• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python networkx.info函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.info函数的典型用法代码示例。如果您正苦于以下问题:Python info函数的具体用法?Python info怎么用?Python info使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了info函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: calGraph

def calGraph(infile, mode = 1):
	#init Parameter
	inputpath = 'edge_list/'
	outputpath = 'network_output/'
	n = mode
	Data_G = inputpath+infile+'_'+str(n)+'.edgelist'
	
	#init Graph
	G = nx.read_edgelist(Data_G, create_using=nx.DiGraph())
	GU = nx.read_edgelist(Data_G)
	#basci info
	print nx.info(G),'\n', nx.info(GU) 
	average_degree = float(sum(nx.degree(G).values()))/len(G.nodes())
	print 'average degree :', average_degree 
	degree_histogram = nx.degree_histogram(G)
	print 'degree histogram max :', degree_histogram[1]
	desity = nx.density(G)
	print 'desity :', desity

	#Approximation
	#Centrality
	degree_centrality = nx.degree_centrality(G)
	print 'degree centrality top 10 !', sorted_dict(degree_centrality)[:2]
	out_degree_centrality = nx.out_degree_centrality(G)
	print 'out degree centrality top 10 !', sorted_dict(out_degree_centrality)[:2]
开发者ID:carlzhangxuan,项目名称:For_Recruit,代码行数:25,代码来源:L3_NetworkX_basic.py


示例2: simpleDisplay

def simpleDisplay(ipaddress = "localhost",port = "9999"):
    '''
    利用每次处理后保存的图来进行恢复展示
    :return:
    '''
    # client,repo,stargazers,user = getRespond()
    # g = addTOGraph(repo,stargazers,user)
    # addEdge(stargazers,client,g)
    # getPopular(g)
    # savaGraph1(g)
    # top10(g)
    g = nx.read_gpickle("data/github.1")
    print nx.info(g)
    print

    mtsw_users = [n for n in g if g.node[n]['type'] == 'user']
    h = g.subgraph(mtsw_users)

    print nx.info(h)
    print
    d = json_graph.node_link_data(h)
    json.dump(d, open('data/githubRec.json', 'w'))
    cmdstr = "python3 -m http.server %s" % port
    webbrowser.open_new_tab("http://%s:%s/%s.html"%(ipaddress,port, "display_githubRec"))
    os.system(cmdstr)
开发者ID:ch710798472,项目名称:GithubRecommended,代码行数:25,代码来源:githubRec.py


示例3: add_partitions_to_digraph

def add_partitions_to_digraph(graph, partitiondict):
	''' Add the partition numbers to a graph - in this case, using this to update the digraph, with partitions calc'd off the undirected graph. Yes, it's a bad hack.
	'''
	g = graph
	nx.set_node_attributes(g, 'partition', partitiondict)
	nx.info(g)
	return
开发者ID:ageek,项目名称:kaggle-machine-learning,代码行数:7,代码来源:networkx_functs.py


示例4: kinetic

def kinetic(fileName='P2_1_9_p07', M=None, N=None, axis=None):
	#FILE  = "/home/xingzhong/MicrosoftGestureDataset-RC/data/%s"%fileName
	FILE  = "/Users/xingzhong/Downloads/MicrosoftGestureDataset-RC/data/%s"%fileName
	truth = np.genfromtxt(FILE+'.tagstream', delimiter=';', skiprows=1, dtype=None, converters={0: lambda x: (int(x) *1000 + 49875/2)/49875})
	nd = np.loadtxt(FILE+'.csv')
	nd = nd[np.where(nd[:,80]!=0)]# remove empty rows
	idx, ndd = map(int, nd[:,0]), nd[:, 1:] # unpack index and data
	m, n = ndd.shape
	panel = pd.Panel( ndd.reshape((m, 20, 4)), items=idx, major_axis=AGENTS, minor_axis=['x','y','z','v'] ).transpose(2, 0, 1)
	panel['dx'] = 1000* panel['x'].diff().fillna(0)
	panel['dy'] = 1000* panel['y'].diff().fillna(0)
	panel['dz'] = 1000* panel['z'].diff().fillna(0)
	panel = panel.transpose(2, 1, 0)
	samples =  [s for s in instance_generator(panel, truth)] 
	g = EventGraph()
	X = [np.array([0])]
	for aid, seq in enumerate (samples[0]):
		if M is not None and aid > M :
			break
		for t, atom in enumerate (seq):
			if N is not None and t > N:
				break
			elif not atom is None and t!=0:
				if axis:
					g.addEvent( Event(t, aid, atom ))
					X.append(atom)
				else:
					g.addEvent( Event(t, aid, np.array([atom[axis]]) ))
					X.append( np.array([atom[axis]]) )

	g.buildEdges(delta = 1)
	print nx.info(g)
	return g, X
开发者ID:xingzhong,项目名称:grammar_learning,代码行数:33,代码来源:kinetic.py


示例5: check

def check(graph,path_lenght,removable,protlist,path):
	rem=[]
	ess=[]

	for i in removable:
		count=0
		flag=0
		rem.append(i)
		H=graph.copy()
		H.remove_nodes_from(rem)
		for j in path:
			try:
				lenght=nx.shortest_path_length(H, j[0], j[1])
			except:
				lenght=-1
			
			if lenght==-1 or (lenght+1)!=path_lenght[j]:
				ess.append(i)
				flag=1
				break
			else:
				count=count+1
		if count==len(path):
			rem.append(i)
		elif flag==1:
			rem.remove(i)
	
	graph.add_nodes_from(protlist)
	graph.remove_nodes_from(rem)
	print nx.info(graph)
	#drawgraph(graph,protlist)	
	return graph
开发者ID:girolamogiudice,项目名称:nbea,代码行数:32,代码来源:filterlib6.py


示例6: draw_citing_users_follower_count

def draw_citing_users_follower_count():
  df = pd.read_csv('Results/twtrs_follower_network.tsv', sep='\t', header=None)
  df.columns = ['src', 'followers']

  count_followers = lambda row: len(row[1].split(','))
  df['fCnt'] = df.apply(count_followers, axis=1)

  edglstdf = pd.read_csv('Results/clustered_relevant_users.tsv', sep='\t', header=None)
  eldf = edglstdf.apply(lambda row: [x.lstrip('[').rstrip(']') for x in row])
  eldf.columns = ['src','trg']


  eldf[['src']] = eldf[['src']].apply(pd.to_numeric)
  df = pd.merge(eldf,df, on='src')
  df[['src','trg','fCnt']].to_csv('Results/procjson_edglst.tsv', sep='\t', header=False, index=False)

  g=nx.Graph()
  g.add_edges_from(df[['src','trg']].values)
  print nx.info(g)

  f, axs = plt.subplots(1, 1, figsize=(1.6*6., 1*6.))
  # nx.draw_networkx(g, pos=nx.spring_layout(g), ax=axs,  with_labels=False, node_size=df[['fCnt']]/float(len(df)), alpha=.5)
  pos=nx.spring_layout(g)
  # nx.draw_networkx(g, pos=pos, ax=axs, with_labels=False, alpha=.5, node_size=30)
  nx.draw_networkx_edges(g, pos=pos, ax=axs, alpha=0.5, width=0.8)
  nx.draw_networkx_nodes(g, pos=pos, ax=axs, nodelist=list(df['src'].values), node_color='#7A83AC', node_size=30, alpha=0.5)
  nx.draw_networkx_nodes(g, pos=pos, ax=axs, nodelist=list(df['trg'].values), node_color='k', node_size=20, alpha=0.8)

  axs.patch.set_facecolor('None')
  axs.set_xticks([]) #[None]# grid(True, which='both')
  axs.set_yticks([]) #[None]# grid(True, which='both')
  plt.savefig('figures/outfig', bbox_inches='tight', pad_inches=0)

  return
开发者ID:abitofalchemy,项目名称:ScientificImpactPrediction,代码行数:34,代码来源:procjson_tograph.py


示例7: main

def main():
    
    ### Undirected graph ###
    
    # Initialize model using the Petersen graph
    model=gmm.gmm(nx.petersen_graph())
    old_graph=model.get_base()
    model.set_termination(node_ceiling)
    model.set_rule(rand_add)
    
    # Run simualation with tau=4 and Poisson density for motifs
    gmm.algorithms.simulate(model,4)   

    # View results
    new_graph=model.get_base()
    print(nx.info(new_graph))
    
    # Draw graphs
    old_pos=nx.spring_layout(old_graph)
    new_pos=nx.spring_layout(new_graph,iterations=2000)
    fig1=plt.figure(figsize=(15,7))
    fig1.add_subplot(121)
    #fig1.text(0.1,0.9,"Base Graph")
    nx.draw(old_graph,pos=old_pos,node_size=25,with_labels=False)
    fig1.add_subplot(122)
    #fig1.text(0.1,0.45,"Simulation Results")
    nx.draw(new_graph,pos=new_pos,node_size=20,with_labels=False)
    fig1.savefig("undirected_model.png")
    
    ### Directed graph ###
    
    # Initialize model using random directed Barabasi-Albert model
    directed_base=nx.barabasi_albert_graph(25,2).to_directed()
    directed_model=gmm.gmm(directed_base)
    directed_model.set_termination(node_ceiling)
    directed_model.set_rule(rand_add)
    
    # Run simualation with tau=4 and Poisson density for motifs
    gmm.algorithms.simulate(directed_model,4)
    
    # View results
    new_directed=directed_model.get_base()
    print(nx.info(new_directed))
    
    # Draw directed graphs
    old_dir_pos=new_pos=nx.spring_layout(directed_base)
    new_dir_pos=new_pos=nx.spring_layout(new_directed,iterations=2000)
    fig2=plt.figure(figsize=(7,10))
    fig2.add_subplot(211)
    fig2.text(0.1,0.9,"Base Directed Graph")
    nx.draw(directed_base,pos=old_dir_pos,node_size=25,with_labels=False)
    fig2.add_subplot(212)
    fig2.text(0.1,0.45, "Simualtion Results")
    nx.draw(new_directed,pos=new_dir_pos,node_size=20,with_labels=False)
    fig2.savefig("directed_model.png")
    
    # Export files
    nx.write_graphml(model.get_base(), "base_model.graphml")
    nx.write_graphml(directed_model.get_base(), "directed_model.graphml")
    nx.write_graphml(nx.petersen_graph(), "petersen_graph.graphml")
开发者ID:drewconway,项目名称:GMM,代码行数:60,代码来源:basic_model.py


示例8: build_graph

 def build_graph(self):
     
     '''
     Build a networkx graph from WordNet
     '''
     
     for synset in list(self.wordnet.all_synsets()):
     #for synset in list(self.wordnet.all_synsets('n'))[:10]:
         self.G.add_node(synset.name)
         self.add_edges(synset, synset.hypernyms())
         self.add_edges(synset, synset.hyponyms())
         self.add_edges(synset, synset.instance_hypernyms())
         self.add_edges(synset, synset.instance_hyponyms())
         self.add_edges(synset, synset.member_holonyms())
         self.add_edges(synset, synset.substance_holonyms())
         self.add_edges(synset, synset.part_holonyms())
         self.add_edges(synset, synset.member_meronyms())
         self.add_edges(synset, synset.substance_meronyms())
         self.add_edges(synset, synset.part_meronyms())
         self.add_edges(synset, synset.attributes())
         self.add_edges(synset, synset.entailments())
         self.add_edges(synset, synset.causes())
         self.add_edges(synset, synset.also_sees())
         self.add_edges(synset, synset.verb_groups())
         self.add_edges(synset, synset.similar_tos())
         
     print nx.info(self.G)
开发者ID:Sandy4321,项目名称:text-annotation,代码行数:27,代码来源:kbgraph.py


示例9: data_prep

def data_prep(infofile, graphfile):
    # read in the total biz file
    # Preparing the data files 
    df = pd.read_csv(infofile)

    #removing duplicate records
    df = df.groupby('pageid').first()
    print df.columns
    print df.index
    print df.shape
    print df.isnull().sum()
    df = df[df['latitude'] != 'N']
    print "Dropping loc, lat = N: ", df.shape
    df = df.dropna() #df[df['latitude'] != 'N']
    print "Dropping NA", df.shape #df.isnull().sum()


    # read in th original edgelist as a directed graph
    globalgraph= nx.read_edgelist(graphfile, create_using=nx.DiGraph(), nodetype=int)
    print "Original Graph:", nx.info(globalgraph)

    print "Keeping it consistent, removing all nodes not in database:"
    pageids = list(df.index)
    prunedglobalgraph = globalgraph.subgraph(pageids)
    print nx.info(prunedglobalgraph)
    return df, globalgraph
开发者ID:tsaxena,项目名称:Tripti_SNA,代码行数:26,代码来源:recommend.py


示例10: correlation_betweenness_degree_on_ER

def correlation_betweenness_degree_on_ER():
    N = 1000
    p = 0.004
    G = nx.erdos_renyi_graph(N, p)
    print nx.info(G)
    ND, ND_lambda = ECT.get_number_of_driver_nodes(G)
    ND, driverNodes = ECT.get_driver_nodes(G)

    degrees = []
    betweenness = []
    tot_degree = nx.degree_centrality(G)
    tot_betweenness = nx.betweenness_centrality(G,weight=None)

    for node in driverNodes:
        degrees.append(tot_degree[node])
        betweenness.append(tot_betweenness[node])

    with open("results/driver_degree_ER.txt", "w") as f:
        for x in degrees:
            print >> f, x
    with open("results/driver_betweenness_ER.txt", "w") as f:
        for x in betweenness:
            print >> f, x

    with open("results/tot_degree_ER.txt", "w") as f:
        for key, value in tot_degree.iteritems():
            print >> f, value

    with open("results/tot_betweenness_ER.txt", "w") as f:
        for key, value in tot_betweenness.iteritems():
            print >> f, value
开发者ID:python27,项目名称:NetworkControllability,代码行数:31,代码来源:Degree_Betweenness_correlation.py


示例11: get_community_biconnections

def get_community_biconnections(commid, df, graph):

    print "Find biconnections in the community :", commid
    
    print nx.info(graph)

    biconnected_nodes = []
    for e in graph.edges():
        a, b = e
        if graph.has_edge(b,a) and a != b:
            # check if already there in the list
            if (a,b) in biconnected_nodes or (b,a) in biconnected_nodes:
                pass
            else:
                biconnected_nodes.append((a,b))

    print "number of biconnected edges:", len(biconnected_nodes)

    source_nodes, target_nodes = zip(*biconnected_nodes)
    all_subgraph_nodes = set(source_nodes).union(set(target_nodes))
    print "Unique nodes in the biconnections", len(all_subgraph_nodes)

    # get the subgraph of all biconnected edges 
    # plot 
    dfname = biconnbase+ str(commid) + '_biz_info.csv'
    bicon_df = df.loc[all_subgraph_nodes]
    print bicon_df.shape
    bicon_df.to_csv(dfname)

    # subgraph generated from the coordinates
    sgname = biconnbase+ str(commid) + '_sg_edgelist.ntx'
    sg = graph.subgraph(list(all_subgraph_nodes))
    print nx.info(sg)
    nx.write_edgelist(sg, sgname, data=False)
开发者ID:tsaxena,项目名称:Tripti_SNA,代码行数:34,代码来源:community_analysis.py


示例12: correlation_betweenness_degree_on_ErdosNetwork

def correlation_betweenness_degree_on_ErdosNetwork():
    G = nx.read_pajek("dataset/Erdos971.net")
    isolated_nodes = nx.isolates(G)
    G.remove_nodes_from(isolated_nodes)

    print nx.info(G)
    ND, ND_lambda = ECT.get_number_of_driver_nodes(G)
    print "ND = ", ND
    print "ND lambda:", ND_lambda
    ND, driverNodes = ECT.get_driver_nodes(G)
    print "ND =", ND

    degrees = []
    betweenness = []
    tot_degree = nx.degree_centrality(G)
    tot_betweenness = nx.betweenness_centrality(G,weight=None)

    for node in driverNodes:
        degrees.append(tot_degree[node])
        betweenness.append(tot_betweenness[node])

    with open("results/driver_degree_Erdos.txt", "w") as f:
        for x in degrees:
            print >> f, x
    with open("results/driver_betweenness_Erdos.txt", "w") as f:
        for x in betweenness:
            print >> f, x
    with open("results/tot_degree_Erdos.txt", "w") as f:
        for key, value in tot_degree.iteritems():
            print >> f, value

    with open("results/tot_betweenness_Erdos.txt", "w") as f:
        for key, value in tot_betweenness.iteritems():
            print >> f, value
开发者ID:python27,项目名称:NetworkControllability,代码行数:34,代码来源:Degree_Betweenness_correlation.py


示例13: correlation_betweenness_degree_on_BA

def correlation_betweenness_degree_on_BA():
    n = 1000
    m = 2
    G = nx.barabasi_albert_graph(n, m)

    print nx.info(G)
    ND, ND_lambda = ECT.get_number_of_driver_nodes(G)
    print "ND = ", ND
    print "ND lambda:", ND_lambda
    ND, driverNodes = ECT.get_driver_nodes(G)
    print "ND =", ND

    degrees = []
    betweenness = []
    tot_degree = nx.degree_centrality(G)
    tot_betweenness = nx.betweenness_centrality(G,weight=None)

    for node in driverNodes:
        degrees.append(tot_degree[node])
        betweenness.append(tot_betweenness[node])

    with open("results/driver_degree_BA.txt", "w") as f:
        for x in degrees:
            print >> f, x
    with open("results/driver_betweenness_BA.txt", "w") as f:
        for x in betweenness:
            print >> f, x
    with open("results/tot_degree_BA.txt", "w") as f:
        for key, value in tot_degree.iteritems():
            print >> f, value

    with open("results/tot_betweenness_BA.txt", "w") as f:
        for key, value in tot_betweenness.iteritems():
            print >> f, value
开发者ID:python27,项目名称:NetworkControllability,代码行数:34,代码来源:Degree_Betweenness_correlation.py


示例14: correlation_betweenness_degree_on_WS

def correlation_betweenness_degree_on_WS():
    n = 1000
    k = 4
    p = 0.01
    G = nx.watts_strogatz_graph(n, k, p)

    print nx.info(G)
    ND, ND_lambda = ECT.get_number_of_driver_nodes(G)
    ND, driverNodes = ECT.get_driver_nodes(G)

    degrees = []
    betweenness = []

    tot_degree = nx.degree_centrality(G)
    tot_betweenness = nx.betweenness_centrality(G,weight=None)

    for node in driverNodes:
        degrees.append(tot_degree[node])
        betweenness.append(tot_betweenness[node])

    with open("results/driver_degree_WS.txt", "w") as f:
        for x in degrees:
            print >> f, x
    with open("results/driver_betweenness_WS.txt", "w") as f:
        for x in betweenness:
            print >> f, x

    with open("results/tot_degree_WS.txt", "w") as f:
        for key, value in tot_degree.iteritems():
            print >> f, value

    with open("results/tot_betweenness_WS.txt", "w") as f:
        for key, value in tot_betweenness.iteritems():
            print >> f, value
开发者ID:python27,项目名称:NetworkControllability,代码行数:34,代码来源:Degree_Betweenness_correlation.py


示例15: simplify_edges

def simplify_edges(G):
    nodes = []
    print "Compacting nodes of degree 2"

    for n in G.nodes():
        if G.degree(n) == 2:
            nodes.append(n)
        G.node[n]['pos'] = n

    nodes = list(set(nodes))

    print "Simplifying an estimated %i nodes...."%len(nodes)
    while nodes:
        while nodes:
            nodes = list(set(nodes))
            n = nodes.pop()
            neighbors = G.neighbors(n)
            G.remove_node(n)
            G.add_path(neighbors)
            for nn in neighbors:
                if G.degree(n) == 2:
                    nodes.append(nn)

        for n in G.nodes():
            if G.degree(n) == 2:
                nodes.append(n)
        nodes = list(set(nodes))

    G = max(nx.connected_component_subgraphs(G), key=len)
    print nx.info(G)
    #return G
    for n in G.nodes():
        G.node[n]['pos'] = n
开发者ID:argenos,项目名称:ros_multirobot,代码行数:33,代码来源:map.py


示例16: get_distance_dict

def get_distance_dict(filename):
    g = nx.read_edgelist(filename)
    print "Read in edgelist file ", filename
    print nx.info(g)
    path_length = nx.all_pairs_shortest_path_length(g)
    print len(path_length.keys())
    print path_length
开发者ID:tsaxena,项目名称:Tripti_SNA,代码行数:7,代码来源:recommend.py


示例17: main111

def main111():
  if 1:
    G = nx.read_edgelist(infname)
    print nx.info(G)
    # Graph adj matix
    A = nx.to_scipy_sparse_matrix(G)
    print type(A)
    from scipy import sparse, io
    io.mmwrite("Results/test.mtx", A)
    exit()
    # write to disk clustering coeffs for this graph
    snm.get_clust_coeff([G], 'orig', 'mmonth')
    # write to disk egienvalue
    snm.network_value_distribution([G], [], 'origMmonth')

  if 0:
    edgelist = np.loadtxt(infname, dtype=str, delimiter='\t')
    print edgelist[:4]
    idx = np.arange(len(edgelist))
    np.random.shuffle(idx)
    subsamp_edgelist = edgelist[idx[:100]]
    G = nx.Graph()
    G.add_edges_from([(long(x), long(y)) for x, y in subsamp_edgelist])

  # visualize this graph
  # visualize_graph(G)
  exit()

  G = nx.Graph()
  G.add_edges_from([(long(x), long(y)) for x, y in edgelist])
  print nx.info(G)
  print 'Done'
开发者ID:abitofalchemy,项目名称:ScientificImpactPrediction,代码行数:32,代码来源:procjson_tograph.py


示例18: main

def main():
    # Load Zachary data, randomly delete nodes, and report
    zachary=nx.Graph(nx.read_pajek("karate.net")) # Do not want graph in default MultiGraph format
    zachary.name="Original Zachary Data"
    print(nx.info(zachary))
    zachary_subset=rand_delete(zachary, 15) # Remove half of the structure
    zachary_subset.name="Randomly Deleted Zachary Data"
    print(nx.info(zachary_subset))
    
    # Create model, and simulate
    zachary_model=gmm.gmm(zachary_subset,R=karate_rule,T=node_ceiling_34)
    gmm.algorithms.simulate(zachary_model,4,poisson=False,new_name="Simulation from sample")  # Use tau=4 because data is so small (it's fun!)
    
    # Report and visualize
    print(nx.info(zachary_model.get_base()))
    fig=plt.figure(figsize=(30,10))
    fig.add_subplot(131)
    nx.draw_spring(zachary,with_labels=False,node_size=45,iterations=5000)
    plt.text(0.01,-0.1,"Original Karate Club",color="darkblue",size=20)
    fig.add_subplot(132)
    nx.draw_spring(zachary_subset,with_labels=False,node_size=45,iterations=5000)
    plt.text(0.01,-0.1,"Random sample of Karate Club",color="darkblue",size=20)
    fig.add_subplot(133)
    nx.draw_spring(zachary_model.get_base(),with_labels=False,node_size=45,iterations=5000)
    plt.text(0.01,-0.1,"Simulation from random sample",color="darkblue",size=20)
    plt.savefig("zachary_simulation.png")
开发者ID:drewconway,项目名称:GMM,代码行数:26,代码来源:zachary_regen.py


示例19: info

 def info(self , verbose = False):
     print "--------------Cloud_Reg_graph info:-----------------"
     print nx.info(self)
     ncloud = 0
     nreg = 0
     for node in self.nodes_iter():
         if isinstance(node, nx.DiGraph): 
             ncloud += 1
             if node.number_of_nodes() == 0:
                 if verbose: print "cloud ::\n empty cloud\n"
                 continue
             if verbose: print "cloud ::"
             for prim in node.nodes_iter():
                 assert isinstance(prim, cc.circut_module), "cloud type %s " % str(prim.__class__)              
                 if verbose: prim.__print__()
         else:
             assert isinstance(node ,cc.circut_module) ,"reg type %s " % str(node.__class__)
             if verbose:
                 print "fd ::"                
                 node.__print__()                
             nreg += 1
     assert  len(self.big_clouds) == ncloud ,"%d %d"%(len(self.big_clouds),ncloud)
     print "Number of cloud:%d " % ncloud
     print "Number of register:%d" % nreg
     print "--------------------------------------"
开发者ID:weco2015,项目名称:netlist_util,代码行数:25,代码来源:crgraph.py


示例20: get_k_core

def get_k_core(reviews_path,k_val):
	# Report start of process
	print "=================================="
	print "EXTRACTING K-CORE OF PID GRAPH    "
	print "=================================="

	print "AT STEP #1: Determine which reviewer reviewed which products"
#	with ufora.remotely.downloadAll():
	(PID_to_lines,PID_to_reviewerID) = get_PID_facts(reviews_path)	

	print "At STEP #2: Created weighted edges"
#	with ufora.remotely.downloadAll():
	weighted_edges = get_weighted_edges(PID_to_reviewerID)

	print "AT STEP #3: Create PID graph structure"
#	with ufora.remotely.downloadAll():
	PID_graph = create_graph(PID_to_reviewerID,weighted_edges)	
	print nx.info(PID_graph)	

	print "AT STEP #4: Extracting K-core"
#	with ufora.remotely.downloadAll():
	k_core_graph = nx.k_core(PID_graph,k_val)
	print nx.info(k_core_graph)
	pickle.dump(graph,open("graph",'w'))
	
	print "DONE!"
开发者ID:words-sdsc,项目名称:recsys,代码行数:26,代码来源:extractKCore.py



注:本文中的networkx.info函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.intersection函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.hits函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap