• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python networkx.maximum_flow_value函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.maximum_flow_value函数的典型用法代码示例。如果您正苦于以下问题:Python maximum_flow_value函数的具体用法?Python maximum_flow_value怎么用?Python maximum_flow_value使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了maximum_flow_value函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_disconnected

 def test_disconnected(self):
     G = nx.Graph()
     G.add_weighted_edges_from([(0,1,1),(1,2,1),(2,3,1)],weight='capacity')
     G.remove_node(1)
     assert_equal(nx.maximum_flow_value(G,0,3), 0)
     flowSoln = {0: {}, 2: {3: 0}, 3: {2: 0}}
     compare_flows_and_cuts(G, 0, 3, flowSoln, 0)
开发者ID:CallaJun,项目名称:hackprince,代码行数:7,代码来源:test_maxflow.py


示例2: test_complete_graph_cutoff

 def test_complete_graph_cutoff(self):
     G = nx.complete_graph(5)
     nx.set_edge_attributes(G, 'capacity', 
                            dict(((u, v), 1) for u, v in G.edges()))
     for flow_func in [shortest_augmenting_path, edmonds_karp]:
         for cutoff in [3, 2, 1]:
             result = nx.maximum_flow_value(G, 0, 4, flow_func=flow_func,
                                            cutoff=cutoff)
             assert_equal(cutoff, result, 
                         msg="cutoff error in {0}".format(flow_func.__name__))
开发者ID:CallaJun,项目名称:hackprince,代码行数:10,代码来源:test_maxflow.py


示例3: test_pyramid

    def test_pyramid(self):
        N = 10
        # N = 100 # this gives a graph with 5051 nodes
        G = gen_pyramid(N)
        R = build_residual_network(G, "capacity")
        kwargs = dict(residual=R)

        for flow_func in flow_funcs:
            kwargs["flow_func"] = flow_func
            flow_value = nx.maximum_flow_value(G, (0, 0), "t", **kwargs)
            assert_almost_equal(flow_value, 1.0, msg=msg.format(flow_func.__name__))
开发者ID:GccX11,项目名称:networkx,代码行数:11,代码来源:test_maxflow_large_graph.py


示例4: test_complete_graph

    def test_complete_graph(self):
        N = 50
        G = nx.complete_graph(N)
        nx.set_edge_attributes(G, "capacity", 5)
        R = build_residual_network(G, "capacity")
        kwargs = dict(residual=R)

        for flow_func in flow_funcs:
            kwargs["flow_func"] = flow_func
            flow_value = nx.maximum_flow_value(G, 1, 2, **kwargs)
            assert_equal(flow_value, 5 * (N - 1), msg=msg.format(flow_func.__name__))
开发者ID:GccX11,项目名称:networkx,代码行数:11,代码来源:test_maxflow_large_graph.py


示例5: cli

def cli(ek, draw, input_file):
    g, source, sink = parse_dicaps_graph(input_file)
    if draw:
        write_dot(g, 'graph.dot')
        return
    if ek:
        print('Using Edmonds Karp')
        flow_func = edmonds_karp
    else:
        print('Using Preflow Push')
        flow_func = None
    t0 = time.time()
    flow = nx.maximum_flow_value(g, source, sink, flow_func=flow_func)
    t1 = time.time()
    print("Max Flow Solution: {0}".format(flow))
    print("Runtime: {0}s".format(t1 - t0))
开发者ID:EntilZha,项目名称:max_flow,代码行数:16,代码来源:networkx_flow.py


示例6: person_max_flow

def person_max_flow(graph, num_strategic, sybil_pct=0, cutlinks=True,
                    gensybils=True, strategic_agents=None,
                    return_data=False):
    graph = graph.copy()
    N = graph.number_of_nodes()
    if strategic_agents is None:
        strategic_agents = random_strategic_agents(graph, num_strategic)
    saved_edges = {}
    if cutlinks:
        saved_edges = {a: graph.edges(a, data=True) for a in strategic_agents}
        cut_outlinks(graph, strategic_agents, leave_one=True)  # TODO: Are you sure you want leave_one=True?
        after_edges = {a: graph.edges(a, data=True) for a in strategic_agents}

    # For Max Flow, don't apply sybils since it is strategyproof to sybils
    # if gensybils:
        # num_sybils = int(graph.number_of_nodes() * sybil_pct)
        # generate_sybils(graph, strategic_agents, num_sybils)

    # Need to reimplement max flow here because we only want to cut outedges
    # When we're not being evaluated.
    scores = np.zeros((N, N))
    for i in xrange(N):
        # Add back in the edges for this agent, so we can get an actual score.
        # if cutlinks and i in strategic_agents:
            # graph.remove_edges_from(graph.edges(i))
            # graph.add_edges_from(saved_edges[i])

        # Now compute the max flow scores
        for j in xrange(N):
            if i != j:
                scores[i, j] = nx.maximum_flow_value(graph, i, j, capacity='weight')
                # scores[i, j] = utils.fast_max_flow(graph.gt_graph, i, j)

        # Restore post-cut edges
        # if cutlinks and i in strategic_agents:
            # graph.remove_edges_from(graph.edges(i))
            # graph.add_edges_from(after_edges[i])

        sys.stdout.write('.')
    sys.stdout.write("\n")

    if return_data:
        return scores, {'strategic_agents': strategic_agents, 'graph': graph}
    else:
        return scores
开发者ID:thenovices,项目名称:transitive-trust-models,代码行数:45,代码来源:strategic_trust_models.py


示例7: getStartingWeights

def getStartingWeights(G, numNodes, unipartite):
	
	if unipartite == True:
		weights=numpy.zeros((numNodes,numNodes))
		for edge in G.edges():
			source = edge[0]
			dest = edge[1]
			flow = nx.maximum_flow_value(G, source, dest)
			weights[source][dest] = flow
			weights[dest][source] = flow
	else:
		shortestPaths=nx.all_pairs_shortest_path_length(G)
		weights=numpy.zeros((numNodes,numNodes))
		for sourceNode,paths in shortestPaths.items():
				for destNode,pathLength in paths.items():
					weights[sourceNode][destNode]=pathLength
	
	
	Y = squareform(weights)	
	return Y
开发者ID:bodoia,项目名称:cs224w-project,代码行数:20,代码来源:detectionBasic.py


示例8: CalMaxFlows

def CalMaxFlows(DG_network, Dnodes, maxFlows):
	"""
	If two nodes are connected in networkx graph G, This function returns maxflow value, shortest path length, minimum edges cut 
	between this two nodes.
	"""
	for i in range(len(Dnodes)):
		for j in range(i+1, len(Dnodes)):

			if nx.has_path(DG_network, Dnodes[i], Dnodes[j]):
				maxflow = nx.maximum_flow_value(DG_network, Dnodes[i], Dnodes[j], capacity = 'weight')
				shortest_path_length = nx.shortest_path_length(DG_network, source = Dnodes[i], target = Dnodes[j])
				min_edges_cut = len(nx.minimum_edge_cut(DG_network, Dnodes[i], Dnodes[j]))
			else:
				continue
			if Dnodes[i] < Dnodes[j]:
				a_path = (Dnodes[i], Dnodes[j])
			else:
				a_path = (Dnodes[j], Dnodes[i])

			if not maxFlows.has_key(a_path):
				maxFlows[a_path] = (maxflow, shortest_path_length, min_edges_cut)
			else:
				print "impossibly!", a_path
				sys.exit(1)
开发者ID:stormlovetao,项目名称:GDNetwork,代码行数:24,代码来源:E1_MaxFlow.py


示例9: max_flow_min_cost

def max_flow_min_cost(G, s, t, capacity='capacity', weight='weight'):
    """Return a maximum (s, t)-flow of minimum cost.

    G is a digraph with edge costs and capacities. There is a source
    node s and a sink node t. This function finds a maximum flow from
    s to t whose total cost is minimized.

    Parameters
    ----------
    G : NetworkX graph
        DiGraph on which a minimum cost flow satisfying all demands is
        to be found.

    s: node label
        Source of the flow.

    t: node label
        Destination of the flow.

    capacity: string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    weight: string
        Edges of the graph G are expected to have an attribute weight
        that indicates the cost incurred by sending one unit of flow on
        that edge. If not present, the weight is considered to be 0.
        Default value: 'weight'.

    Returns
    -------
    flowDict: dictionary
        Dictionary of dictionaries keyed by nodes such that
        flowDict[u][v] is the flow edge (u, v).

    Raises
    ------
    NetworkXError
        This exception is raised if the input graph is not directed or
        not connected.

    NetworkXUnbounded
        This exception is raised if there is an infinite capacity path
        from s to t in G. In this case there is no maximum flow. This
        exception is also raised if the digraph G has a cycle of
        negative cost and infinite capacity. Then, the cost of a flow
        is unbounded below.

    See also
    --------
    cost_of_flow, min_cost_flow, min_cost_flow_cost, network_simplex

    Notes
    -----
    This algorithm is not guaranteed to work if edge weights or demands
    are floating point numbers (overflows and roundoff errors can
    cause problems). As a workaround you can use integer numbers by
    multiplying the relevant edge attributes by a convenient
    constant factor (eg 100).

    Examples
    --------
    >>> G = nx.DiGraph()
    >>> G.add_edges_from([(1, 2, {'capacity': 12, 'weight': 4}),
    ...                   (1, 3, {'capacity': 20, 'weight': 6}),
    ...                   (2, 3, {'capacity': 6, 'weight': -3}),
    ...                   (2, 6, {'capacity': 14, 'weight': 1}),
    ...                   (3, 4, {'weight': 9}),
    ...                   (3, 5, {'capacity': 10, 'weight': 5}),
    ...                   (4, 2, {'capacity': 19, 'weight': 13}),
    ...                   (4, 5, {'capacity': 4, 'weight': 0}),
    ...                   (5, 7, {'capacity': 28, 'weight': 2}),
    ...                   (6, 5, {'capacity': 11, 'weight': 1}),
    ...                   (6, 7, {'weight': 8}),
    ...                   (7, 4, {'capacity': 6, 'weight': 6})])
    >>> mincostFlow = nx.max_flow_min_cost(G, 1, 7)
    >>> mincost = nx.cost_of_flow(G, mincostFlow)
    >>> mincost
    373
    >>> from networkx.algorithms.flow import maximum_flow
    >>> maxFlow = maximum_flow(G, 1, 7)[1]
    >>> nx.cost_of_flow(G, maxFlow) >= mincost
    True
    >>> mincostFlowValue = (sum((mincostFlow[u][7] for u in G.predecessors(7)))
    ...                     - sum((mincostFlow[7][v] for v in G.successors(7))))
    >>> mincostFlowValue == nx.maximum_flow_value(G, 1, 7)
    True

    """
    maxFlow = nx.maximum_flow_value(G, s, t, capacity=capacity)
    H = nx.DiGraph(G)
    H.add_node(s, demand=-maxFlow)
    H.add_node(t, demand=maxFlow)
    return min_cost_flow(H, capacity=capacity, weight=weight)
开发者ID:ProgVal,项目名称:networkx,代码行数:96,代码来源:mincost.py


示例10: print_flow

def print_flow(flow):
    for edge in G.edges():
        n1, n2 = edge
        print edge, flow[n1][n2]


print 'Flow value =', flow_value
print 'Flow ='
print_flow(maximum_flow)


# The maximum flow should equal the minimum cut.

# In[5]:

max_flow_value = nx.maximum_flow_value(G, 's', 't')
min_cut_value = nx.minimum_cut_value(G, 's', 't')

print max_flow_value == min_cut_value


# ## Flows with Demands
# 
# Let's now record a demand value at each node (negative demand corresponds to supply at a node).

# In[6]:

# to add a property to a node, you should use G.node['s'] rather than
# G['s'] to reference the node.

G.node['s']['demand'] = -25 
开发者ID:Ablat,项目名称:coursework,代码行数:31,代码来源:network-flows.py


示例11: local_node_connectivity

def local_node_connectivity(G, s, t, aux_digraph=None, mapping=None):
    r"""Computes local node connectivity for nodes s and t.

    Local node connectivity for two non adjacent nodes s and t is the
    minimum number of nodes that must be removed (along with their incident
    edges) to disconnect them.

    This is a flow based implementation of node connectivity. We compute the
    maximum flow on an auxiliary digraph build from the original input
    graph (see below for details). This is equal to the local node
    connectivity because the value of a maximum s-t-flow is equal to the
    capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ .

    Parameters
    ----------
    G : NetworkX graph
        Undirected graph

    s : node
        Source node

    t : node
        Target node

    aux_digraph : NetworkX DiGraph (default=None)
        Auxiliary digraph to compute flow based node connectivity. If None
        the auxiliary digraph is build.

    mapping : dict (default=None)
        Dictionary with a mapping of node names in G and in the auxiliary digraph.

    Returns
    -------
    K : integer
        local node connectivity for nodes s and t

    Examples
    --------
    >>> # Platonic icosahedral graph has node connectivity 5
    >>> # for each non adjacent node pair
    >>> G = nx.icosahedral_graph()
    >>> nx.local_node_connectivity(G,0,6)
    5

    Notes
    -----
    This is a flow based implementation of node connectivity. We compute the
    maximum flow using the Ford and Fulkerson algorithm on an auxiliary digraph
    build from the original input graph:

    For an undirected graph G having `n` nodes and `m` edges we derive a
    directed graph D with 2n nodes and 2m+n arcs by replacing each
    original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
    arc in `D`. Then for each edge (`u`, `v`) in G we add two arcs
    (`u_B`, `v_A`) and (`v_B`, `u_A`) in `D`. Finally we set the attribute
    capacity = 1 for each arc in `D` [1]_ .

    For a directed graph G having `n` nodes and `m` arcs we derive a
    directed graph `D` with `2n` nodes and `m+n` arcs by replacing each
    original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
    arc `(v_A, v_B)` in D. Then for each arc `(u,v)` in G we add one arc
    `(u_B,v_A)` in `D`. Finally we set the attribute capacity = 1 for
    each arc in `D`.

    This is equal to the local node connectivity because the value of
    a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford
    and Fulkerson theorem).

    See also
    --------
    node_connectivity
    all_pairs_node_connectivity_matrix
    local_edge_connectivity
    edge_connectivity
    max_flow
    ford_fulkerson

    References
    ----------
    .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
        Erlebach, 'Network Analysis: Methodological Foundations', Lecture
        Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
        http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
    """
    if aux_digraph is None or mapping is None:
        H, mapping = _aux_digraph_node_connectivity(G)
    else:
        H = aux_digraph
    return nx.maximum_flow_value(H,'%sB' % mapping[s], '%sA' % mapping[t])
开发者ID:alis0nc,项目名称:networkx,代码行数:89,代码来源:connectivity.py


示例12: range

import math
import itertools as it
import networkx as nx
from networkx import DiGraph

for g in range(1, int(input()) + 1):
    N, M = map(int, input().split())
    stars = [input().strip() for _ in range(N)]
    donors = {donor: list(favs) for donor, favs in map(lambda x: (x[0], x[1:]), (input().strip().split() for _ in range(M))) if len(favs) > 0}
    L = math.ceil(sum(1 for _ in filter(lambda x: len(x) > 0, donors.values())) / N)
    G = DiGraph()
    for donor, favs in donors.items():
        G.add_edge(0, donor, capacity=1)
        for fav in favs:
            G.add_edge(donor, fav)
    for l in it.count(L):
        for star in stars:
            G.add_edge(star, 1, capacity=l)
        if nx.maximum_flow_value(G, 0, 1) == len(donors):
            print('Event {}:'.format(g), l)
            break
        for star in stars:
            G.remove_edge(star, 1)
开发者ID:armanbilge,项目名称:COMPSCI320,代码行数:23,代码来源:golf.py


示例13: local_edge_connectivity

def local_edge_connectivity(G, u, v, aux_digraph=None):
    r"""Returns local edge connectivity for nodes s and t in G.

    Local edge connectivity for two nodes s and t is the minimum number
    of edges that must be removed to disconnect them.

    This is a flow based implementation of edge connectivity. We compute the
    maximum flow on an auxiliary digraph build from the original
    network (see below for details). This is equal to the local edge
    connectivity because the value of a maximum s-t-flow is equal to the
    capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ .

    Parameters
    ----------
    G : NetworkX graph
        Undirected or directed graph

    s : node
        Source node

    t : node
        Target node

    aux_digraph : NetworkX DiGraph (default=None)
        Auxiliary digraph to compute flow based edge connectivity. If None
        the auxiliary digraph is build.

    Returns
    -------
    K : integer
        local edge connectivity for nodes s and t

    Examples
    --------
    >>> # Platonic icosahedral graph has edge connectivity 5
    >>> # for each non adjacent node pair
    >>> G = nx.icosahedral_graph()
    >>> nx.local_edge_connectivity(G,0,6)
    5

    Notes
    -----
    This is a flow based implementation of edge connectivity. We compute the
    maximum flow using the Ford and Fulkerson algorithm on an auxiliary digraph
    build from the original graph:

    If the input graph is undirected, we replace each edge (u,v) with
    two reciprocal arcs `(u,v)` and `(v,u)` and then we set the attribute
    'capacity' for each arc to 1. If the input graph is directed we simply
    add the 'capacity' attribute. This is an implementation of algorithm 1
    in [1]_.

    The maximum flow in the auxiliary network is equal to the local edge
    connectivity because the value of a maximum s-t-flow is equal to the
    capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

    See also
    --------
    local_node_connectivity
    node_connectivity
    edge_connectivity
    max_flow
    ford_fulkerson

    References
    ----------
    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
    """
    if aux_digraph is None:
        H = _aux_digraph_edge_connectivity(G)
    else:
        H = aux_digraph
    return nx.maximum_flow_value(H, u, v)
开发者ID:alis0nc,项目名称:networkx,代码行数:74,代码来源:connectivity.py


示例14: local_node_connectivity


#.........这里部分代码省略.........

    Example of how to compute local node connectivity among
    all pairs of nodes of the platonic icosahedral graph reusing
    the data structures.

    >>> import itertools
    >>> # You also have to explicitly import the function for
    >>> # building the auxiliary digraph from the connectivity package
    >>> from networkx.algorithms.connectivity import (
    ...     build_auxiliary_node_connectivity)
    ...
    >>> H = build_auxiliary_node_connectivity(G)
    >>> # And the function for building the residual network from the
    >>> # flow package
    >>> from networkx.algorithms.flow import build_residual_network
    >>> # Note that the auxiliary digraph has an edge attribute named capacity
    >>> R = build_residual_network(H, 'capacity')
    >>> result = dict.fromkeys(G, dict())
    >>> # Reuse the auxiliary digraph and the residual network by passing them
    >>> # as parameters
    >>> for u, v in itertools.combinations(G, 2):
    ...     k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
    ...     result[u][v] = k
    ...
    >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
    True

    You can also use alternative flow algorithms for computing node
    connectivity. For instance, in dense networks the algorithm
    :meth:`shortest_augmenting_path` will usually perform better than
    the default :meth:`edmonds_karp` which is faster for sparse
    networks with highly skewed degree distributions. Alternative flow
    functions have to be explicitly imported from the flow package.

    >>> from networkx.algorithms.flow import shortest_augmenting_path
    >>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
    5

    Notes
    -----
    This is a flow based implementation of node connectivity. We compute the
    maximum flow using, by default, the :meth:`edmonds_karp` algorithm (see:
    :meth:`maximum_flow`) on an auxiliary digraph build from the original
    input graph:

    For an undirected graph G having `n` nodes and `m` edges we derive a
    directed graph H with `2n` nodes and `2m+n` arcs by replacing each
    original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
    arc in H. Then for each edge (`u`, `v`) in G we add two arcs
    (`u_B`, `v_A`) and (`v_B`, `u_A`) in H. Finally we set the attribute
    capacity = 1 for each arc in H [1]_ .

    For a directed graph G having `n` nodes and `m` arcs we derive a
    directed graph H with `2n` nodes and `m+n` arcs by replacing each
    original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
    arc (`v_A`, `v_B`) in H. Then for each arc (`u`, `v`) in G we add one arc
    (`u_B`, `v_A`) in H. Finally we set the attribute capacity = 1 for
    each arc in H.

    This is equal to the local node connectivity because the value of
    a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.

    See also
    --------
    :meth:`local_edge_connectivity`
    :meth:`node_connectivity`
    :meth:`minimum_node_cut`
    :meth:`maximum_flow`
    :meth:`edmonds_karp`
    :meth:`preflow_push`
    :meth:`shortest_augmenting_path`

    References
    ----------
    .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
        Erlebach, 'Network Analysis: Methodological Foundations', Lecture
        Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
        http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf

    """
    if flow_func is None:
        flow_func = default_flow_func

    if auxiliary is None:
        H = build_auxiliary_node_connectivity(G)
    else:
        H = auxiliary

    mapping = H.graph.get('mapping', None)
    if mapping is None:
        raise nx.NetworkXError('Invalid auxiliary digraph.')

    kwargs = dict(flow_func=flow_func, residual=residual)
    if flow_func is shortest_augmenting_path:
        kwargs['cutoff'] = cutoff
        kwargs['two_phase'] = True
    elif flow_func is edmonds_karp:
        kwargs['cutoff'] = cutoff

    return nx.maximum_flow_value(H, '%sB' % mapping[s], '%sA' % mapping[t], **kwargs)
开发者ID:CaptainAL,项目名称:Spyder,代码行数:101,代码来源:connectivity.py


示例15: shortest_augmenting_path

import networkx as nx
from networkx.algorithms.flow import shortest_augmenting_path

G = nx.DiGraph()
G.add_edge('x','a', capacity=100)
G.add_edge('x','b', capacity=100)
G.add_edge('a','c', capacity=100)
G.add_edge('b','c', capacity=100)
G.add_edge('b','d', capacity=100)
G.add_edge('d','e', capacity=100)
G.add_edge('c','y', capacity=100)
G.add_edge('e','y', capacity=100)
R = shortest_augmenting_path(G, 'x', 'y')
flow_value = nx.maximum_flow_value(G, 'x', 'y')
print flow_value

print flow_value == R.graph['flow_value']
开发者ID:celosc,项目名称:Energy_DCN,代码行数:17,代码来源:Capacity_scaling2.py


示例16: local_edge_connectivity


#.........这里部分代码省略.........
    have to explicitly import it from the connectivity package:

    >>> from networkx.algorithms.connectivity import local_edge_connectivity

    We use in this example the platonic icosahedral graph, which has edge
    connectivity 5.

    >>> G = nx.icosahedral_graph()
    >>> local_edge_connectivity(G, 0, 6)
    5

    If you need to compute local connectivity on several pairs of
    nodes in the same graph, it is recommended that you reuse the
    data structures that NetworkX uses in the computation: the
    auxiliary digraph for edge connectivity, and the residual
    network for the underlying maximum flow computation.

    Example of how to compute local edge connectivity among
    all pairs of nodes of the platonic icosahedral graph reusing
    the data structures.

    >>> import itertools
    >>> # You also have to explicitly import the function for
    >>> # building the auxiliary digraph from the connectivity package
    >>> from networkx.algorithms.connectivity import (
    ...     build_auxiliary_edge_connectivity)
    >>> H = build_auxiliary_edge_connectivity(G)
    >>> # And the function for building the residual network from the
    >>> # flow package
    >>> from networkx.algorithms.flow import build_residual_network
    >>> # Note that the auxiliary digraph has an edge attribute named capacity
    >>> R = build_residual_network(H, 'capacity')
    >>> result = dict.fromkeys(G, dict())
    >>> # Reuse the auxiliary digraph and the residual network by passing them
    >>> # as parameters
    >>> for u, v in itertools.combinations(G, 2):
    ...     k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)
    ...     result[u][v] = k
    >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
    True

    You can also use alternative flow algorithms for computing edge
    connectivity. For instance, in dense networks the algorithm
    :meth:`shortest_augmenting_path` will usually perform better than
    the default :meth:`edmonds_karp` which is faster for sparse
    networks with highly skewed degree distributions. Alternative flow
    functions have to be explicitly imported from the flow package.

    >>> from networkx.algorithms.flow import shortest_augmenting_path
    >>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
    5

    Notes
    -----
    This is a flow based implementation of edge connectivity. We compute the
    maximum flow using, by default, the :meth:`edmonds_karp` algorithm on an
    auxiliary digraph build from the original input graph:

    If the input graph is undirected, we replace each edge (`u`,`v`) with
    two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute
    'capacity' for each arc to 1. If the input graph is directed we simply
    add the 'capacity' attribute. This is an implementation of algorithm 1
    in [1]_.

    The maximum flow in the auxiliary network is equal to the local edge
    connectivity because the value of a maximum s-t-flow is equal to the
    capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

    See also
    --------
    :meth:`edge_connectivity`
    :meth:`local_node_connectivity`
    :meth:`node_connectivity`
    :meth:`maximum_flow`
    :meth:`edmonds_karp`
    :meth:`preflow_push`
    :meth:`shortest_augmenting_path`

    References
    ----------
    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

    """
    if flow_func is None:
        flow_func = default_flow_func

    if auxiliary is None:
        H = build_auxiliary_edge_connectivity(G)
    else:
        H = auxiliary

    kwargs = dict(flow_func=flow_func, residual=residual)
    if flow_func is shortest_augmenting_path:
        kwargs['cutoff'] = cutoff
        kwargs['two_phase'] = True
    elif flow_func is edmonds_karp:
        kwargs['cutoff'] = cutoff

    return nx.maximum_flow_value(H, u, v, **kwargs)
开发者ID:CaptainAL,项目名称:Spyder,代码行数:101,代码来源:connectivity.py


示例17: len

    global target
    if len(sys.argv) != 4:
        print "Usage: python <source_file> <path_of_input_data_file> <source_node> <sink_node> "
        sys.exit()
    else:
        inputpath = sys.argv[1]
        source = int(sys.argv[2])
        target = int(sys.argv[3])

if __name__ == "__main__":
    main(sys.argv)


#G=nx.read_gml("C:\Users\Justin\Documents\karate (1)\karate.gml")
G=nx.read_gml(inputpath)
for u in G.edges():
    G[u[0]][u[1]]['capacity']=1.0

maxflow1= nx.maximum_flow_value(G,source,target)
mincut1 = nx.minimum_cut_value(G,source,target)


#H=nx.read_gml("C:\Users\Justin\Downloads\power\power.gml")
#for u in H.edges():
#    H[u[0]][u[1]]['capacity']=1.0

#maxflow2 = nx.maximum_flow_value(H,2553,4458)
#mincut2 = nx.minimum_cut_value(H,2553,4458)

#print maxflow1, mincut1, maxflow2, mincut2
print maxflow1, mincut1
开发者ID:Totakeke,项目名称:Coursework,代码行数:31,代码来源:AlgHW4.py



注:本文中的networkx.maximum_flow_value函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.maximum_spanning_tree函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.max_weight_matching函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap