本文整理汇总了Python中networkx.generators.classic.cycle_graph函数的典型用法代码示例。如果您正苦于以下问题:Python cycle_graph函数的具体用法?Python cycle_graph怎么用?Python cycle_graph使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了cycle_graph函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_digraphs
def test_digraphs(self):
for dest, source in [(to_dict_of_dicts, from_dict_of_dicts),
(to_dict_of_lists, from_dict_of_lists)]:
G = cycle_graph(10)
# Dict of [dicts, lists]
dod = dest(G)
GG = source(dod)
assert_nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert_edges_equal(sorted(G.edges()), sorted(GG.edges()))
GW = to_networkx_graph(dod)
assert_nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert_edges_equal(sorted(G.edges()), sorted(GW.edges()))
GI = nx.Graph(dod)
assert_nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
assert_edges_equal(sorted(G.edges()), sorted(GI.edges()))
G = cycle_graph(10, create_using=nx.DiGraph())
dod = dest(G)
GG = source(dod, create_using=nx.DiGraph())
assert_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert_equal(sorted(G.edges()), sorted(GG.edges()))
GW = to_networkx_graph(dod, create_using=nx.DiGraph())
assert_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert_equal(sorted(G.edges()), sorted(GW.edges()))
GI = nx.DiGraph(dod)
assert_equal(sorted(G.nodes()), sorted(GI.nodes()))
assert_equal(sorted(G.edges()), sorted(GI.edges()))
开发者ID:jklaise,项目名称:networkx,代码行数:28,代码来源:test_convert.py
示例2: test_graph
def test_graph(self):
G=cycle_graph(10)
e=G.edges()
source=[u for u,v in e]
dest=[v for u,v in e]
ex=zip(source,dest,source)
G=Graph()
G.add_weighted_edges_from(ex)
# Dict of dicts
dod=to_dict_of_dicts(G)
GG=from_dict_of_dicts(dod,create_using=Graph())
assert_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert_equal(sorted(G.edges()), sorted(GG.edges()))
GW=to_networkx_graph(dod,create_using=Graph())
assert_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert_equal(sorted(G.edges()), sorted(GW.edges()))
GI=Graph(dod)
assert_equal(sorted(G.nodes()), sorted(GI.nodes()))
assert_equal(sorted(G.edges()), sorted(GI.edges()))
# Dict of lists
dol=to_dict_of_lists(G)
GG=from_dict_of_lists(dol,create_using=Graph())
# dict of lists throws away edge data so set it to none
enone=[(u,v,{}) for (u,v,d) in G.edges(data=True)]
assert_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert_equal(enone, sorted(GG.edges(data=True)))
GW=to_networkx_graph(dol,create_using=Graph())
assert_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert_equal(enone, sorted(GW.edges(data=True)))
GI=Graph(dol)
assert_equal(sorted(G.nodes()), sorted(GI.nodes()))
assert_equal(enone, sorted(GI.edges(data=True)))
开发者ID:123jefferson,项目名称:MiniBloq-Sparki,代码行数:34,代码来源:test_convert.py
示例3: LCF_graph
def LCF_graph(n, shift_list, repeats, create_using=None):
"""
Return the cubic graph specified in LCF notation.
LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed
notation used in the generation of various cubic Hamiltonian
graphs of high symmetry. See, for example, dodecahedral_graph,
desargues_graph, heawood_graph and pappus_graph below.
n (number of nodes)
The starting graph is the n-cycle with nodes 0,...,n-1.
(The null graph is returned if n < 0.)
shift_list = [s1,s2,..,sk], a list of integer shifts mod n,
repeats
integer specifying the number of times that shifts in shift_list
are successively applied to each v_current in the n-cycle
to generate an edge between v_current and v_current+shift mod n.
For v1 cycling through the n-cycle a total of k*repeats
with shift cycling through shiftlist repeats times connect
v1 with v1+shift mod n
The utility graph K_{3,3}
>>> G=nx.LCF_graph(6,[3,-3],3)
The Heawood graph
>>> G=nx.LCF_graph(14,[5,-5],7)
See http://mathworld.wolfram.com/LCFNotation.html for a description
and references.
"""
if create_using is not None and create_using.is_directed():
raise NetworkXError("Directed Graph not supported")
if n <= 0:
return empty_graph(0, create_using)
# start with the n-cycle
G = cycle_graph(n, create_using)
G.name = "LCF_graph"
nodes = G.nodes()
n_extra_edges = repeats * len(shift_list)
# edges are added n_extra_edges times
# (not all of these need be new)
if n_extra_edges < 1:
return G
for i in range(n_extra_edges):
shift = shift_list[i % len(shift_list)] # cycle through shift_list
v1 = nodes[i % n] # cycle repeatedly through nodes
v2 = nodes[(i + shift) % n]
G.add_edge(v1, v2)
return G
开发者ID:JaneliaSciComp,项目名称:Neuroptikon,代码行数:59,代码来源:small.py
示例4: create_weighted
def create_weighted(self, G):
g = cycle_graph(4)
e = list(g.edges())
source = [u for u,v in e]
dest = [v for u,v in e]
weight = [s+10 for s in source]
ex = zip(source, dest, weight)
G.add_weighted_edges_from(ex)
return G
开发者ID:argriffing,项目名称:networkx,代码行数:9,代码来源:test_convert_scipy.py
示例5: frucht_graph
def frucht_graph(create_using=None):
"""Return the Frucht Graph.
The Frucht Graph is the smallest cubical graph whose
automorphism group consists only of the identity element.
"""
G = cycle_graph(7, create_using)
G.add_edges_from([[0, 7], [1, 7], [2, 8], [3, 9], [4, 9], [5, 10], [6, 10], [7, 11], [8, 11], [8, 9], [10, 11]])
G.name = "Frucht Graph"
return G
开发者ID:JaneliaSciComp,项目名称:Neuroptikon,代码行数:12,代码来源:small.py
示例6: __init__
def __init__(self):
self.G1 = barbell_graph(10, 3)
self.G2 = cycle_graph(10, create_using=nx.DiGraph())
self.G3 = self.create_weighted(nx.Graph())
self.G4 = self.create_weighted(nx.DiGraph())
开发者ID:argriffing,项目名称:networkx,代码行数:6,代码来源:test_convert_scipy.py
示例7: test_with_multiedges_self_loops
def test_with_multiedges_self_loops(self):
G = cycle_graph(10)
XG = nx.Graph()
XG.add_nodes_from(G)
XG.add_weighted_edges_from((u, v, u) for u, v in G.edges())
XGM = nx.MultiGraph()
XGM.add_nodes_from(G)
XGM.add_weighted_edges_from((u, v, u) for u, v in G.edges())
XGM.add_edge(0, 1, weight=2) # multiedge
XGS = nx.Graph()
XGS.add_nodes_from(G)
XGS.add_weighted_edges_from((u, v, u) for u, v in G.edges())
XGS.add_edge(0, 0, weight=100) # self loop
# Dict of dicts
# with self loops, OK
dod = to_dict_of_dicts(XGS)
GG = from_dict_of_dicts(dod, create_using=nx.Graph())
assert_nodes_equal(XGS.nodes(), GG.nodes())
assert_edges_equal(XGS.edges(), GG.edges())
GW = to_networkx_graph(dod, create_using=nx.Graph())
assert_nodes_equal(XGS.nodes(), GW.nodes())
assert_edges_equal(XGS.edges(), GW.edges())
GI = nx.Graph(dod)
assert_nodes_equal(XGS.nodes(), GI.nodes())
assert_edges_equal(XGS.edges(), GI.edges())
# Dict of lists
# with self loops, OK
dol = to_dict_of_lists(XGS)
GG = from_dict_of_lists(dol, create_using=nx.Graph())
# dict of lists throws away edge data so set it to none
enone = [(u, v, {}) for (u, v, d) in XGS.edges(data=True)]
assert_nodes_equal(sorted(XGS.nodes()), sorted(GG.nodes()))
assert_edges_equal(enone, sorted(GG.edges(data=True)))
GW = to_networkx_graph(dol, create_using=nx.Graph())
assert_nodes_equal(sorted(XGS.nodes()), sorted(GW.nodes()))
assert_edges_equal(enone, sorted(GW.edges(data=True)))
GI = nx.Graph(dol)
assert_nodes_equal(sorted(XGS.nodes()), sorted(GI.nodes()))
assert_edges_equal(enone, sorted(GI.edges(data=True)))
# Dict of dicts
# with multiedges, OK
dod = to_dict_of_dicts(XGM)
GG = from_dict_of_dicts(dod, create_using=nx.MultiGraph(),
multigraph_input=True)
assert_nodes_equal(sorted(XGM.nodes()), sorted(GG.nodes()))
assert_edges_equal(sorted(XGM.edges()), sorted(GG.edges()))
GW = to_networkx_graph(dod, create_using=nx.MultiGraph(), multigraph_input=True)
assert_nodes_equal(sorted(XGM.nodes()), sorted(GW.nodes()))
assert_edges_equal(sorted(XGM.edges()), sorted(GW.edges()))
GI = nx.MultiGraph(dod) # convert can't tell whether to duplicate edges!
assert_nodes_equal(sorted(XGM.nodes()), sorted(GI.nodes()))
#assert_not_equal(sorted(XGM.edges()), sorted(GI.edges()))
assert_false(sorted(XGM.edges()) == sorted(GI.edges()))
GE = from_dict_of_dicts(dod, create_using=nx.MultiGraph(),
multigraph_input=False)
assert_nodes_equal(sorted(XGM.nodes()), sorted(GE.nodes()))
assert_not_equal(sorted(XGM.edges()), sorted(GE.edges()))
GI = nx.MultiGraph(XGM)
assert_nodes_equal(sorted(XGM.nodes()), sorted(GI.nodes()))
assert_edges_equal(sorted(XGM.edges()), sorted(GI.edges()))
GM = nx.MultiGraph(G)
assert_nodes_equal(sorted(GM.nodes()), sorted(G.nodes()))
assert_edges_equal(sorted(GM.edges()), sorted(G.edges()))
# Dict of lists
# with multiedges, OK, but better write as DiGraph else you'll
# get double edges
dol = to_dict_of_lists(G)
GG = from_dict_of_lists(dol, create_using=nx.MultiGraph())
assert_nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert_edges_equal(sorted(G.edges()), sorted(GG.edges()))
GW = to_networkx_graph(dol, create_using=nx.MultiGraph())
assert_nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert_edges_equal(sorted(G.edges()), sorted(GW.edges()))
GI = nx.MultiGraph(dol)
assert_nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
assert_edges_equal(sorted(G.edges()), sorted(GI.edges()))
开发者ID:jklaise,项目名称:networkx,代码行数:80,代码来源:test_convert.py
示例8: create_weighted
def create_weighted(self, G):
g = cycle_graph(4)
G.add_nodes_from(g)
G.add_weighted_edges_from( (u,v,10+u) for u,v in g.edges())
return G
开发者ID:jklaise,项目名称:networkx,代码行数:5,代码来源:test_convert_numpy.py
注:本文中的networkx.generators.classic.cycle_graph函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论