.stderr.write(resout)
开发者ID:jbingel,项目名称:cwi2016,代码行数:60,代码来源:nn-classify.py


示例4: StageRecognizer

class StageRecognizer():
    def __init__(self, trained_net_path):
        self.net = NeuralNet()
        self.net.load_from_file(trained_net_path)

    def recognize_image(self, img):
        net_return = self.net.apply_over_data(extract_counter_feat(img))
        stage_number = int(round(net_return))
        stage = ''
        precision = 'strong'

        if stage_number == 1:
            stage = 'red'
            if abs(stage_number - 1) > .15:
                precision = 'weak'

        elif stage_number == 2:
            stage = 'yellow'
            if abs(stage_number - 1) > .15:
                precision = 'weak'

        elif stage_number == 3:
            stage = 'green'
            if abs(stage_number - 1) > .15:
                precision = 'weak'

        return stage, precision
开发者ID:dtbinh,项目名称:mo416-final-project,代码行数:27,代码来源:stage_recognizer.py


示例5: neuralnet

def neuralnet(arglist):
    nn = NeuralNet(arglist[1])

    folds = arglist[2]
    learning_rate = arglist[3]
    epochs = arglist[4]

    nn.evaluate(folds, epochs, learning_rate)
    nn.print_results()
开发者ID:smihir,项目名称:neural-net,代码行数:9,代码来源:classify.py


示例6: plot3

def plot3(trainf):
    print("Running Test 3")
    nn = NeuralNet(trainf)

    #nn.evaluate(folds, epochs, learning_rate)
    nn.evaluate(10, 50, 0.1)
    x, y = nn.evaluate_roc()
    fig2 = plt.figure()
    ax2 = fig2.add_subplot(111)
    ax2.set_title('ROC for Neural Net')
    ax2.set_xlabel('False Positive Rate')
    ax2.set_ylabel('True Positive Rate')
    ax2.plot(x, y, c='b', marker='o')
开发者ID:smihir,项目名称:neural-net,代码行数:13,代码来源:evaluate.py


示例7: cross_validation_iterative

def cross_validation_iterative(folds, epochs, learn_rate, n, num_points):
    
    averages = []
    test_vals = []
    fold_results = {}
    timings = [0]*epochs

    for x in xrange(len(folds.keys())):
        fold_results[x] = {"train": [], "test": []}
        
        test_index = x%n
        test_set = folds[test_index]

        train_set = []
        for k,v in folds.items():
            if k != test_index: train_set += v
        
        nn = NeuralNet(9, [13,14], 1, learn_rate)
        
        start_t = time.time()
        for j in xrange(epochs):
            nn.train(train_set, None, 1)
        
            # get train and test accuracy
            train_val = nn.test(train_set, None, False)
            test_val = nn.test(test_set, None, False)
            
            # store the accuracy results
            fold_results[x]["train"].append(train_val)
            fold_results[x]["test"].append(test_val)
            timings[j] += time.time()-start_t
        print "fold complete"

    
    # compute the average for each epoch
    train_a, test_a = [], []
    for e in xrange(epochs):
        num_train, num_test = 0, 0
        for i in xrange(len(folds.keys())):
            num_train += fold_results[i]["train"][e]
            num_test += fold_results[i]["test"][e]
        train_a.append((float(num_train)/(num_points*(n-1)))*100)
        test_a.append((float(num_test)/num_points)*100)
    
    for e in xrange(epochs):
        timings[e] = float(timings[e])/len(folds.keys())
    
    print train_a, test_a, timings
    return train_a, test_a, timings
开发者ID:ACAHNN,项目名称:ann_project,代码行数:49,代码来源:ann_data.py


示例8: create_roc_data

def create_roc_data(data):
    
    epochs = 60
    nn = NeuralNet(9, [13,14], 1, .1)
    nn.train(data, None, epochs)
    ret = nn.test(data, None, False)

    results = []
    for row in ret:
        results.append((row[0][0][0],row[1][0][0],row[2][0][0]))

    print results[0]

    num_pos = len(filter(lambda x: x[1] == 1, results))
    num_neg = len(results)-num_pos

    results.sort(key=lambda x: x[-1])
    results.reverse()

    tp = 0
    fp = 0
    last_tp = 0

    roc_set = [[x[-2],x[-1]] for x in results]
    fpr_set = []
    tpr_set = []

    for i in range(1,len(roc_set)):
        if roc_set[i][1] != roc_set[i-1][1] and roc_set[i][0] != 1 and tp > last_tp:
            fpr = fp / float(num_neg)
            tpr = tp / float(num_pos)
            
            fpr_set.append(fpr)
            tpr_set.append(tpr)

            last_tp = tp
        if roc_set[i][0] == 1:
            tp += 1
        else:
            fp += 1

    fpr = fp / float(num_neg)
    tpr = tp / float(num_pos)

    fpr_set.append(fpr)
    tpr_set.append(tpr)

    return fpr_set, tpr_set
开发者ID:ACAHNN,项目名称:ann_project,代码行数:48,代码来源:ann_data.py


示例9: __init__

 def __init__(self):
     '''
     A container for NeuralEditElement representing the GUI components of a neural net
     '''
     self.Net = NeuralNet()
     self.NetPath = None  # set during pickle op
     self.Elements = []   # elements are UI representation of individual neurons
     self.LookupTable = {}
开发者ID:gbiddison,项目名称:giles-scratch,代码行数:8,代码来源:neuraledit_element.py


示例10: findBin

def findBin(frame):
	image=cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
	pil_im = Image.fromarray(image)
	#~ img1 = pil_im.resize((basewidth, height), Image.ANTIALIAS)
	pil_im.thumbnail((256, 256), Image.ANTIALIAS)
	img2 = pil_im.convert('1')
	#~ pixels = img2.load()
	pixels1 = np.asarray(img2.getdata(),dtype=np.bool)
	outstr = "outimg" +".bmp"
	img2.save(outstr)
	array01 = []
	count = 0
	Tot = 0
	for item in pixels1:
		Tot  += 1
		if not item:
			array01.append(1)
			count += 1
		else: 
			array01.append(0)
	testitem = []
	testitem.append(Instance(array01, [0]))
# load a stored network configuration
	network = NeuralNet.load_from_file( "plastic122.pkl" )
	arr = network.print_test(testitem)
	print('Value returned by neural network plastic: ' + str(arr[0]))
	
	network2 = NeuralNet.load_from_file( "metal122.pkl" )
	arr2 = network2.print_test(testitem)
	print('Value returned by neural network metal: ' + str(arr2[0]))
	
	network3 = NeuralNet.load_from_file( "paper122.pkl" )
	arr3 = network3.print_test(testitem)
	print('Value returned by neural network paper: ' + str(arr3[0]))
	
	pl = arr[0]
	me = arr2[0]
	pa = arr3[0]
	
	if((pl > pa and pl > me) or pl > 0.5 or (pa < 0.42 and me < 0.09) ):
		return 1 #plastic
	elif((me > pa and me > pl) or me > 0.13):
		return 3 #metal
	else:
		return 2 #paper
开发者ID:CS308-2016,项目名称:BinC,代码行数:45,代码来源:main.py


示例11: __init__

 def __init__(self, models=[], blending='average',nbFeatures=4):
     self.models = models
     self.blending = blending
     self.logR = LogisticRegression(C=10)#,multi_class='multinomial',solver='lbfgs', max_iter=10000)
     self.logRT= LogisticRegression(C=10)#,multi_class='multinomial',solver='lbfgs', max_iter=10000)
     self.nn=NeuralNet(nbFeatures) 
     self.XGB=ModifiedXGBClassifier()
     if self.blending not in ['average', 'most_confident']:
         raise Exception('Wrong blending method')
开发者ID:alexrame,项目名称:snips,代码行数:9,代码来源:stacking.py


示例12: main

def main():
    args = get_args()
    # f1_matrix holds for every training annotator: the list of tuples of 
    # avg/med f1_row based on avg/med threshold
    f1_matrix = []
    # holds for every training annotator: the list of tuples of avg/med threshold
    t_matrix = []
    current_label_list = []
    
    f1_final = [] # holds 4-tuples of avgs over (f1_avg_avg, f1_avg_med, f1_med_avg, f1_med_med) f.e. tr 
    t_final  = [] # holds 4-tuples of (t_avg_avg, t_avg_med, t_med_avg, t_med_med) f.e. tr

    #X_tr, _, v = feats_and_classify_py2.collect_features(args.parsed_file)
    with open('X_train.pickle', 'rb') as pf:
        X_tr = pickle.load(pf)
    with open('X_test.pickle', 'rb') as pf:
        X_te = pickle.load(pf)
    y_tr = feats_and_classify_py2.collect_labels_positive_threshold(args.all_annotations_file, 1)

    #X_out, _, _ = feats_and_classify_py2.collect_features(args.predictfile)
    # filter for targets
    #X_out = [x for x in X_out if not x.label == '?']

    conf = NeuralNetConfig(X=X_tr, y=y_tr, layers=args.layers, iterations=args.iterations, verbose=args.verbose)
    
    nn = NN(conf)
    nn.train(X_tr, y_tr)
    if args.threshold:
        preds = nn.predict_for_threshold(X_te, args.threshold)
    else:
        preds = nn.get_output(X_te) 
    with open(args.output, 'w') as outfile:
        for p in preds:
            #print(p)
            outfile.write(str(p))
            outfile.write('\n')
    sys.exit(0)
开发者ID:jbingel,项目名称:cwi2016,代码行数:37,代码来源:nn-predict.py


示例13: __init__

 def __init__(self):
     self.brain = NeuralNet(settings.NUM_INPUTS,
                            settings.NUM_OUTPUTS,
                            settings.NUM_HIDDEN,
                            settings.NEURONS_PER_HIDDEN)
     
     self.position = Vector2D(random() * settings.WINDOW_WIDTH, 
                              random() * settings.WINDOW_HEIGHT)
     
     self.look_at = Vector2D()
     self.rotation = random() * 2 * math.pi
     self.ltrack = 0.16
     self.rtrack = 0.16
     self.fitness = 0.0
     self.scale = settings.SWEEPER_SCALE
     self.closest_mine = 0
     self.speed = 0.0
开发者ID:Hydex,项目名称:SmartSweepers,代码行数:17,代码来源:minesweeper.py


示例14: train_xor_network

def train_xor_network():
    # two training sets
    training_one    = [ Instance( [0,0], [0] ), Instance( [0,1], [1] ), Instance( [1,0], [1] ), Instance( [1,1], [0] ) ]
    training_two    = [ Instance( [0,0], [0,0] ), Instance( [0,1], [1,1] ), Instance( [1,0], [1,1] ), Instance( [1,1], [0,0] ) ]

    settings = {
        # Required settings
        "n_inputs"              : 2,        # Number of network input signals
        "n_outputs"             : 1,        # Number of desired outputs from the network
        "n_hidden_layers"       : 1,        # Number of nodes in each hidden layer
        "n_hiddens"             : 2,        # Number of hidden layers in the network
        "activation_functions"  : [ tanh_function, sigmoid_function ], # specify activation functions per layer eg: [ hidden_layer, output_layer ]
        
        # Optional settings
        "weights_low"           : -0.1,     # Lower bound on initial weight range
        "weights_high"          : 0.1,      # Upper bound on initial weight range
        "save_trained_network"  : False,    # Whether to write the trained weights to disk
        
        "input_layer_dropout"   : 0.0,      # dropout fraction of the input layer
        "hidden_layer_dropout"  : 0.1,      # dropout fraction in all hidden layers
        
        "batch_size"            : 0,        # 1 := online learning, 0 := entire trainingset as batch, else := batch learning size
    }


    # initialize the neural network
    global network 
    network = NeuralNet( settings )

    # load a stored network configuration
    # network = NeuralNet.load_from_file( "xor_trained_configuration.pkl" )


    # start training on test set one
    network.backpropagation( 
                    training_one,           # specify the training set
                    ERROR_LIMIT     = 1e-6, # define an acceptable error limit 
                    learning_rate   = 0.03, # learning rate
                    momentum_factor = 0.95  # momentum
                )


    # Test the network by looping through the specified dataset and print the results.
    for instance in training_one:
        print "Input: {features} -> Output: {output} \t| target: {target}".format( 
                    features = str(instance.features), 
                    output   = str(network.update( np.array([instance.features]) )), 
                    target   = str(instance.targets)
                )

    # save the trained network
    network.save_to_file("networks/XOR_Operator/XOR_Operator.obj")
开发者ID:maximegregoire,项目名称:genius,代码行数:52,代码来源:xor_network.py


示例15: __init__

 def __init__(self, id, row=6, numStones=4):
     self.setID(id)
     
     self.learn = True
     self.alpha = 0.5
     self.discount = 0.9
     
     self.rowSize = row
     self.stones = numStones
     self.movelist = [[]] * 2  # two lists to allow for playing against self
     
     self.inputSize = 2+2*self.rowSize+1
     self.Q = NeuralNet(self.inputSize, 2 * self.inputSize) # set the hidden layer 2 times the input layer
     # if exploit, choose expected optimal move
     # otherwise, explore (randomize choice)
     self.strategy = "greedy"
     
     self.recentGames = []   # holds the transcripts of the most recent games
     self.numIterations = 1
     self.numRecent = 1      # number of games to track as recent
开发者ID:changwang,项目名称:Moncala,代码行数:20,代码来源:player.py


示例16: NNPlayer

class NNPlayer(Player):
    """ A manacala player uses a neural network to store its approximation function """
    
    LEGAL_STRATEGY = [
        'greedy',
        'random', 
        'weighted', 
        'exponential'
    ]
    
    def __init__(self, id, row=6, numStones=4):
        self.setID(id)
        
        self.learn = True
        self.alpha = 0.5
        self.discount = 0.9
        
        self.rowSize = row
        self.stones = numStones
        self.movelist = [[]] * 2  # two lists to allow for playing against self
        
        self.inputSize = 2+2*self.rowSize+1
        self.Q = NeuralNet(self.inputSize, 2 * self.inputSize) # set the hidden layer 2 times the input layer
        # if exploit, choose expected optimal move
        # otherwise, explore (randomize choice)
        self.strategy = "greedy"
        
        self.recentGames = []   # holds the transcripts of the most recent games
        self.numIterations = 1
        self.numRecent = 1      # number of games to track as recent
        
    def setID(self, id):
        """ set player identity """
        if id > 1 or id < 0:
            return False
        self.id = id
        return True
    
    def setLearning(self, toLearn):
        self.learn = toLearn
        
    def setDiscountFactor(self, discount):
        """ set discount factor """
        if discount > 1 or discount < 0:
            return False
        self.discount = discount
        return True
    
    def setStrategy(self, strategy):
        """ if given strategy is supported return true """
        if strategy in NNPlayer.LEGAL_STRATEGY:
            self.strategy = strategy
            return True
        return False
    
    def getMove(self, board):
        """ chooses next move """
        state = self._getState(board)
        qVals = self._getQvals(board)
        myside = board.mySide(self.id)
        validMoves = [index for index, val in enumerate(myside) if val > 0]
        
        # if there is no action available, just choose 0
        if len(validMoves) == 0: return -1
        # condense to only non-empty pits
        validQVals = []
        #for index, val in enumerate(validMoves):
#            validQVals[index] = qVals[val]
        for val in validMoves:
            validQVals.append(qVals[val - 1])
            
        # choose action based on strategy
        if self.strategy == NNPlayer.LEGAL_STRATEGY[0]: # greedy
            validMove = self._getBestIndex(validQVals)
        elif self.strategy == NNPlayer.LEGAL_STRATEGY[1]: # random
            validMove = self._getRandIndex(validQVals)
        elif self.strategy == NNPlayer.LEGAL_STRATEGY[2]:   # weighted
            validMove = self._getWeightedIndex(validQVals)
        elif self.strategy == NNPlayer.LEGAL_STRATEGY[3]:   #exponential
            validMove = self._getExponentialIndex(validQVals)
        else:   # greedy
            validMove = self._getBestIndex(validQVals)
        
        move = validMoves[validMove]
        self.movelist[self.id].append(Pair(state, move))
        return move
        
    def _getRandIndex(self, validQvals):
        """ chooses a move randomly with uniform distribution """
        return random.randint(len(validQvals))
    
    def _getWeightedIndex(self, validQvals):
        """ chooses a move randomly based on predicted Q values """
        validQvals = self._makePositive(validQvals)
        sumValue = sum(validQvals)
        arrow = random.random() * sumValue
        runningSum = 0
        for index, val in enumerate(validQvals):
            runningSum += val
            if runningSum >= arrow:
#.........这里部分代码省略.........
开发者ID:changwang,项目名称:Moncala,代码行数:101,代码来源:player.py


示例17: plot1

def plot1(trainf):
    print("Running Test 1")
    nn = NeuralNet(trainf)

    #nn.evaluate(folds, epochs, learning_rate)
    nn.evaluate(10, 25, 0.1)
    acc1 = nn.evaluate_accuracy()

    nn.clean_training_data()
    nn.evaluate(10, 50, 0.1)
    acc2 = nn.evaluate_accuracy()

    nn.clean_training_data()
    nn.evaluate(10, 75, 0.1)
    acc3 = nn.evaluate_accuracy()

    nn.clean_training_data()
    nn.evaluate(10, 100, 0.1)
    acc4 = nn.evaluate_accuracy()

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_title('Accuracy vs. Epochs for Neural Net')
    ax.set_xlabel('Epochs')
    ax.set_ylabel('Accuracy')
    y = [acc1, acc2, acc3, acc4]
    x = [25, 50, 75, 100]
    ax.plot(x, y, c='b', marker='o')
开发者ID:smihir,项目名称:neural-net,代码行数:28,代码来源:evaluate.py


示例18: labels_len

    y1 = [nClasses]
    for char in y:
        y1 += [char, nClasses]

    data_y.append(np.asarray(y1, dtype=np.int32))
    data_x.append(np.asarray(x, dtype=th.config.floatX))

    if labels_len(y1) > (1 + len(x[0])) // conv_sz:
        bad_data = True
        show_all(y1, x, None, x[:, ::conv_sz], "Squissed")


################################
print("Building the Network")

ntwk = NeuralNet(nDims, nClasses, midlayer, midlayerargs, log_space)

print("Training the Network")
for epoch in range(nEpochs):
    print('Epoch : ', epoch)
    for samp in range(nSamples):
        x = data_x[samp]
        y = data_y[samp]
        # if not samp % 500:            print(samp)

        if samp < nTrainSamples:
            if log_space and len(y) < 2:
                continue

            cst, pred, aux = ntwk.trainer(x, y)
            if (epoch % 10 == 0 and samp < 3) or np.isinf(cst):
开发者ID:Richi91,项目名称:rnn_ctc,代码行数:31,代码来源:train.py


示例19: zip

for x, y in zip(data['x'], data['y']):
    # Insert blanks b/w every pair of labels & at the beginning & end of sequence
    y1 = [blankIndex]
    for phonemeIndex in y:
        y1 += [phonemeIndex, blankIndex]

    data_y.append(np.asarray(y1, dtype=np.int32))
    data_x.append(np.asarray(x, dtype=theano.config.floatX))

    if labels_len(y1) > (1 + len(x[0])) // conv_sz:
        bad_data = True
        diagnostix(y1, x, None, x[:, ::conv_sz], "auxiliary name")


network = NeuralNet(num_dims, num_classes, hiddenLyr, hiddenLyrArgs, in_log_scale)

print("Training ▪▪▪")
for epoch in range(num_epochs):
    print('Epoch : ', epoch)
    for example in range(num_examples):
        x = data_x[example]
        y = data_y[example]

        if example < num_training_examples:
            if in_log_scale and len(y) < 2:
                continue

            cst, pred, aux = network.train(x, y)
            if (epoch % 12 == 0 and example < 3) or np.isinf(cst):
               print('\n▪▪▪▪▪▪▪▪▪▪▪▪▪▪ COST = {}  ▪▪▪▪▪▪▪▪▪▪▪▪▪▪ '.format(np.round(cst, 3)))
开发者ID:Neuroschemata,项目名称:Toy-RNN,代码行数:30,代码来源:train.py


示例20: NeuralNet

cost_function       = cross_entropy_cost
settings            = {
    # Required settings
    "n_inputs"              : 2,       # Number of network input signals
    "layers"                : [  (5, tanh_function), (1, sigmoid_function) ],
                                        # [ (number_of_neurons, activation_function) ]
                                        # The last pair in the list dictate the number of output signals
    
    # Optional settings
    "weights_low"           : -0.1,     # Lower bound on the initial weight value
    "weights_high"          : 0.1,      # Upper bound on the initial weight value
}


# initialize the neural network
network             = NeuralNet( settings )
network.check_gradient( training_data, cost_function )



## load a stored network configuration
# network           = NeuralNet.load_network_from_file( "network0.pkl" )


## Train the network using backpropagation
#backpropagation(
#        network,                        # the network to train
#        training_data,                  # specify the training set
#        test_data,                      # specify the test set
#        cost_function,                  # specify the cost function to calculate error
#        ERROR_LIMIT          = 1e-3,    # define an acceptable error limit 
开发者ID:Anguliachao,项目名称:python-neural-network,代码行数:31,代码来源:main.py



注:本文中的neuralnet.NeuralNet类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python neuralnilm.Net类代码示例发布时间:2022-05-27
下一篇:
Python utils.format_data函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap