• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python networkx.read_gexf函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.read_gexf函数的典型用法代码示例。如果您正苦于以下问题:Python read_gexf函数的具体用法?Python read_gexf怎么用?Python read_gexf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了read_gexf函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: prepare_data_for_pr

def prepare_data_for_pr(topic_id, date, window_size, topicname, real_topic_id):
    tmp_file = tempfile.NamedTemporaryFile(delete=False)
    ds_tmp_file = tempfile.NamedTemporaryFile(delete=False)

    topic = topicname
    if not topic:
        return None

    #g, gg, new_attribute_dict, ds_dg, ds_udg, ds_new_attribute_dict= make_network(topic, date, window_size, attribute_add=False)
    key = str(real_topic_id) + '_' + str(date) + '_' + str(window_size)
    g = nx.read_gexf(str(GRAPH_PATH)+str(key)+'_g_graph.gexf')
    ds_dg = nx.read_gexf(str(GRAPH_PATH)+str(key)+'_ds_dg_graph.gexf')

    if not g or not ds_dg:
        return None

    N = len(g)
    print 'topic source network size %s' % N
    ds_N = len(ds_dg)
    print 'topic direct superior network size %s' % ds_N

    if not N or not ds_N:
        return None
    '''
    在临时文件中存放网络结构,将写入临时文件的过程写为方法write_tmp_file
    '''
    print 'start PageRank tmp_file, ds_tmp_file'
    tmp_file = write_tmp_file(tmp_file, g, N)
    ds_tmp_file = write_tmp_file(ds_tmp_file, ds_dg, ds_N)
    print 'end PageRank tmp_file, ds_tmp_file'
    return tmp_file, N, ds_tmp_file, ds_N
开发者ID:huxiaoqian,项目名称:case,代码行数:31,代码来源:area.py


示例2: occurenceCounter

def occurenceCounter(charList, graphFile, bookNetworksPath):
    g = nx.read_gexf(graphFile)

    if not charList:
        # Get characters from overall.gexf graph
        overallGraphFile = bookNetworksPath + "overall.gexf"
        overall_g = nx.read_gexf(overallGraphFile)
        overallChars = nx.nodes(overall_g)

        # Sort dictionary by name (key of dictionary)
        sortedChars = sorted(overallChars)

        return sortedChars

    else:
        charList = [item for item in charList]

        for index, item in enumerate(charList):
            currentChar = None
            for node in nx.nodes(g):
                if node == item:
                    occurrence = 1
                    charList[index] = (item, occurrence)
                    currentChar = node
            # If current character is not present in the current chapter assign 0 influence.
            if not currentChar:
                occurrence = 0
                charList[index] = (item, occurrence)

        return charList
开发者ID:pivots,项目名称:networkx-sna-fiction,代码行数:30,代码来源:snaData.py


示例3: analyze_Reff_chains

def analyze_Reff_chains():
    fl_m20 = nx.read_gexf("Flute_vs_EpiFast/Flute_match20.gexf")
    reffs_fl_m20 = tv.build_Reff_txm_chain(fl_m20)


    ef_m20 = nx.read_gexf("Flute_vs_EpiFast/Epifast_match20.gexf")
    reffs_ef_m20 = tv.build_Reff_txm_chain(ef_m20)

    max_gens = 31
开发者ID:bryanleroylewis,项目名称:TreeViz,代码行数:9,代码来源:Flute_EF_comparison.py


示例4: add_LPU

    def add_LPU(self, data_file, gexf_file=None, LPU=None, win=None,
                is_input=False):
        '''
        Add data associated with a specific LPU to a visualization.
        To add a plot containing neurons from a particular LPU,
        the LPU needs to be added to the visualization using this
        function. Note that outputs from multiple neurons can
        be visualized using the same visualizer object.

        Parameters
        ----------
        data_file: str
             Location of the h5 file generated by neurokernel
             containing the output of the LPU
        gexf_file: str
            Location of the gexf file describing the LPU.
            If not specified, it will be assumed that the h5 file
            contains input.
        LPU: str
            Name of the LPU. Will be used as identifier to add plots.
            For input signals, the name of the LPU will be prepended
            with 'input_'. For example::

                V.add_LPU('vision_in.h5', LPU='vision')

            will create the LPU identifier 'input_vision'.
            Therefore, adding a plot depicting this input can be done by::

                V.add_plot({''type':'image',imlim':[-0.5,0.5]},LPU='input_vision)
        win: slice/list
            Can be used to limit the visualization to a specific time window.
        '''

        if gexf_file and not is_input:
            self._graph[LPU] = nx.read_gexf(gexf_file)

            # Map neuron ids to index into output data array:
            self._id_to_data_idx[LPU] = {m:i for i, m in \
                enumerate(sorted([int(n) for n, k in \
                                  self._graph[LPU].nodes_iter(True) if k['spiking']]))}
        else:
            if LPU:
                LPU = 'input_' + str(LPU)
            else:
                LPU = 'input_' + str(len(self._data))
            if gexf_file:
                self._graph[LPU] = nx.read_gexf(gexf_file)
        if not LPU:
            LPU = len(self._data)
        self._data[LPU] = np.transpose(sio.read_array(data_file))
        if win is not None:
            self._data[LPU] = self._data[LPU][:,win]
        if self._maxt:
            self._maxt = min(self._maxt, self._data[LPU].shape[1])
        else:
            self._maxt = self._data[LPU].shape[1]
开发者ID:AdamRTomkins,项目名称:libSpineML2NK,代码行数:56,代码来源:visualizer.py


示例5: eigValue

def eigValue(charList, graphFile, bookNetworksPath):
    # Compute eigenvectors for all characters in the current chapter graph.
    g = nx.read_gexf(graphFile)
    eigCentrality = nx.eigenvector_centrality(g, max_iter=100, tol=1.0e-6, nstart=None, weight="Weight")
    eigValues = eigCentrality.values()

    # NORMALISE eigenvector values
    d = decimal.Decimal
    maxEig = max(eigValues)
    minEig = min(eigValues)
    maxMinusMin = d(maxEig) - d(minEig)

    if not charList:
        # Get top 10 overall characters from overall.gexf graph
        overallGraphFile = bookNetworksPath + "overall.gexf"
        overall_g = nx.read_gexf(overallGraphFile)
        overallEigCent = nx.eigenvector_centrality(overall_g, max_iter=100, tol=1.0e-6, nstart=None, weight="Weight")

        # sortedCentrality = dict(sorted(overallEigCent.iteritems(), key=itemgetter(1), reverse=True)[:10])
        sortedCentrality = dict(sorted(overallEigCent.iteritems(), key=itemgetter(1), reverse=True))
        sortedCentrality = sorted(sortedCentrality.iteritems(), key=itemgetter(1), reverse=True)

        charList = [seq[0] for seq in sortedCentrality]
        return charList

    else:
        charList = [item for item in charList]

        for index, item in enumerate(charList):
            currentChar = None
            for key, value in eigCentrality.iteritems():
                if key == item:
                    # Unnormalised version...
                    charList[index] = (key, str(value))
                    currentChar = key
                # if key == item:
                #     nummerator = d(value)-d(minEig)
                #     if nummerator==0:
                #         charList[index] = (key, str(0))
                #     else:
                #         norm_value = (d(value)-d(minEig))/d(maxMinusMin)
                #         charList[index] = (key, str(norm_value))
                #     currentChar = key
            # If current character is not present in the current chapter assign 0 influence.
            if not currentChar:
                charList[index] = (item, 0)

        return charList
开发者ID:pivots,项目名称:networkx-sna-fiction,代码行数:48,代码来源:snaData.py


示例6: betweenValue

def betweenValue(charList, graphFile, bookNetworksPath):
    # Compute betweenness for all characters in the current chapter graph.
    g = nx.read_gexf(graphFile)
    betCentrality = nx.betweenness_centrality(g, k=None, normalized=True, weight="Weight", endpoints=False, seed=None)
    betweenValues = betCentrality.values()

    # NORMALISE betweenness values
    d = decimal.Decimal
    maxBetween = max(betweenValues)
    minBetween = min(betweenValues)
    maxMinusMin = d(maxBetween) - d(minBetween)

    if not charList:
        # Get top 10 overall characters from overall.gexf graph
        overallGraphFile = bookNetworksPath + "overall.gexf"
        overall_g = nx.read_gexf(overallGraphFile)
        overallBetweenCent = nx.betweenness_centrality(
            overall_g, k=None, normalized=True, weight="Weight", endpoints=False, seed=None
        )

        # Quick fix for getting all characters.

        # sortedCentrality = dict(sorted(overallBetweenCent.iteritems(), key=itemgetter(1), reverse=True)[:10])
        sortedCentrality = dict(sorted(overallBetweenCent.iteritems(), key=itemgetter(1), reverse=True))
        sortedCentrality = sorted(sortedCentrality.iteritems(), key=itemgetter(1), reverse=True)

        charList = [seq[0] for seq in sortedCentrality]
        return charList

    else:
        charList = [item for item in charList]

        for index, item in enumerate(charList):
            currentChar = None
            for key, value in betCentrality.iteritems():
                if key == item:
                    nummerator = d(value) - d(minBetween)
                    if nummerator == 0:
                        charList[index] = (key, str(0))
                    else:
                        norm_value = (d(value) - d(minBetween)) / d(maxMinusMin)
                        charList[index] = (key, str(norm_value))
                    currentChar = key
            # If current character is not present in the current chapter assign 0 influence.
            if not currentChar:
                charList[index] = (item, 0)

        return charList
开发者ID:pivots,项目名称:networkx-sna-fiction,代码行数:48,代码来源:snaData.py


示例7: read_from_json_gexf

def read_from_json_gexf(fname=None,label_field_name='APIs',conv_undir = False):
    '''
    Load the graph files (.gexf or .json only supported)
    :param fname: graph file name
    :param label_field_name: filed denoting the node label
    :param conv_undir: convert to undirected graph or not
    :return: graph in networkx format
    '''
    if not fname:
        logging.error('no valid path or file name')
        return None
    else:
        try:
            try:
                with open(fname, 'rb') as File:
                    org_dep_g = json_graph.node_link_graph(json.load(File))
            except:
                org_dep_g = nx.read_gexf (path=fname)

            g = nx.DiGraph()
            for n, d in org_dep_g.nodes_iter(data=True):
                g.add_node(n, attr_dict={'label': '-'.join(d[label_field_name].split('\n'))})
            g.add_edges_from(org_dep_g.edges_iter())
        except:
            logging.error("unable to load graph from file: {}".format(fname))
            # return 0
    logging.debug('loaded {} a graph with {} nodes and {} egdes'.format(fname, g.number_of_nodes(),g.number_of_edges()))
    if conv_undir:
        g = nx.Graph (g)
        logging.debug('converted {} as undirected graph'.format (g))
    return g
开发者ID:SongFGH,项目名称:subgraph2vec_tf,代码行数:31,代码来源:make_subgraph2vec_corpus.py


示例8: read_params_file

def read_params_file(paramsDir, fName):
    """Read an xml parameters file into a list of tuples

    Each tuple consists of the following:
    entityType      simulator, economy or bank
    entityName
    dataType        parameter or attribute
    dataName
    dataValue       a string
    @param fName:
    """
    tree = ET.parse(paramsDir + fName)
    pList = read_params_from_xml(tree.getroot(), fName)

    graphFile = None
    for eType, eName, dataType, dataName, dataValue in pList:
        if dataName == "graphFile":
            graphFile = dataValue
            break
    if graphFile is None:
        msg = "No graph file specified in %s" % fName
        logger.error(msg)
        raise ParameterError(msg)
    basicGraph = nx.read_gexf(paramsDir + graphFile)  # This gives us a graph of possible lending

    return pList, basicGraph
开发者ID:B-Leslie,项目名称:systemshock,代码行数:26,代码来源:utils.py


示例9: __update_structure

	def __update_structure(self):
		imported_graph = nx.read_gexf(self.file_path)

		if not isinstance(imported_graph, nx.Graph):
			raise Exception("Imported graph is not undirected")

		self.structure = nx.convert_node_labels_to_integers(imported_graph)
开发者ID:jim-pansn,项目名称:sybil_detection,代码行数:7,代码来源:graphs.py


示例10: test_read_simple_directed_graphml

 def test_read_simple_directed_graphml(self):
     G = self.simple_directed_graph
     H = nx.read_gexf(self.simple_directed_fh)
     assert_equal(sorted(G.nodes()), sorted(H.nodes()))
     assert_equal(sorted(G.edges()), sorted(H.edges()))
     assert_equal(sorted(G.edges(data=True)), sorted(H.edges(data=True)))
     self.simple_directed_fh.seek(0)
开发者ID:rainest,项目名称:dance-partner-matching,代码行数:7,代码来源:test_gexf.py


示例11: GET

    def GET(self):
		web.header('Access-Control-Allow-Origin', '*')
		output = dict()
		getInput = web.input(start='2012-3-03 16:00:00', end='2012-3-03 21:00:00')
		start_time=pd.to_datetime(getInput.start).tz_localize('US/Eastern') - pd.DateOffset(hours=10)
		end_time=pd.to_datetime(getInput.end).tz_localize('US/Eastern') - pd.DateOffset(hours=10)
		
		output_nodes = set()
		all_schedules = pd.read_json('all_schedules.json')
		allnodes = pd.read_json('allnodes.json')
		nodes = set(allnodes.nodes)
		all_schedules['end'] = all_schedules['end'].map(lambda x: datetime.datetime.fromtimestamp(x/1000000000))
		all_schedules['start'] = all_schedules['start'].map(lambda x: datetime.datetime.fromtimestamp(x/1000000000))

		night_sched = all_schedules[(all_schedules.start >= start_time) & (all_schedules.end <= end_time)]
		on_nodes = set()
		for idx,show in night_sched.iterrows():
			on_nodes.add(show[2])
		
		off_nodes = nodes.difference(on_nodes)
		
		imported_graph = nx.read_gexf('./finished_network3.gexf')
		for i in off_nodes:
			try:
				imported_graph.remove_node(i)
			except:
				continue
		
		pr=nx.pagerank(imported_graph,alpha=0.9,weight='newweight',tol=.01, max_iter=200)
		
		output['nodes'] = [(i,v*1000000) for i,v in pr.items()]
		output['input_params'] = getInput
		return json.dumps(output)
开发者ID:nosarcasm,项目名称:philoexplorer,代码行数:33,代码来源:nodes_active.py


示例12: dump_melodic_phrases_in_network

def dump_melodic_phrases_in_network(network_file, output_dir, myDatabase, base_name):
    """
    This function dumps all the mp3 files for the patterns in the 'network' (gexf file)
    """
    
    cmd1 = "select file.filename, pattern.start_time, pattern.end_time from pattern join file on (pattern.file_id = file.id) where pattern.id = %d"
    
    #reading the network
    full_net = nx.read_gexf(network_file)
    
    labels = nx.get_node_attributes(full_net, 'label')
    
    patterns = full_net.nodes()
    
    try:
        con = psy.connect(database=myDatabase, user='sankalp') 
        cur = con.cursor()
        for ii, pattern in enumerate(patterns):
            pattern = labels[pattern]
            cur.execute(cmd1%int(pattern))
            filename, start, end = cur.fetchone()
            clipAudio(output_dir, os.path.join(base_name, filename), start, end, int(pattern))
        
    except psy.DatabaseError, e:
        print 'Error %s' % e
        if con:
            con.rollback()
            con.close()
        sys.exit(1)
开发者ID:sankalpg,项目名称:WebInterfaces_MelodicPatterns,代码行数:29,代码来源:graph_generate.py


示例13: create_genealogy

def create_genealogy(graph_id = 'deusto.aitoralmeida'):
    print 'Loading graph'
    merged = nx.read_gexf('merged_genealogy.gexf', node_type = None)
    print 'Loading edge index'
    dict_edges = load_merged_edge_index()
    
    print 'Building genealogy'
    to_process = [graph_id]
    tree = set()
    #get all the ascenstors in tree
    while len(to_process) > 0:
        current = to_process[0]
        to_process.remove(current)
        tree.add(current) 
        
        try:
            to_process += dict_edges[current]
        except:
            pass 
        
    print 'Creating graph'
    G = nx.DiGraph()
    for person in tree:
        print person
        G.add_node(person, name = merged.node[person]['name'])
        for target in merged.edge[person].keys(): 
            #add edges with the ancestors only       
            if target in tree:        
                G.add_edge(person, target)
    print 'Writing file'
    nx.write_gexf(G, 'created_genealogy.gexf')    
开发者ID:aitoralmeida,项目名称:academic-genealogy,代码行数:31,代码来源:genealogy_merger.py


示例14: write_estrada

def write_estrada(path_to_file):
    graphe = nx.read_gexf(path_to_file + ".gexf")
    if type(graphe) == nx.MultiDiGraph:
        print 'has_multiple_edges'
        graphe = nx.DiGraph(graphe)
    if type(graphe) == nx.MultiGraph:
        print 'has_multiple_edges'
        graphe = nx.Graph(graphe)

    adj_mat = nx.to_numpy_matrix(graphe, weight=None)
    adj_mat = adj_mat.tolist()
    w, v = eig(adj_mat)
    argmax = np.argmax(w)
    sh = np.sinh(w)
    square = np.square(v)
    gamma = square[:, argmax]
    gammaideal = np.dot(square, sh) / sh[argmax]
    delta = 0.5 * np.log10(gamma / gammaideal)
    deltaplus = delta[(delta > 0)]
    deltaminus = delta[(delta < 0)]
    eplus = math.sqrt(mean(deltaplus ** 2))
    eminus = math.sqrt(mean(deltaminus ** 2))
    if math.isnan(eplus) or math.isnan(eminus) or eplus == float('inf') or eminus == float('inf'):
        print gamma
        print gammaideal
        print deltaplus
        print deltaminus

    classe = 1
    if eminus > 0.01: classe += 1
    if eplus > 0.01: classe += 2

    add_results_estrada(eplus, eminus, classe,path_to_file)
开发者ID:FourquetDavid,项目名称:evo,代码行数:33,代码来源:estrada.py


示例15: __prepare__

def __prepare__(data_dir):
    """
    Takes each file in .gexf format and converts it into the igraph-readable graphml.
    """

    """
    Takes a list of files in .gexf format, and converts each to GraphML.
    """

    for f in glob.glob(os.path.join(data_dir, "*.gexf")):
        print(f)
        newFileName = f[:f.rfind('.')] + ".graphml"

        if os.path.exists(newFileName):
            continue

        G = nx.read_gexf(f)
        for node in G.node:
            for attrib in G.node[node]:
                if type(G.node[node][attrib]) == dict:
                    # graphML doesn't play nice with dictionaries as attributes.
                    # this line just deletes positional information.
                    G.node[node][attrib] = 0
        newFileName = f[:f.rfind('.')] + ".graphml"
        nx.write_graphml(G, newFileName)
开发者ID:Lab41,项目名称:circulo-abridged,代码行数:25,代码来源:run.py


示例16: restore_path

def restore_path(meta_id, start_index, count, k):  # k估计参数权值
    test_path = TestPath(meta_id, start_index, count)
    visual_map4000 = nx.read_gexf('/home/elvis/map/analize/analizeTime/countXEntTime/visualMapTop4000.gexf')
    paths = []
    # while len(paths) == 0:
    #     paths = find_paths(test_path.path_time[0], test_path.path_time[-1], visual_map4000, k)
    #     k *= 1.1
    paths = find_paths(test_path.path_time[0], test_path.path_time[-1], visual_map4000, k)
    if len(paths) == 0:
        print_cache.append(['{}'.format(meta_id), 0,])
        # print('{},not find'.format(meta_id))
        return
    delta_time = (test_path.path_time[-1][1] - test_path.path_time[0][1]).total_seconds()
    map_paths = visual_to_map(paths, delta_time)
    best_path = best_alternative(map_paths, delta_time)
    file_path = '/home/elvis/map/analize/path_restore/restore_path/{k}/{meta_id}/{meta_id}-{s}-{c}'.format(
        meta_id=meta_id,
        s=start_index,
        c=count, k=k)
    to_path_txt(map_paths, file_path, mode='all')
    best_file_path = '/home/elvis/map/analize/path_restore/restore_path/{k}/{meta_id}/best'.format(meta_id=meta_id, k=k)
    to_path_txt(best_path, best_file_path, mode='best')
    print_cache.append(['{}'.format(meta_id),])
    # print('{}'.format(meta_id), end=' ')
    similarity(best_path, test_path.path_time)
开发者ID:elvis2els,项目名称:map,代码行数:25,代码来源:A_star_path.py


示例17: abrirred

def abrirred():
    global G
    global fpname
    global file_path
    file_path = tkFileDialog.askopenfilename(title="Open file", filetypes=[("GEXF files", ".gexf")])
    if file_path != "":
        G = nx.read_gexf(file_path, relabel=False)
        fp = file_path.split("/")
        fpname = fp[-1]
        print "Loaded network:", fpname

        editmenu.entryconfig(1, state=NORMAL)  ## Estadisticas
        editmenu.entryconfig(9, state=NORMAL)  ## Sigma-JS
        editmenu.entryconfig(10, state=NORMAL)  ## D3 HTML Graph
    else:
        print "You have to choose a file"
        return False

    tmpdir = "tmp/"
    shutil.copyfile(file_path, tmpdir + "tmpfile.gexf")
    fp = file_path.split("/")
    fpname = fp[-1]
    fname = file("tmp/enamgexf.nme", "w")
    print >> fname, fpname[0:-4]
    fname.close()

    return False
开发者ID:paredespablo,项目名称:NodosApp,代码行数:27,代码来源:NodosApp+0.9.py


示例18: main

def main():
    # the description link graph
    g = nx.read_gexf('data/subreddits_edged_by_description_links.gexf')

    # an empty graph for showing communities
    g1 = nx.Graph()

    communities = get_coalesced_communities(g)
    for c in communities:
        g1.add_node(c.name)
        g1.node[c.name]['size'] = len(c.members)

    count = 0
    ratio_weight = 0.0

    for c1, c2 in product(communities, communities):
        if c1.id == c2.id or g1.has_edge(c1.name, c2.name) or len(c1.members) > len(c2.members):
            continue
        
        overlap = len(c1.members & c2.members)

        if overlap > 0:
            g1.add_edge(c1.name, c2.name, weight=overlap / len(c1.members))
            ratio_weight += overlap / len(c1.members)
            count += 1

    average_weight_ratio = ratio_weight / count
    print "average weight ratio: %s" % str(average_weight_ratio)

    g1.remove_edges_from(filter(lambda x: x[2]['weight'] < average_weight_ratio, g1.edges(data=True)))

    print "%d subreddits included" % len(reduce(lambda x,y: x.union(y.members), communities, set()))
    nx.write_gexf(g1, 'test_coalesce.gexf')
开发者ID:TomDunn,项目名称:RedditGraph,代码行数:33,代码来源:coalesce_communities.py


示例19: classify

def classify(request, pk):
	#gets object based on id given
	graph_file = get_object_or_404(Document, pk=pk)
	#reads file into networkx graph based on extension
	if graph_file.extension() == ".gml":
		G = nx.read_gml(graph_file.uploadfile)
	else:
		G = nx.read_gexf(graph_file.uploadfile)
	#closes file so we can delete it
	graph_file.uploadfile.close()
	#loads the algorithm and tests the algorithm against the graph
	g_json = json_graph.node_link_data(G)
	#save graph into json file
	with open(os.path.join(settings.MEDIA_ROOT, 'graph.json'), 'w') as graph:
			json.dump(g_json, graph)
	with open(os.path.join(settings.MEDIA_ROOT, 'rf_classifier.pkl'), 'rb') as malgo:
		algo_loaded = pickle.load(malgo, encoding="latin1")
		dataset = np.array([G.number_of_nodes(), G.number_of_edges(), nx.density(G), nx.degree_assortativity_coefficient(G), nx.average_clustering(G), nx.graph_clique_number(G)])
		print (dataset)
		#creates X to test against
		X = dataset
		prediction = algo_loaded.predict(X)
		
		
		
		graph_type = check_prediction(prediction)
		graph = GraphPasser(G.number_of_nodes(), G.number_of_edges(), nx.density(G), nx.degree_assortativity_coefficient(G), nx.average_clustering(G), nx.graph_clique_number(G))
	#gives certain variables to the view

	return render(
		request,
		'classification/classify.html',
		{'graph': graph, 'prediction': graph_type}
		)
开发者ID:Kaahan,项目名称:networkclassification,代码行数:34,代码来源:views.py


示例20: importGexf

    def importGexf(self, url ):

        # TODO once files are stored in a standard upload directory this will need to be changed
        import platform
        if platform.system() == 'Windows':
            PATH = 'c:\\inetpub\\wwwroot\\pydev\\systemshock\\modellingengine\\fincat\\parameters\\'
        else:
            PATH = '/var/lib/geonode/src/GeoNodePy/geonode/modellingengine/fincat/parameters/'

        G = nx.read_gexf(PATH + url)

        # ensure the nodes are labelled with integers starting from 0
        # TODO might need to start from current number of nodes in G
        G = nx.convert_node_labels_to_integers(G, first_label=0)

        for node in G.nodes(data=True):
            nodeid = node[0] #node array index 0 is the node id, index 1 is the attribute list
            attributes = node[1]
            attributes['guid'] = nodeid
            if 'wkt' in attributes:
                attributes['geometry'] = self.WKTtoGeoJSON(attributes['wkt'])

        for edge in G.edges(data=True):
            edgeid = unicode(edge[0]) + '-' + unicode(edge[1])
            attributes = edge[2]
            attributes['guid'] = edgeid

        self.layergraphs.append(G)  # add the new layer graph to the overall network
        return True
开发者ID:CentreForRiskStudies,项目名称:systemshock,代码行数:29,代码来源:network.py



注:本文中的networkx.read_gexf函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.read_gml函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.read_edgelist函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap