• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python networkx.spring_layout函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.spring_layout函数的典型用法代码示例。如果您正苦于以下问题:Python spring_layout函数的具体用法?Python spring_layout怎么用?Python spring_layout使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了spring_layout函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: draw_figures

def draw_figures(problem, clique_collection, probability):
    """
    function to draw figure
    :param problem: input problem
    :param clique_collection: all collection lists of cliques
    :param probability: input probability
    :return: show and save the out figure from origin to k-cliques graph with probability
    """

    pos = nx.spring_layout(problem.G)
    pl.figure(1)
    pl.title("original figure with probability {p}".format(p=probability))
    nx.draw(problem.G, pos=pos)
    nx.draw_networkx_labels(problem.G, pos, font_size=10, font_family='sans-serif')
    pl.savefig("origin_with_prob_{p}.png".format(p=probability))
    # pl.show()

    for i in range(len(clique_collection)):
        new_nodes = []
        for n in problem.G.nodes():
            for li in clique_collection[i]:
                if n in li:
                    new_nodes.append(n)

        subgraph = problem.G.subgraph(new_nodes)
        pos = nx.spring_layout(problem.G)
        pl.figure()
        pl.title('{k} cliques with probability {p}'.format(k=i+3, p=probability))
        nx.draw(subgraph, pos=pos)
        nx.draw_networkx_labels(subgraph, pos, font_size=10, font_family='sans-serif')
        pl.savefig("{k}_cliq_with_prob_{p}.png".format(k=i+3, p=probability))
开发者ID:WeiliangXing,项目名称:Facebook-Data-Mining,代码行数:31,代码来源:exp.py


示例2: paint_clusters

def paint_clusters(G1, G2, beacons_G1, beacons_G2, kmeans_labels1, kmeans_labels2):
	accent_colors = brewer2mpl.get_map('Accent', 'qualitative',8).mpl_colors
	plt.subplot(121)
	plt.axis('off')
	plt.title('$G_1$')
	(labels, node_colors, node_sizes) = visualize_beacons(G1, beacons_G1)
	clustered_colors = cluster_colors(G1, beacons_G1, kmeans_labels1, accent_colors)

	pos = nx.spring_layout(G1, weight=None)
	nx.draw_networkx_nodes(G1, pos, node_color=clustered_colors, node_size=node_sizes, font_size=18)
	nx.draw_networkx_labels(G1, pos, font_size=17, labels=labels, font_color = '#262626')
	nx.draw_networkx_edges(G1, pos, width=2, alpha=0.3)


	plt.subplot(122)
	plt.axis('off')
	plt.title('$G_2$')
	(labels, node_colors, node_sizes) = visualize_beacons(G2, beacons_G2)
	clustered_colors = cluster_colors(G2, beacons_G2, kmeans_labels2, accent_colors)

	pos2_init= {key:value for (key, value) in zip(beacons_G2,[pos[beacon] for beacon in beacons_G1])}
	pos2 = nx.spring_layout(G2, weight=None, pos = pos2_init)

	nx.draw_networkx_nodes(G2, pos=pos2, node_color=clustered_colors, node_size=node_sizes, font_size=18)
	nx.draw_networkx_labels(G2, pos=pos2, font_size=17, labels=labels, font_color = '#262626')
	nx.draw_networkx_edges(G2, pos=pos2, width=2, alpha=0.3)
开发者ID:harrymvr,项目名称:graph-isomorphism,代码行数:26,代码来源:graph_isomorphisms.py


示例3: test_scale_and_center_arg

    def test_scale_and_center_arg(self):
        G = nx.complete_graph(9)
        G.add_node(9)
        vpos = nx.random_layout(G, scale=2, center=(4,5))
        self.check_scale_and_center(vpos, scale=2, center=(4,5))
        vpos = nx.spring_layout(G, scale=2, center=(4,5))
        self.check_scale_and_center(vpos, scale=2, center=(4,5))
        vpos = nx.spectral_layout(G, scale=2, center=(4,5))
        self.check_scale_and_center(vpos, scale=2, center=(4,5))
        # circular can have twice as big length
        vpos = nx.circular_layout(G, scale=2, center=(4,5))
        self.check_scale_and_center(vpos, scale=2*2, center=(4,5))
        vpos = nx.shell_layout(G, scale=2, center=(4,5))
        self.check_scale_and_center(vpos, scale=2*2, center=(4,5))

        # check default center and scale
        vpos = nx.random_layout(G)
        self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
        vpos = nx.spring_layout(G)
        self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
        vpos = nx.spectral_layout(G)
        self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
        vpos = nx.circular_layout(G)
        self.check_scale_and_center(vpos, scale=2, center=(0,0))
        vpos = nx.shell_layout(G)
        self.check_scale_and_center(vpos, scale=2, center=(0,0))
开发者ID:JFriel,项目名称:honours_project,代码行数:26,代码来源:test_layout.py


示例4: getpositions

def getpositions(nodes, links, fixeditem=None):
    if nx_available:
        G = nx.Graph()
        G.add_nodes_from(nodes)
        G.add_edges_from(links)
        # print G.number_of_nodes()
        # print G.number_of_edges()
        # for line in nx.generate_adjlist(G):
        #    print(line)

        if fixeditem:
            # so this currently doesnt appear to work
            # the node now seems to fix into centre
            pos = {1: (0, 0)}
            fixlist = [1]
            return nx.spring_layout(G, 2, 0.8, pos=pos, fixed=fixlist)
        else:
            # print nx.spring_layout(G, 2, 1.5, iterations=50)
            # TO DO set above to 0,0 for all - object of this is to avoid failure but
            # probably will make calling optional shortly
            return nx.spring_layout(G, 2, 1.5, iterations=50)
    else:
        # lets assign 0,0 for now - might move to random
        nodedict = {}
        for node in nodes:
            nodedict[node] = (0, 0)
        return nodedict
开发者ID:DonaldMc,项目名称:gdms,代码行数:27,代码来源:netx2py.py


示例5: draw_networkx_ex

def draw_networkx_ex():
    G = nx.dodecahedral_graph()
    nx.draw(G)
    plt.show()
    nx.draw_networkx(G, pos=nx.spring_layout(G))
    limits = plt.axis('off')
    plt.show()
    nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G))
    plt.show()
    edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
    plt.show()
    labels = nx.draw_networkx_labels(G, pos=nx.spring_layout(G))
    plt.show()
    edge_labels = nx.draw_networkx_edge_labels(G, pos=nx.spring_layout(G))
    plt.show()
    print("Circular layout")
    nx.draw_circular(G)
    plt.show()
    print("Random layout")
    nx.draw_random(G)
    plt.show()
    print("Spectral layout")
    nx.draw_spectral(G)
    plt.show()
    print("Spring layout")
    nx.draw_spring(G)
    plt.show()
    print("Shell layout")
    nx.draw_shell(G)
    plt.show()
    print("Graphviz")
开发者ID:szintakacseva,项目名称:MLTopic,代码行数:31,代码来源:nxdrawing.py


示例6: main

def main():

    G_igraph, G_nx, nodes_vector = generate_data()

    aca0, aca1 = separate_data_by_academy(nodes_vector, G_nx)

    print aca0.nodes()
    print aca1.nodes()

    plt.subplot(121)
    nx.draw_networkx(
        G=aca0,
        pos=nx.spring_layout(aca0),
        with_labels=True,
        node_color='g',
        edge_color='b',
        alpha=1)

    plt.axis('off')

    plt.subplot(122)
    nx.draw_networkx(
        G=aca1,
        pos=nx.spring_layout(aca1),
        with_labels=True,
        node_color='g',
        edge_color='b',
        alpha=1)

    plt.axis('off')
    plt.show()
开发者ID:NSSimacer,项目名称:SNA,代码行数:31,代码来源:DataProcess.py


示例7: main

def main():
    
    ### Undirected graph ###
    
    # Initialize model using the Petersen graph
    model=gmm.gmm(nx.petersen_graph())
    old_graph=model.get_base()
    model.set_termination(node_ceiling)
    model.set_rule(rand_add)
    
    # Run simualation with tau=4 and Poisson density for motifs
    gmm.algorithms.simulate(model,4)   

    # View results
    new_graph=model.get_base()
    print(nx.info(new_graph))
    
    # Draw graphs
    old_pos=nx.spring_layout(old_graph)
    new_pos=nx.spring_layout(new_graph,iterations=2000)
    fig1=plt.figure(figsize=(15,7))
    fig1.add_subplot(121)
    #fig1.text(0.1,0.9,"Base Graph")
    nx.draw(old_graph,pos=old_pos,node_size=25,with_labels=False)
    fig1.add_subplot(122)
    #fig1.text(0.1,0.45,"Simulation Results")
    nx.draw(new_graph,pos=new_pos,node_size=20,with_labels=False)
    fig1.savefig("undirected_model.png")
    
    ### Directed graph ###
    
    # Initialize model using random directed Barabasi-Albert model
    directed_base=nx.barabasi_albert_graph(25,2).to_directed()
    directed_model=gmm.gmm(directed_base)
    directed_model.set_termination(node_ceiling)
    directed_model.set_rule(rand_add)
    
    # Run simualation with tau=4 and Poisson density for motifs
    gmm.algorithms.simulate(directed_model,4)
    
    # View results
    new_directed=directed_model.get_base()
    print(nx.info(new_directed))
    
    # Draw directed graphs
    old_dir_pos=new_pos=nx.spring_layout(directed_base)
    new_dir_pos=new_pos=nx.spring_layout(new_directed,iterations=2000)
    fig2=plt.figure(figsize=(7,10))
    fig2.add_subplot(211)
    fig2.text(0.1,0.9,"Base Directed Graph")
    nx.draw(directed_base,pos=old_dir_pos,node_size=25,with_labels=False)
    fig2.add_subplot(212)
    fig2.text(0.1,0.45, "Simualtion Results")
    nx.draw(new_directed,pos=new_dir_pos,node_size=20,with_labels=False)
    fig2.savefig("directed_model.png")
    
    # Export files
    nx.write_graphml(model.get_base(), "base_model.graphml")
    nx.write_graphml(directed_model.get_base(), "directed_model.graphml")
    nx.write_graphml(nx.petersen_graph(), "petersen_graph.graphml")
开发者ID:drewconway,项目名称:GMM,代码行数:60,代码来源:basic_model.py


示例8: drawSprings

def drawSprings(corrMatrix, kclusters, initialPosFileName, mult=1.1):
    """drawSprings draws two figures, one of the spring evolution at 9 timepoints, one of the initial vs. final.

    :param corrMatrix: a data object generated by kmeans cluster - has the correlations between objects.
    :type corrMatrix: dict - must have 'data' and 'proteins'
    :param kclusters: the number of kclusters used in the analysis (what was passed to kmeans)
    :type kclusters: int
    :param initialPosFileName: a string pointing to the initial positions of each node - see nierhausPositions.txt
    :type initialPosFileName: string
    :param mult: a float of the base of the exponent to exapand on in each spring interation
    :type mult: float
    :returns:  an array of figures - first is the evolution, second is the start and end.
    
    """
    G = nx.Graph()
    positions = readDataFile(initialPosFileName)
    initialNodePos = {positions['proteins'][i]: [float(positions['data'][i,0])/4.0, float(positions['data'][i,1])/5.0] for i in range(len(positions['proteins']))}
       
    [G.add_node(x) for x in corrMatrix['proteins']]

    connection = (lambda x,y: corrMatrix['data'][x][y])

    [G.add_edge(corrMatrix['proteins'][x],corrMatrix['proteins'][y], weight=connection(x,y)) for x in range(len(corrMatrix['proteins'])) for y in range(len(corrMatrix['proteins'])) if (connection(x,y)!=0)]
    weights = [G.get_edge_data(x[0],x[1])['weight'] for x in G.edges()]

    notes = pylab.figure()
    ax = notes.add_subplot(1,2,1, title="nierhaus positions_kclusters=" + str(kclusters))
    drawNodePos = initialNodePos
    yDiff = [initialNodePos[x][1] - drawNodePos[x][1] for x in drawNodePos.keys()]
    nx.draw_networkx(G, pos = drawNodePos,
                    node_size=600, node_color = yDiff, cmap = pylab.cm.RdBu, vmin=-1, vmax=1,
                    edge_color=weights, edge_vmin = 0, edge_vmax = kMeansRuns, edge_cmap = pylab.cm.autumn_r, width=2,
                    font_size=10, font_weight='bold')

    iters = int(mult**8)
    ax = notes.add_subplot(1,2,2, title="spring iteration=" + str(iters) + "_kclusters=" + str(kclusters))
    drawNodePos = nx.spring_layout(G, pos=initialNodePos, iterations=iters)
    yDiff = [initialNodePos[x][1] - drawNodePos[x][1] for x in drawNodePos.keys()]
    nx.draw_networkx(G, pos = drawNodePos,
                    node_size=600, node_color = yDiff, cmap = pylab.cm.RdBu, vmin=-1, vmax=1,
                    edge_color=weights, edge_vmin = 0, edge_vmax = kMeansRuns, edge_cmap = pylab.cm.autumn_r, width=2,
                    font_size=10, font_weight='bold')

    cb1ax = notes.add_axes([0.025, 0.1, 0.05, 0.8])
    pylab.colorbar(cmap=pylab.cm.autumn_r, cax=cb1ax)
    cb2ax = notes.add_axes([0.925, 0.1, 0.05, 0.8])
    norm = mpl.colors.Normalize(vmin=-1, vmax=1)
    cb2 = mpl.colorbar.ColorbarBase(cb2ax, cmap=pylab.cm.RdBu_r, norm=norm, orientation='vertical')
        
    notes2 = pylab.figure()
    drawNodePos = initialNodePos
    for i in range(9):
        ax = notes2.add_subplot(3,3,i+1, title="iterations=" + str(int(mult**i)) + "_k=" + str(kclusters))
        drawNodePos = nx.spring_layout(G, pos=drawNodePos, iterations=int(mult**i))

        yDiff = [initialNodePos[x][1] - drawNodePos[x][1] for x in drawNodePos.keys()]
        nx.draw_networkx(G, pos = drawNodePos,
                        node_size=600, node_color = yDiff, cmap = pylab.cm.RdBu, vmin=-1, vmax=1,
                        edge_color=weights, edge_vmin = 0, edge_vmax = kMeansRuns, edge_cmap = pylab.cm.autumn_r, width=2,
                        font_size=10, font_weight='bold')
开发者ID:joeydavis,项目名称:qMSClustering,代码行数:60,代码来源:qMSClustering.py


示例9: test_layouts

def test_layouts():
    G =nx.gnm_random_graph(10,15)

    rand = [nx.random_layout(G)]
    circ = [nx.circular_layout(G)]
    #shell = [nx.shell_layout(G)] #same as circular layout...
    spectral = [nx.spectral_layout(G)]
    tripod = [tripod_layout(G)]

    layouts = [rand,circ,spectral, tripod]
    regimes = ["random","circular","spectral", "tripod"]

    for layout in layouts:
        layout.append(nx.spring_layout(G,2,layout[0]))
        layout.append(iterate_swaps(G,layout[0]))
        layout.append(nx.spring_layout(G,2,layout[2]))
        layout.append(greedy_swapper(G,layout[0]))

    # Now have list of lists... Find lengths of edgecrossings...

    num_crossings = []
    for layout in layouts:
        for sublayout in layout:
            num_crossings.append(count_crosses(G,sublayout))

    names = []
    for regime in regimes:
        names.append(regime)
        names.append(regime + "-spring")
        names.append(regime + "-swap")
        names.append(regime + "-swap-spr")
        names.append(regime + "-greedy")

    return G, layouts, names, num_crossings
开发者ID:natlund,项目名称:disentangler,代码行数:34,代码来源:disentangler.py


示例10: OnLocalPerturbation

 def OnLocalPerturbation(self,e):
     k=0
     dlg=wx.NumberEntryDialog(self,message='The Number of nodes in cluster, default 3!',prompt='k:',caption='k-anonymity parameter',value=3,min=2,max=40)
     if (dlg.ShowModal() == wx.ID_OK):
         k=dlg.GetValue()
     else:
         return
     self.rtb.SetValue("")
     self.PushStatusText("Starting Local Perturbation", SB_INFO)
     self.ShowPos()
     if len(self.g.node)!=0:
         origin_g=self.g.copy()
         result=lp.LocalPerturbation(self.g,k)#perturbation and get the clusters and new graph
         self.g=result[1]
         OutStr="the clusters:\n"
         for c in result[0]:
             OutStr=OutStr+str(tuple(c))+"\n"
         self.rtb.SetValue(OutStr)
         plt.figure("comparison")
         plt.subplot(211)
         plt.title ("original graph")
         nx.draw(origin_g,with_labels=True,pos=nx.spring_layout(origin_g))
         plt.subplot(212)
         plt.title("new graph")
         nx.draw(self.g,with_labels=True,pos=nx.spring_layout(self.g))
         plt.show()
     else:
         print 'Grap is empty!! Please load data!'
         wx.MessageBox("No data was selected. Please load data!","Data Error")
开发者ID:liupenggl,项目名称:dpr,代码行数:29,代码来源:DataPrivacy.py


示例11: Asymmetric_Networks

def Asymmetric_Networks():
	G_asymmetric = nx.DiGraph()
	G_asymmetric.add_edge('A', 'B')
	G_asymmetric.add_edge('A', 'D')
	G_asymmetric.add_edge('C', 'A')
	G_asymmetric.add_edge('D', 'E')
	nx.spring_layout(G_asymmetric)
	nx.draw_networkx(G_asymmetric)
开发者ID:1v1expert,项目名称:UniversityTasks,代码行数:8,代码来源:main.py


示例12: add_ndex_spring_layout_with_attractors

def add_ndex_spring_layout_with_attractors(g, node_width, attractor_map, iterations=None, use_degree_edge_weights=False):
    fixed = []
    initial_pos = {}
    g_simple = _create_simple_graph(g)
    next_node_id = max(g_simple.nodes()) + 1

    cc = sorted(nx.connected_components(g_simple), key = len, reverse=True)
    if len(cc) > 1:
        print("%s disconnected subgraphs: adding centerpoint attractor with edges to one of the least connected nodes in each subgraph" % len(cc))
        anchor_node_ids = []
        for c in cc:
            cl = list(c)
            min_degree = min(cl)
            min_index = cl.index(min_degree)
            node_id = cl[min_index]
            anchor_node_ids.append(node_id)
        attractor_id = next_node_id
        g_simple.add_node(next_node_id)
        next_node_id = next_node_id + 1
        fixed.append(attractor_id)
        initial_pos[attractor_id] = (0.5, 0.5)
        for node_id in anchor_node_ids:
            g_simple.add_edge(node_id, attractor_id)



    for attractor in attractor_map:
        attractor_id = next_node_id
        g_simple.add_node(next_node_id)
        next_node_id = next_node_id + 1
        fixed.append(attractor_id)
        initial_pos[attractor_id] = attractor["position"]
        for node_id in attractor["node_ids"]:
            g_simple.add_edge(node_id, attractor_id) # , {"weight":2.5})

    if use_degree_edge_weights:
        _add_degree_edge_weights(g_simple)

    scaled_pos = {}
    scale_factor = 4 * node_width * math.sqrt(g.number_of_nodes())

    for node in g_simple.nodes():
        x_pos = random.random() * scale_factor
        y_pos = random.random() * scale_factor
        scaled_pos[node] = (x_pos, y_pos)

    for node_id in initial_pos:
        position = initial_pos[node_id]
        scaled_pos[node_id] = (scale_factor * position[0], scale_factor * position[1])

    if len(fixed) > 0:
        final_positions = nx.spring_layout(g_simple, fixed=fixed, pos=scaled_pos, iterations=iterations)
        for node_id in fixed:
            final_positions.pop(node_id)
    else:
        final_positions = nx.spring_layout(g_simple, pos=scaled_pos, iterations=iterations)

    g.pos = final_positions
开发者ID:ndexbio,项目名称:ndex-python,代码行数:58,代码来源:layouts.py


示例13: test_algo_euler4

 def test_algo_euler4(self):
     fLOG (__file__, self._testMethodName, OutputPrint = __name__ == "__main__")
     folder = os.path.join(os.path.abspath(os.path.dirname(__file__)),"temp_rues5")
     if not os.path.exists(folder) : os.mkdir(folder)
     edges = get_data(whereTo=folder)
     edges = edges[:3]
     
     vertices = { }
     for e in edges :
         for i in range(0,2):
             _ = e[i]
             p = e[i+3]
             vertices[_] = p
     
     connex = connected_components(edges)
     v = [ v for k,v in connex.items() ]
     mi,ma = min(v), max(v)
     
     while mi != ma :
         edges.append( (mi, ma, 2, vertices[mi], vertices[ma], 
                 distance_haversine( * (vertices[mi] + vertices[ma]) ) ) )
         
         connex = connected_components(edges)
         v = [ v for k,v in connex.items() ]
         mi,ma = min(v), max(v)
         
     if __name__ == "__main__":
         import matplotlib.pyplot as plt
         import networkx as nx
         fig = plt.figure()
         G = nx.Graph()
         for e in edges :
             a,b = e[:2]
             G.add_edge(a,b)
         pos = nx.spring_layout(G)
         nx.draw(G,pos,node_color='#A0CBE2')
         plt.savefig(os.path.join(folder, "graph1.png"))
         
     added = eulerien_extension( edges, fLOG=lambda *l : None, 
                                 distance = distance_paris)
                                 
     if __name__ == "__main__":
         for e in added :
             a,b = e[:2]
             G.add_edge(a,b)
         fig = plt.figure()
         pos = nx.spring_layout(G)
         deg = graph_degree(edges + added)
         #labels={ v:"{0}".format(deg[v]) for v in G.nodes() }
         nx.draw(G,pos,node_color='#A0CBE2'#,labels=labels
                         )
         plt.savefig(os.path.join(folder, "graph2.png"))
                                 
     path = euler_path(edges, added)
     all = edges + added
     fLOG(len(all),len(path))
开发者ID:athabault,项目名称:ensae_teaching_cs,代码行数:56,代码来源:test_rue_paris.py


示例14: display

def display(Y):
	weight 			= 0.03

	node_size 		= 50
	node_alpha 		= 0.5
	node_color 		= "blue"

	edge_tickness 	= 0.5
	edge_alpha 		= 0.5
	edge_color 		= "black"

	scores 	= get_histogram(Y)
	F 	= plt.figure()
	ax1 = F.add_subplot(2,2,1)
	ax1.hist(scores,bins=30, color="green", edgecolor="white")
	ax1.set_xlabel("Pearons Correlation Coefficient")
	ax1.set_ylabel("Frequency")

	ax2 = F.add_subplot(2,2,2)
	G 	= make_network(Y,threshold=0.95,weight=weight)
	pos = nx.spring_layout(G)	
	nx.draw(G, pos,ax=ax2,node_size=15)
	nx.draw_networkx_nodes(G,pos,node_size=node_size, 
		alpha=node_alpha, node_color=node_color)
	nx.draw_networkx_edges(G,pos,width=edge_tickness,
		alpha=edge_alpha,edge_color=edge_color)

	ax2.set_title("Network Thresholded, > 0.95")



	ax3 = F.add_subplot(2,2,3)
	ax3.set_title("Network Thresholded, > 0.55")
	G 	= make_network(Y,threshold=0.55,weight=weight)
	pos = nx.spring_layout(G)	
	nx.draw(G, pos,ax=ax3,node_size=15)
	nx.draw_networkx_nodes(G,pos,node_size=node_size, 
		alpha=node_alpha, node_color=node_color)
	nx.draw_networkx_edges(G,pos,width=edge_tickness,
		alpha=edge_alpha,edge_color=edge_color)



	ax4 = F.add_subplot(2,2,4)

	penalties 	= np.linspace(0.0, 1.0,20)

	counts 		= [len([x for x in nx.connected_components(make_network(Y,threshold=p, weight=1,add=True))]) for p in penalties]
	ax4.plot(penalties, counts)
	ax4.scatter(penalties, counts)
	ax4.set_xlabel("Pearon's Treshold")
	ax4.set_ylabel("Number of Connected Components")

	plt.tight_layout()
	plt.show()
开发者ID:azofeifa,项目名称:Correlation_Analysis,代码行数:55,代码来源:compute_correlations.py


示例15: create_plot1

def create_plot1(g, df=None, dedirect=False, flatten=False, edgelabels = True, 
          nodelabels=True, fsize=None, K=None, save=False):
                  
    """Creates a graph from a figure   
    returns/shows a figure.
    
    Args:
    g - (networkx graph object)
    df - pandas dataframe object. Default is None
    dedirect - converts networkx DiGraph to Graph. Default is False
    flatten - manipultes a graph by replacing nodes that have only two 
    edges with straighforward edge. Also, groups these kind of edges if
    it is possible
    
    
    edgelabels . Default is None
    nodelables . Default is None
    fsize
    K
    Save
    
    Returns:
    matplotlib figure
    
    """
    
    if dedirect==True:
        g = nx.Graph(g)
        
    if fsize != None:
        plt.figure(1, figsize=fsize)
    pos = nx.spring_layout(g, dim=2, scale=1)
    
    if flatten == True:
        g = flatten_graph(g)
        pos = nx.spring_layout(g, dim=2, scale=1)
    
    pos = nx.spring_layout(g, dim=2, scale=10, k=K)
    
    node_colors = get_node_colors(g.nodes(), df)
    nx.draw_networkx_nodes(g, pos, alpha=0.3, node_size=300, node_color=node_colors)
    
    edge_colors = get_edge_colors(g.edges(), df)
    nx.draw_networkx_edges(g, pos, alpha=0.1, edge_color='b')
    
    if nodelabels == True:
        nx.draw_networkx_labels(g, pos)
        
    if edgelabels == True:
        nx.draw_networkx_edge_labels(g, pos)
        
    if save == True:
        mpld3.save_html(figure(1), 'graph.html')
        
    return plt.figure(1)
开发者ID:aidiss,项目名称:Lithuanian-Academic-Circles-and-Their-Networks,代码行数:55,代码来源:create_plot.py


示例16: test_plot

def test_plot(image):
    graph = nx.from_numpy_matrix(image)
    plt.subplot2grid((9, 3), (0, 0), rowspan=3, colspan=3)
    nx.draw(graph, nx.spring_layout(graph))
    plt.hold(True)
    plt.subplot2grid((9, 3), (3, 0), rowspan=3, colspan=3)
    nx.draw(graph, nx.spring_layout(graph))
    plt.hold(True)
    plt.subplot2grid((9, 3), (6, 0), rowspan=3, colspan=3)
    nx.draw(graph, nx.spring_layout(graph))
    plt.axis('tight')
    plt.show()
开发者ID:kirk86,项目名称:Task-1,代码行数:12,代码来源:plots.py


示例17: autoCoordinates

def autoCoordinates(meshEntry,srcdesConnection):
    #for cmpt,memb in meshEntry.items():
    #    print memb
    xmin = 0.0
    xmax = 1.0
    ymin = 0.0
    ymax = 1.0
    G = nx.Graph()
    for cmpt,memb in meshEntry.items():
        for enzObj in find_index(memb,'enzyme'):
            G.add_node(enzObj.path)
    for cmpt,memb in meshEntry.items():
        for poolObj in find_index(memb,'pool'):
            G.add_node(poolObj.path)
        for cplxObj in find_index(memb,'cplx'):
            G.add_node(cplxObj.path)
            G.add_edge((cplxObj.parent).path,cplxObj.path)
        for reaObj in find_index(memb,'reaction'):
            G.add_node(reaObj.path)
        
    for inn,out in srcdesConnection.items():
        if (inn.className =='ZombieReac'): arrowcolor = 'green'
        elif(inn.className =='ZombieEnz'): arrowcolor = 'red'
        else: arrowcolor = 'blue'
        if isinstance(out,tuple):
            if len(out[0])== 0:
                print inn.className + ':' +inn[0].name + "  doesn't have input message"
            else:
                for items in (items for items in out[0] ):
                    G.add_edge(element(items[0]).path,inn.path)
            if len(out[1]) == 0:
                print inn.className + ':' + inn[0].name + "doesn't have output mssg"
            else:
                for items in (items for items in out[1] ):
                    G.add_edge(inn.path,element(items[0]).path)
        elif isinstance(out,list):
            if len(out) == 0:
                print "Func pool doesn't have sumtotal"
            else:
                for items in (items for items in out ):
                    G.add_edge(element(items[0]).path,inn.path)
    
    nx.draw(G,pos=nx.spring_layout(G))
    #plt.savefig('/home/harsha/Desktop/netwrokXtest.png')
    xcord = []
    ycord = []
    position = nx.spring_layout(G)
    for y in position.values():
        xcord.append(y[0])
        ycord.append(y[1])
	    
    return(min(xcord),max(xcord),min(ycord),max(ycord),position)
开发者ID:saeedsh,项目名称:async_gpu,代码行数:52,代码来源:kkitOrdinateUtil.py


示例18: plot_graph

def plot_graph(graph, fixed=None, positions=None, show_plot=True, fpath=None):
    """Plot graph.
    
    Parameters
    ----------
    graph : networkx.MultiDiGraph
        Output from `make_graph`
    fixed : {None}, list, optional
        Node around which to fix graph. Overrides `positions`.
        Example: fixed=['mod1']
    positions : {None}, dict, optional
        ``dict`` of ``list`` output from `make_positions_dict`.
        Requires `fixed` is ``None``, otherwise overridden. 
    show_plot : {True, False}, bool, optional
        Flag to display plot in window.
    fpath : {None}, string, optional
        Path for plotting graph.
    
    Returns
    -------
    None
    
    See Also
    --------
    CALLS : {}
    CALLED_BY : {}
    RELATED : {make_positions_dict, make_graph}

    """
    # TODO: Space out points. Scale to larger image?
    # TODO: make relationships different colors
    # Check input and define positions.
    if fixed is None:
        if positions is None:
            pos = nx.spring_layout(graph, fixed=fixed)
        else:
            pos = positions
    else:
        if positions is not None:
            warnings.warn(
                ("\n" +
                 "`fixed` overrides `positions`:\n" +
                 "fixed = {fixed}").format(
                     fixed=fixed))
        pos = nx.spring_layout(graph, fixed=fixed)
    # Draw graph and save.
    nx.draw(graph, pos=pos)
    nx.draw_networkx_labels(graph, pos=pos)
    if fpath is not None:
        plt.savefig(fpath, bbox_inches='tight')
    plt.show()
    return None
开发者ID:stharrold,项目名称:doc,代码行数:52,代码来源:utils.py


示例19: main

def main(G):
    """draw the input graph and the colored out put graph
       determine the centroides and clusters
    """    
    try:
        val_map = {'A': 1.0,
                           'D': 0.5714285714285714,
                                      'H': 0.0}
        values = [val_map.get(node, 0.45) for node in G.nodes()]
        edge_colors = 'k'
        
        edge_labels=dict([((u,v,),d['weight'])
                     for u,v,d in G.edges(data=True)])
        pos=nx.spring_layout(G) # positions for all nodes                
        nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)
        nx.draw(G,pos, node_color = values, node_size=15,edge_color=edge_colors,edge_cmap=plt.cm.Reds)
        pylab.show()
    
    
        km = BKM.KMeans(G, n_clusters, max_iter=100)
        
        
        pos=nx.spring_layout(G) # positions for all nodes
        node_colors = ['b','g','r','y','c','k','m'] 
        for i in range(len(G)):
                node_colors.append('w')
        # nodes
        Clust = km.fit_predict(G)[1]
        
        
        for item in range(n_clusters):
            for group in Clust[item]:
                nx.draw_networkx_nodes(G,pos,
                                       nodelist = Clust[item],
                                       node_color=node_colors[item],
                                       node_size=80,
                                   alpha=0.8)
        
        edge_colors = 'k'
        edge_labels=dict([((u,v,),d['weight'])
                     for u,v,d in G.edges(data=True)])               
        nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)
        nx.draw(G,pos, node_color = values, node_size=1,edge_color=edge_colors,edge_cmap=plt.cm.Reds)
        pylab.show()
    
        print(km.__str__())


    except BKM.KMeansError:
        
        print( "Got an imput error, please change the input and try it again." )
开发者ID:liuqingjie,项目名称:Network-Clustering,代码行数:51,代码来源:test.py


示例20: main

def main(G):
    """draw the input graph and the colored out put graph
       determine the clusters after each level of merging
    """    
    try:
        val_map = {'A': 1.0,
                           'D': 0.5714285714285714,
                                      'H': 0.0}
        values = [val_map.get(node, 0.45) for node in G.nodes()]
        edge_colors = 'k'
        
        edge_labels=dict([((u,v,),d['weight'])
                     for u,v,d in G.edges(data=True)])
        pos=nx.spring_layout(G) # positions for all nodes                
        nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)
        nx.draw(G,pos, node_color = values, node_size=15,edge_color=edge_colors,edge_cmap=plt.cm.Reds)
        pylab.show()
    
        for ite in range(len(G.nodes())):
              
            Iterations = ite 
            AL = AVG.Average_linkage(G, Iterations)
            #print(AL.__str__())
            pos=nx.spring_layout(G) # positions for all nodes
            node_colors = ['b','g','r','y','c','k','m'] 
            for i in range(len(G)):
                node_colors.append('w')
            
            # nodes
            C_list = AL.fit_predict(G)[-1,:]
            for Clust in range(C_list.shape[1]):
                    nx.draw_networkx_nodes(G,pos,
                                           nodelist = list(C_list[0,Clust]),
                                           node_color=node_colors[Clust],
                                           node_size=80,
                                           alpha=0.8)
             
            # edges
            nx.draw_networkx_edges(G,pos,width=1.0,alpha=0.5)
            nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)
            
            plt.axis('off')
            plt.savefig("labels_and_colors.png") # save as png
            plt.show() # display
            print "in level :",ite 
            print AL.__str__()


    except AVG.Average_linkage_Error:
        
        print( "Got an imput error, please change the input and try it again." )
开发者ID:NunoEdgarGub1,项目名称:Network-Clustering,代码行数:51,代码来源:test.py



注:本文中的networkx.spring_layout函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.star_graph函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.spectral_layout函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap