• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python networkx.laplacian_matrix函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.laplacian_matrix函数的典型用法代码示例。如果您正苦于以下问题:Python laplacian_matrix函数的具体用法?Python laplacian_matrix怎么用?Python laplacian_matrix使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了laplacian_matrix函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: diffusion_matrix

def diffusion_matrix(G, nodeList, npyFile, gamma=8):
    """
    compute inverse of Laplacian matrix and symmetrize. (default gamma is arbitrary)
    the higher the influence, the closer we expect function to be, so let distances be reciprocal.
    """
    if not npyFile or not os.path.isfile(npyFile):

        L = np.array(nx.laplacian_matrix(G,nodeList))
        # depending on version of networkx, might get sparse matrix instead. if so, do this:
        if np.shape(L) == ():
            L = np.array(nx.laplacian_matrix(G,nodeList).todense())
        m, n = np.shape(L)
        L = L + (np.eye(m, n)*gamma)
        D = np.linalg.inv(L)
        n = len(nodeList)
        for i in xrange(n):
            for j in xrange(i+1,n):
                D[i][j] = D[j][i] = 1/(min(D[i][j], D[j][i]))

        if npyFile:
            np.save(npyFile, D)
    else:
        D = np.load(npyFile)

    return D
开发者ID:TuftsBCB,项目名称:dsd-functional,代码行数:25,代码来源:expt.py


示例2: laplacian_spectrum

def laplacian_spectrum(G, weight="weight"):
    """Return eigenvalues of the Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph 

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_matrix for other options.

    See Also
    --------
    laplacian_matrix
    """
    try:
        import numpy as np
    except ImportError:
        raise ImportError("laplacian_spectrum() requires NumPy: http://scipy.org/ ")
    return np.linalg.eigvals(nx.laplacian_matrix(G, weight=weight))
开发者ID:Bludge0n,项目名称:AREsoft,代码行数:31,代码来源:spectrum.py


示例3: laplacian_spectrum

def laplacian_spectrum(G, weight='weight'):
    """Return eigenvalues of the Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_matrix for other options.

    See Also
    --------
    laplacian_matrix
    """
    from scipy.linalg import eigvals
    return eigvals(nx.laplacian_matrix(G,weight=weight).todense())
开发者ID:Bramas,项目名称:networkx,代码行数:28,代码来源:spectrum.py


示例4: eig_vis_opt

def eig_vis_opt(G, F, beta):
	"""
		Computes first and second eigenvector of sqrt(C+beta*L)^T CAC sqrt(C+beta*L) matrix for visualization.
		Input:
			* G: graph
			* F: graph signal
			* beta: regularization parameter
		Output:
			* v1: first eigenvector
			* v2: second eigenvector	
	"""
	ind = {}
	i = 0
	
	for v in G.nodes():
		ind[v] = i
		i = i + 1
	
	C = laplacian_complete(networkx.number_of_nodes(G))
	A = weighted_adjacency_complete(G, F, ind)
	CAC = numpy.dot(numpy.dot(C,A), C)
	L = networkx.laplacian_matrix(G).todense()
	
	isqrtCL = sqrtmi( C + beta * L)
	M = numpy.dot(numpy.dot(isqrtCL, CAC), isqrtCL)
	
	(eigvals, eigvecs) = scipy.linalg.eigh(M,eigvals=(0,1))
	x1 = numpy.asarray(numpy.dot(eigvecs[:,0], isqrtCL))[0,:]
	x2 = numpy.asarray(numpy.dot(eigvecs[:,1], isqrtCL))[0,:]

	return x1, x2
开发者ID:arleilps,项目名称:sparse-wavelets,代码行数:31,代码来源:optimal_cut.py


示例5: etape

    def etape(self, frontier, i_graph):
        """ Calculates the most probable seed within the infected nodes"""

        # Taking the actual submatrix, not the laplacian matrix. The change
        # lies in the total number of connections (The diagonal terms) for the
        # infected nodes connected to uninfected ones in the initial graph
        i_laplacian_matrix = nx.laplacian_matrix(i_graph)
        for i in range(0, len(i_graph.nodes())):
            if frontier.has_node(i_graph.nodes()[i]):
                i_laplacian_matrix[i, i] +=\
                                frontier.node[i_graph.nodes()[i]]['clear']

        # SymPy
        Lm = Matrix(i_laplacian_matrix.todense())
        i = self.Sym2NumArray(Matrix(Lm.eigenvects()[0][2][0])).argmax()

        # NumPy
        # val, vect = linalg.eigh(i_laplacian_matrix.todense())
        #i = vect[0].argmax()

        # SciPY
        # val, vect = eigs(i_laplacian_matrix.rint())
        # i = vect[:, 0].argmax()

        seed = (i_graph.nodes()[i])

        return seed
开发者ID:Temigo,项目名称:whisper,代码行数:27,代码来源:algorithm_netsleuth.py


示例6: effective_resistance_project

def effective_resistance_project(G, beacons):
    from numpy.linalg import pinv
    projection = np.zeros((G.number_of_nodes() - len(beacons), len(beacons)))
    L = nx.laplacian_matrix(G)
    B = nx.incidence_matrix(G).T
    B_e = B.copy()
    
    L_pseudo = pinv(L)
    for i in xrange(B.shape[0]):
        min_ace = np.min(np.where(B[i,:] ==1)[1])
        B_e[i, min_ace] = -1
    
    for i,beacon in enumerate(beacons):
        node_index = 0
        for j,node in enumerate(G.nodes()):
            if node in beacons:
                continue
                
            battery = np.zeros((B_e.shape[1],1))
            battery[i] = 1
            battery[node_index] = -1

            p = L_pseudo * battery
            projection[node_index][i] = abs(p[i] - p[j])
            node_index += 1 
    return projection
开发者ID:harrymvr,项目名称:graph-isomorphism,代码行数:26,代码来源:graph_isomorphisms.py


示例7: MinCut

def MinCut(G):

	#Calcula a matriz laplaciana do grafo G
	#Opcionalmente, pode-se usar a laplaciana normalizada
	#lap = nx.normalized_laplacian(G)
	lap = nx.laplacian_matrix(G)
	eigenValues, eigenVectors = la.eigh(lap)

	orthoVector = []
	
	#pega-se entao os componentes orthonormais dos
	#autovetores e cria-se um novo vetor
	for vectors in eigenVectors:
		orthoVector.append(vectors[1])

	#para o Ratio-cut, usa-se a mediana para dividir
	#o grafo.
	#med = np.median(eigenVectors[1])

	nodesleft = []
	nodesright = []

	#divide-se entao o grafo em 2 componentes, baseado no sinal
	#do vetor orthonormal. Compara-se a lista de nodos com o vetor.
	#Se o valor for maior que zero, vai pra uma componente, caso contrario,
	#vai pra outra.
	for node, vec in zip(G.nodes(), orthoVector):
		if(vec > 0):
			nodesleft.append(node)
		else:
			nodesright.append(node)
	
	return (nodesleft, nodesright)
开发者ID:willunicamp,项目名称:hvnscripts,代码行数:33,代码来源:strategiesHVN50edgesMincut.py


示例8: cheb_spectral_cut

def cheb_spectral_cut(CAC, start, F, G, beta, k, n, ind):
	"""
		Fast spectral cut implementation using chebyshev polynomials.
		Input:
			* CAC: C*A*C where C is the Laplacian of a complete graph and A is a pairwise squared difference matrix
			* start: initialization
			* F: graph signal
			* G: graph
			* L: graph laplacian matrix
			* beta: regularization parameter
			* k: max edges cut
			* n: number of polynomials
			* ind: vertex index vertex: unique integer
		Output:
			* res: dictionary with following fields:
				- x: indicator vector
				- size: number of edges cut
				- score: cut score
				- energy: cut energy
	"""
	L = networkx.laplacian_matrix(G)
	M = chebyshev_approx_2d(n, beta, CAC, L)
	
	eigvec = power_method(-M, start, 10)
	x = chebyshev_approx_1d(n, beta, eigvec, L)
	
	(x, score, size, energy) = sweep_opt(x, beta, F, G, k, ind)
	
	res = {}
	res["x"] = numpy.array(x)
	res["size"] = size
	res["score"] = score
	res["energy"] = energy
	
	return res
开发者ID:arleilps,项目名称:sparse-wavelets,代码行数:35,代码来源:optimal_cut.py


示例9: create_laplacian_matrix

def create_laplacian_matrix(G):
	row = []
	column = []
	value = []

	for t in range(G.num_snaps()):
		Lg = networkx.laplacian_matrix(G.snap(t))
		for (i,j) in zip(*scipy.nonzero(Lg)):
			row.append(G.size()*t + i)
			column.append(G.size()*t + j)
			
			if i != j:
				value.append(Lg[i,j])
			else:
				if t > 0 and t < G.num_snaps() - 1:
					value.append(Lg[i,j] + 2 * G.swap_cost())
				else:	
					value.append(Lg[i,j] + 1 * G.swap_cost())
	
	for t in range(G.num_snaps()-1):
		for v in range(G.size()):
			row.append(t*G.size() + v)
			column.append((t+1)*G.size() + v)
			value.append(-1 * G.swap_cost())
			
			column.append(t*G.size() + v)
			row.append((t+1)*G.size() + v)
			value.append(-1 * G.swap_cost())


	sz = G.num_snaps() * G.size()
	return scipy.sparse.csr_matrix((value, (row, column)), shape=(sz, sz), dtype=float)
开发者ID:arleilps,项目名称:network-process-discovery,代码行数:32,代码来源:time_graph.py


示例10: test_abbreviation_of_method

 def test_abbreviation_of_method(self):
     G = nx.path_graph(8)
     A = nx.laplacian_matrix(G)
     sigma = 2 - sqrt(2 + sqrt(2))
     ac = nx.algebraic_connectivity(G, tol=1e-12, method='tracemin')
     assert_almost_equal(ac, sigma)
     x = nx.fiedler_vector(G, tol=1e-12, method='tracemin')
     check_eigenvector(A, sigma, x)
开发者ID:ProgVal,项目名称:networkx,代码行数:8,代码来源:test_algebraic_connectivity.py


示例11: eig_vis_nc

def eig_vis_nc(G):
	L = networkx.laplacian_matrix(G).todense()
	(eigvals, eigvecs) = scipy.linalg.eigh(L,eigvals=(1,2))

	x1 = numpy.asarray(eigvecs[:,0])
	x2 = numpy.asarray(eigvecs[:,1])
	
	return x1, x2
开发者ID:arleilps,项目名称:network-process-discovery,代码行数:8,代码来源:graph_signal_proc.py


示例12: ematrix

def ematrix(G,nodes):
    L = np.array(nx.laplacian_matrix(G,nodes))
    # not using eig.  gives very strange results for non-invertible matrices
    # which don't agree with matlab's eig.  svd however gives sensible results
    u,s,vt = np.linalg.svd(L)
    s = 1/s
    s[np.where(np.abs(s)>1e9)]=0
    s = np.sqrt(s)
    return np.dot(u,np.diag(s))
开发者ID:EdwardBetts,项目名称:matching-metrics,代码行数:9,代码来源:dsd.py


示例13: my_algebraic_connectivity

def my_algebraic_connectivity(graph, normalise=False):
    if normalise:
        eigvals, eigvecs = sp.sparse.linalg.eigsh(nx.normalized_laplacian_matrix(graph).asfptype(), 2, which='SA')
        a = eigvals[1]
    else:
        eigvals, eigvecs = sp.sparse.linalg.eigsh(nx.laplacian_matrix(graph).asfptype(), 2, which='SA')
        a = eigvals[1]
    if a < MACHINE_EPSILON: a = 0.0
    return a
开发者ID:marcocaccin,项目名称:Graph-partitioning-combinatorics,代码行数:9,代码来源:graph_combinatorics.py


示例14: test_cycle

 def test_cycle(self):
     G = nx.cycle_graph(8)
     A = nx.laplacian_matrix(G)
     sigma = 2 - sqrt(2)
     for method in self._methods:
         ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
         assert_almost_equal(ac, sigma)
         x = nx.fiedler_vector(G, tol=1e-12, method=method)
         check_eigenvector(A, sigma, x)
开发者ID:ProgVal,项目名称:networkx,代码行数:9,代码来源:test_algebraic_connectivity.py


示例15: test_two_nodes

 def test_two_nodes(self):
     G = nx.Graph()
     G.add_edge(0, 1, weight=1)
     A = nx.laplacian_matrix(G)
     for method in self._methods:
         assert_almost_equal(nx.algebraic_connectivity(
             G, tol=1e-12, method=method), 2)
         x = nx.fiedler_vector(G, tol=1e-12, method=method)
         check_eigenvector(A, 2, x)
     G = nx.MultiGraph()
     G.add_edge(0, 0, spam=1e8)
     G.add_edge(0, 1, spam=1)
     G.add_edge(0, 1, spam=-2)
     A = -3 * nx.laplacian_matrix(G, weight='spam')
     for method in self._methods:
         assert_almost_equal(nx.algebraic_connectivity(
             G, weight='spam', tol=1e-12, method=method), 6)
         x = nx.fiedler_vector(G, weight='spam', tol=1e-12, method=method)
         check_eigenvector(A, 6, x)
开发者ID:ProgVal,项目名称:networkx,代码行数:19,代码来源:test_algebraic_connectivity.py


示例16: write_adj_mat

def write_adj_mat(G, fileobj=sys.stdout):
    """Write G to a sparse matrix format that Julia and Matlab can read."""
    lapmatrix = nx.laplacian_matrix(G)
    norm_lapl = nx.normalized_laplacian_matrix(G)
    adjmatrix = nx.adjacency_matrix(G)
    mdict = {'laplacian': lapmatrix,
             'norm_lapl': norm_lapl,
             'adjacency': adjmatrix}
    sio.savemat(fileobj, mdict)
    return mdict
开发者ID:jpfairbanks,项目名称:Matfacgrf,代码行数:10,代码来源:hospital_contacts.py


示例17: test_problematic_graph_issue_2381

 def test_problematic_graph_issue_2381(self):
     G = nx.path_graph(4)
     G.add_edges_from([(4, 2), (5, 1)])
     A = nx.laplacian_matrix(G)
     sigma = 0.438447187191
     for method in self._methods:
         ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
         assert_almost_equal(ac, sigma)
         x = nx.fiedler_vector(G, tol=1e-12, method=method)
         check_eigenvector(A, sigma, x)
开发者ID:ProgVal,项目名称:networkx,代码行数:10,代码来源:test_algebraic_connectivity.py


示例18: one_d_search

def one_d_search(G, F, k, ind):
	"""
		Cut computation. Perform 1-D search for beta using golden search.
		Input:
			* G: graph
			* F: graph signal
			* k: max edges to be cut
			* n: number of chebyshev polynomials
			* ind: vertex index vertex: unique integer
		Output:
			* cut
	"""
	C = laplacian_complete(networkx.number_of_nodes(G))
	A = weighted_adjacency_complete(G,F, ind)
	CAC = numpy.dot(numpy.dot(C,A), C)
	start = numpy.ones(networkx.number_of_nodes(G))
	L = networkx.laplacian_matrix(G).todense()

	#Upper and lower bounds for search
	a = 0.
	b = 1000.
	c=b-gr*(b-a)
	d=a+gr*(b-a)
	
	#Tolerance
	tol = 1.

	resab = {}
	resab["size"] = k + 1
	
	#golden search
	while abs(c-d)>tol or resab["size"] > k:      
		resc = spectral_cut(CAC, L, C, A, start, F, G, c, k, ind)
		resd = spectral_cut(CAC, L, C, A, start, F, G, d, k, ind)
		
		if resc["size"] <= k: 
			if resc["score"] > resd["score"]: 
				start = numpy.array(resc["x"])
				b = d
				d = c
				c=b-gr*(b-a)
			else:
				start = numpy.array(resd["x"])
				a=c
				c=d  
				d=a+gr*(b-a)
		else:
				start = numpy.array(resc["x"])
				a=c
				c=d  
				d=a+gr*(b-a)
		
		resab = spectral_cut(CAC, L, C, A, start, F, G, (b+a) / 2, k, ind)
	
	return resab
开发者ID:arleilps,项目名称:sparse-wavelets,代码行数:55,代码来源:optimal_cut.py


示例19: spectral_clustering

def spectral_clustering(A, args):
    '''
    Function uses dimension reduction by spectral clustering 
    to cluster with some cluster algorithm 
    '''
    if type(A) == np.ndarray:
        print 'Building graph...'
        G = nx.from_numpy_matrix(A)
        laplacian = nx.laplacian_matrix(G)
    elif type(A) == scsp.csc.csc_matrix:
        print 'Building graph...'
        G = nx.from_scipy_sparse_matrix(A)
        laplacian = nx.laplacian_matrix(G)
    print 'Start finding reduction...'
    max_eigvals = scspl.eigs(laplacian * 1.0, return_eigenvectors=False, 
                             k=args['dim'] + 10)
    alpha = np.amax(max_eigvals)
    modif_laplacian = alpha * scsp.eye(laplacian.shape[0], 
                                       laplacian.shape[1]) - laplacian
    lap_eigval, lap_eigvec = scspl.eigs(modif_laplacian * 1.0, 
                                        k=20)
    if args['show_eigenvalues']:
        print 'Show eigenvalues...'
        plt.scatter(np.array(range(len(lap_eigval))) + 1, 
                    np.sort(-lap_eigval.real + alpha, reverse = True), 
                    marker='.', s=90)
        plt.show()
    U = lap_eigvec[:, 0:args['dim']].real
    print 'Start clustering...'
    if U.shape[0] < 1000:
        clustering = skcl.KMeans(n_clusters=args['number_of_clusters'])
        clustering.fit(U)
    else:
        clustering = skcl.MiniBatchKMeans(n_clusters=args['number_of_clusters'])
        clustering.fit(U)
    center_person_cluster_id = clustering.labels_[args['index']]
    center_person_cluster = [i for i in xrange(len(clustering.labels_)) 
                             if clustering.labels_[i] == center_person_cluster_id]
    
    cluster = [[i for i in xrange(len(clustering.labels_)) if clustering.labels_[i] == j] 
                for j in xrange(args['number_of_clusters'])]
    return center_person_cluster, cluster
开发者ID:mikhail-matrosov,项目名称:wikigroups,代码行数:42,代码来源:spectral_clustering.py


示例20: eigenratio

def eigenratio (G):
    if nx.is_connected(G):
        # Calculate the eigenrato (lambda_N/lambda_2)
        L = nx.laplacian_matrix(G)
        eigenvalues, eigenvectors = np.linalg.eig(L)
        idx = eigenvalues.argsort()   
        eigenvalues = eigenvalues[idx]
        return eigenvalues[-1] / eigenvalues[1]
    else:
        # If the network is not connected it is not valid
        return float('inf')
开发者ID:BiocomputeLab,项目名称:netevo-py,代码行数:11,代码来源:evolve_sa_eigenratio.py



注:本文中的networkx.laplacian_matrix函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.load_centrality函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.krackhardt_kite_graph函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap