本文整理汇总了Python中networkx.density函数的典型用法代码示例。如果您正苦于以下问题:Python density函数的具体用法?Python density怎么用?Python density使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了density函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: classify
def classify(request, pk):
#gets object based on id given
graph_file = get_object_or_404(Document, pk=pk)
#reads file into networkx graph based on extension
if graph_file.extension() == ".gml":
G = nx.read_gml(graph_file.uploadfile)
else:
G = nx.read_gexf(graph_file.uploadfile)
#closes file so we can delete it
graph_file.uploadfile.close()
#loads the algorithm and tests the algorithm against the graph
g_json = json_graph.node_link_data(G)
#save graph into json file
with open(os.path.join(settings.MEDIA_ROOT, 'graph.json'), 'w') as graph:
json.dump(g_json, graph)
with open(os.path.join(settings.MEDIA_ROOT, 'rf_classifier.pkl'), 'rb') as malgo:
algo_loaded = pickle.load(malgo, encoding="latin1")
dataset = np.array([G.number_of_nodes(), G.number_of_edges(), nx.density(G), nx.degree_assortativity_coefficient(G), nx.average_clustering(G), nx.graph_clique_number(G)])
print (dataset)
#creates X to test against
X = dataset
prediction = algo_loaded.predict(X)
graph_type = check_prediction(prediction)
graph = GraphPasser(G.number_of_nodes(), G.number_of_edges(), nx.density(G), nx.degree_assortativity_coefficient(G), nx.average_clustering(G), nx.graph_clique_number(G))
#gives certain variables to the view
return render(
request,
'classification/classify.html',
{'graph': graph, 'prediction': graph_type}
)
开发者ID:Kaahan,项目名称:networkclassification,代码行数:34,代码来源:views.py
示例2: show_network_metrics
def show_network_metrics(G):
'''
Print the local and global metrics of the network
'''
print(nx.info(G))
# density
print("Density of the network")
print(nx.density(G))
# average betweeness
print("Average betweeness of the network")
print(np.sum(list(nx.betweenness_centrality(G).values()))/len(nx.betweenness_centrality(G)))
# Average clustering coefficient
print("Average clustering coefficient:")
print(nx.average_clustering(G))
#create metrics dataframe
by_node_metrics = pd.DataFrame({"Betweeness_Centrality":nx.betweenness_centrality(G),"Degree_Centrality":nx.degree_centrality(G),
"Clustering_Coefficient":nx.clustering(G), "Triangels":nx.algorithms.cluster.triangles(G)})
print(by_node_metrics)
by_node_metrics.to_excel("metrics.xlsx")
开发者ID:tyty233,项目名称:Music-Classification-and-Ranking-Analysis,代码行数:25,代码来源:networkv2.py
示例3: gen_network
def gen_network(graph,machines,basedata):
""" Generates an LLD network from a graph
distributing participants in a list of machines
"""
network = ET.Element('network')
#network.set('type',graphtype)
network.set('participants',str(graph.number_of_nodes()))
network.set('edges',str(graph.size()))
network.set('density',str(NX.density(graph)))
network.set('connected',str(NX.is_weakly_connected(graph)))
network.set('stronglyconnected',str(NX.is_strongly_connected(graph)))
for node in graph.nodes_iter():
nodelement = ET.SubElement(network,'participant')
nodelement.set('id','participant'+str(node))
hostelem = ET.SubElement(nodelement,'host')
#hostelem.text = 'node'+str(int(node) % len(machines))
hostelem.text = machines[int(node) % len(machines)]
portelem = ET.SubElement(nodelement,'port')
portelem.text = str(20500+int(node))
baseelem = ET.SubElement(nodelement,'basedata')
baseelem.text = basedata
nodelement.append(gen_dynamic())
for source in gen_sources(graph,node):
nodelement.append(source)
return network
开发者ID:ldibanyez,项目名称:livelinkeddata,代码行数:27,代码来源:lldgen.py
示例4: ltDecomposeTestBatFull
def ltDecomposeTestBatFull(dsName, path, outfile, cd, wccOnly, revEdges, undir, diaF, fillF):
origNet = loadNw(dsName, path, cd, wccOnly, revEdges, undir)
prodNet = origNet
# prodNet = copy.deepcopy(origNet)
# print("dc")
outfile = open(path + outfile + ".csv", "w")
intFlag = False
print("NW-WIDE MEASURES:\n")
nodeStr = str(origNet.number_of_nodes())
edgeStr = str(origNet.number_of_edges())
avgDeg = str(float(origNet.number_of_edges()) / float(origNet.number_of_nodes()))
dens = str(nx.density(origNet))
avgCl = "--"
# avgCl = str(nx.average_clustering(origNet))
if diaF:
print(" Starting dia calc")
diameter = str(nx.diameter(origNet))
print(" --> done w. dia calc")
else:
diameter = "---"
# outfile.write("Dataset,NumNodes,NumEdges,avgDeg,dens,avgCl,diameter\n")
# outfile.write(dsName+","+nodeStr+","+edgeStr+","+avgDeg+","+dens+","+avgCl+","+diameter+"\n")
# if fillF:
# print("FULL THRESH TEST\n")
# outfile.write("Dataset,ThreshType,ThreshVal,PercSize,NumNodes,NumEdges,TimeAlg,TimeAlgAndSetup,Check\n")
# thresh=1.0
# outfile.write(ltDecomposeNoSetWithCheck(prodNet,thresh,dsName,intFlag,origNet))
outfile.close()
print("Done.")
开发者ID:joeyh321,项目名称:ORCA,代码行数:33,代码来源:ltDecomp3.py
示例5: updateGraphStats
def updateGraphStats(self, graph):
origgraph = graph
if nx.is_connected(graph):
random = 0
else:
connectedcomp = nx.connected_component_subgraphs(graph)
graph = max(connectedcomp)
if len(graph) > 1:
pathlength = nx.average_shortest_path_length(graph)
else:
pathlength = 0
# print graph.nodes(), len(graph), nx.is_connected(graph)
stats = {
"radius": nx.radius(graph),
"density": nx.density(graph),
"nodecount": len(graph.nodes()),
"center": nx.center(graph),
"avgcluscoeff": nx.average_clustering(graph),
"nodeconnectivity": nx.node_connectivity(graph),
"components": nx.number_connected_components(graph),
"avgpathlength": pathlength
}
# print "updated graph stats", stats
return stats
开发者ID:hopeatina,项目名称:flask_heroku,代码行数:29,代码来源:simulator.py
示例6: NetStats
def NetStats(G):
return { 'radius': nx.radius(G),
'diameter': nx.diameter(G),
'connected_components': nx.number_connected_components(G),
'density' : nx.density(G),
'shortest_path_length': nx.shortest_path_length(G),
'clustering': nx.clustering(G)}
开发者ID:CSB-IG,项目名称:NinNX,代码行数:7,代码来源:__init__.py
示例7: info
def info(self, graph, title=None):
degree = sorted(nx.degree(graph).items(), key=lambda x: x[1], reverse=True)
print('Highest degree nodes: ')
if not title:
for (node, value) in degree:
print('{}:{}'.format(self.singer_dict[int(node)].split('|')[0], str(value)))
if value < 90:
break
avg = (0.0 + sum(value for (node, value) in degree)) / (0.0 + len(degree))
(max_node, max_value) = degree[0]
(min_node, min_value) = degree[len(degree) - 1]
inf = list()
if not title:
inf.append('Number of nodes: {0}'.format(nx.number_of_nodes(graph)))
inf.append('Number of edges: {0}'.format(nx.number_of_edges(graph)))
inf.append('Is connected: {0}'.format(nx.is_connected(graph)))
if title:
inf.append(title)
inf.append('Degree:')
inf.append('Avg: {0}'.format(round(avg, 4)))
inf.append('Max: {1} ({0})'.format(max_node, max_value))
inf.append('Min: {1} ({0})'.format(min_node, min_value))
inf.append('Density: {}'.format(round(nx.density(graph), 4)))
return inf
开发者ID:vslovik,项目名称:ARS,代码行数:25,代码来源:analyzer.py
示例8: plot_distribution
def plot_distribution(distribution_type,legend,graph,list_communities,out=None):
x = [i for i in range(0,len(list_communities[0]))]
for communities in list_communities:
if distribution_type.lower() == "nodes":
y = list(map(len,communities))
else:
y = []
for l in communities:
H = graph.subgraph(l)
if distribution_type.lower() == "density":
y.append(nx.density(H))
elif distribution_type.lower() == "transitivity":
y.append(nx.transitivity(H))
else:
return None
plt.plot(x,y,linewidth=2,alpha=0.8)
#plt.yscale("log")
plt.legend(legend, loc='upper left')
plt.xlabel("Comunity ID")
plt.ylabel(distribution_type)
if out == None:
plt.show()
else:
plt.savefig(out+".svg",bbox_inches="tight")
plt.close()
开发者ID:pigna90,项目名称:lastfm_network_analysis,代码行数:27,代码来源:community_discovery.py
示例9: calGraph
def calGraph(infile, mode = 1):
#init Parameter
inputpath = 'edge_list/'
outputpath = 'network_output/'
n = mode
Data_G = inputpath+infile+'_'+str(n)+'.edgelist'
#init Graph
G = nx.read_edgelist(Data_G, create_using=nx.DiGraph())
GU = nx.read_edgelist(Data_G)
#basci info
print nx.info(G),'\n', nx.info(GU)
average_degree = float(sum(nx.degree(G).values()))/len(G.nodes())
print 'average degree :', average_degree
degree_histogram = nx.degree_histogram(G)
print 'degree histogram max :', degree_histogram[1]
desity = nx.density(G)
print 'desity :', desity
#Approximation
#Centrality
degree_centrality = nx.degree_centrality(G)
print 'degree centrality top 10 !', sorted_dict(degree_centrality)[:2]
out_degree_centrality = nx.out_degree_centrality(G)
print 'out degree centrality top 10 !', sorted_dict(out_degree_centrality)[:2]
开发者ID:carlzhangxuan,项目名称:For_Recruit,代码行数:25,代码来源:L3_NetworkX_basic.py
示例10: print_info
def print_info(G):
#info prints name, type, number of nodes and edges, and average degree already
print(nx.info(G))
print "Density: ", nx.density(G)
print "Number of connected components: ", nx.number_connected_components(G)
all_degree_cent = nx.degree_centrality(G)
all_bet_cent = nx.betweenness_centrality(G)
all_close_cent = nx.closeness_centrality(G)
oldest = []
agerank = 0
names = []
print ("Node, Degree Centrality, Betweenness Centrality, Closeness Centrality:")
for x in range(G.number_of_nodes()):
names.append(G.nodes(data=True)[x][1]['label'])
if G.nodes(data=True)[x][1]['agerank'] >= agerank:
if G.nodes(data=True)[x][1]['agerank'] != agerank:
oldest = []
agerank = G.nodes(data=True)[x][1]['agerank']
oldest.append(G.nodes(data=True)[x][1])
print G.nodes(data=True)[x][1]['label'],' %.2f' % all_degree_cent.get(x),\
' %.2f' % all_bet_cent.get(x),\
' %.2f' % all_close_cent.get(x)
print "Oldest facebook(s): ", ', '.join([x['label'] for x in oldest])
return names
开发者ID:lucasbibiano,项目名称:devdist-facebook,代码行数:32,代码来源:devdist.py
示例11: calculateDensity
def calculateDensity(Graph, community):
result = []
for com in community:
subg = Graph.subgraph(com[1:])
# print subg.nodes()
result.append(nx.density(subg))
return result
开发者ID:shawnzhesun,项目名称:Collecting-Hub-Modeling-for-Community-Detection,代码行数:7,代码来源:fb_main.py
示例12: get_single_network_measures
def get_single_network_measures(G, thr):
f = open(out_prfx + 'single_network_measures.dat', 'a')
N = nx.number_of_nodes(G)
L = nx.number_of_edges(G)
D = nx.density(G)
cc = nx.average_clustering(G)
compon = nx.number_connected_components(G)
Con_sub = nx.connected_component_subgraphs(G)
values = []
values_2 =[]
for node in G:
values.append(G.degree(node))
ave_deg = float(sum(values)) / float(N)
f.write("%f\t%d\t%f\t%f\t%f\t%f\t" % (thr, L, D, cc, ave_deg, compon))
#1. threshold, 2. edges, 3. density 4.clustering coefficient
#5. average degree, 6. number of connected components
for i in range(len(Con_sub)):
if nx.number_of_nodes(Con_sub[i])>1:
values_2.append(nx.average_shortest_path_length(Con_sub[i]))
if len(values_2)==0:
f.write("0.\n")
else:
f.write("%f\n" % (sum(values_2)/len(values_2)))
#7. shortest pathway
f.close()
开发者ID:rudimeier,项目名称:MSc_Thesis,代码行数:30,代码来源:sb_randomization.py
示例13: make_ground_truth
def make_ground_truth():
edge_map, venue_edge_map, node_map = map_for_nx(CITEMAP_FILE)
components = []
for conference in venue_edge_map.keys():
edges = venue_edge_map[conference]
graph = nx.Graph()
edge_ids = [(int(edge.source), int(edge.target)) for edge in edges]
graph.add_edges_from(edge_ids)
median_degree = np.median(graph.degree(graph.nodes()).values())
for component in nx.connected_components(graph):
if len(component) >= MIN_SIZE:
community = graph.subgraph(component)
v_count = len(community.nodes())
fomd = sum([1 for v in component if len(set(graph.neighbors(v)) & set(component)) > median_degree]) / v_count
internal_density = nx.density(community)
components.append((component, fomd, internal_density))
components = sorted(components, key=lambda x: x[1], reverse=True)[:3000]
components = sorted(components, key=lambda x: x[2], reverse=True)[:int(0.75 * len(components))]
f_id = open(TRUTH_ID_FILE, 'wb')
f_name = open(TRUTH_NAME_FILE, 'wb')
for component, fomd, internal_density in components:
component = map(str, component)
author_names = ", ".join([node_map[node_id].name for node_id in component])
author_ids = ", ".join(component)
f_id.write(author_ids + "\n")
f_name.write(author_names + "\n")
f_id.close()
f_name.close()
开发者ID:ai-se,项目名称:citemap,代码行数:28,代码来源:truther.py
示例14: test_fast_versions_properties_threshold_graphs
def test_fast_versions_properties_threshold_graphs(self):
cs='ddiiddid'
G=nxt.threshold_graph(cs)
assert_equal(nxt.density('ddiiddid'), nx.density(G))
assert_equal(sorted(nxt.degree_sequence(cs)),
sorted(G.degree().values()))
ts=nxt.triangle_sequence(cs)
assert_equal(ts, list(nx.triangles(G).values()))
assert_equal(sum(ts) // 3, nxt.triangles(cs))
c1=nxt.cluster_sequence(cs)
c2=list(nx.clustering(G).values())
assert_almost_equal(sum([abs(c-d) for c,d in zip(c1,c2)]), 0)
b1=nx.betweenness_centrality(G).values()
b2=nxt.betweenness_sequence(cs)
assert_true(sum([abs(c-d) for c,d in zip(b1,b2)]) < 1e-14)
assert_equal(nxt.eigenvalues(cs), [0, 1, 3, 3, 5, 7, 7, 8])
# Degree Correlation
assert_true(abs(nxt.degree_correlation(cs)+0.593038821954) < 1e-12)
assert_equal(nxt.degree_correlation('diiiddi'), -0.8)
assert_equal(nxt.degree_correlation('did'), -1.0)
assert_equal(nxt.degree_correlation('ddd'), 1.0)
assert_equal(nxt.eigenvalues('dddiii'), [0, 0, 0, 0, 3, 3])
assert_equal(nxt.eigenvalues('dddiiid'), [0, 1, 1, 1, 4, 4, 7])
开发者ID:NikitaVAP,项目名称:pycdb,代码行数:28,代码来源:test_threshold.py
示例15: compute
def compute(self, model):
if self.show_progress is True:
print("Calculating Number of Hosts")
self.stats['Number of hosts'] = number_of_nodes(model[0])
if self.show_progress is True:
print("Calculating Risk")
self.stats['Risk'] = model.risk
if self.show_progress is True:
print("Calculating Cost")
self.stats['Cost'] = model.cost
if self.show_progress is True:
print("Calculating Mean of Path lengths")
self.stats['Mean of attack path lengths'] = model[0].mean_path_length()
if self.show_progress is True:
print("Calculating Mode of Path lengths")
self.stats['Mode of attack path lengths'] = model[0].mode_path_length()
if self.show_progress is True:
print("Calculating Standard deviation")
self.stats['Standard Deviation of attack path lengths'] = \
model[0].stdev_path_length()
if self.show_progress is True:
print("Calculating attack path length")
self.stats['Shortest attack path length'] = model[0].shortest_path_length()
if self.show_progress is True:
print("Calculating Return on Attack")
self.stats['Return on Attack'] = model[0].return_on_attack()
if self.show_progress is True:
print("Calculating Density")
self.stats['Density'] = density(model[0])
self.stats['Probability of attack success'] = model[0].probability_attack_success()
self.compute_status = True
开发者ID:whistlebee,项目名称:harmat,代码行数:31,代码来源:reports.py
示例16: pformat
def pformat(self):
"""Pretty formats your graph into a string.
This pretty formatted string representation includes many useful
details about your graph, including; name, type, frozeness, node count,
nodes, edge count, edges, graph density and graph cycles (if any).
"""
lines = []
lines.append("Name: %s" % self.name)
lines.append("Type: %s" % type(self).__name__)
lines.append("Frozen: %s" % nx.is_frozen(self))
lines.append("Nodes: %s" % self.number_of_nodes())
for n in self.nodes_iter():
lines.append(" - %s" % n)
lines.append("Edges: %s" % self.number_of_edges())
for (u, v, e_data) in self.edges_iter(data=True):
if e_data:
lines.append(" %s -> %s (%s)" % (u, v, e_data))
else:
lines.append(" %s -> %s" % (u, v))
lines.append("Density: %0.3f" % nx.density(self))
cycles = list(nx.cycles.recursive_simple_cycles(self))
lines.append("Cycles: %s" % len(cycles))
for cycle in cycles:
buf = six.StringIO()
buf.write("%s" % (cycle[0]))
for i in range(1, len(cycle)):
buf.write(" --> %s" % (cycle[i]))
buf.write(" --> %s" % (cycle[0]))
lines.append(" %s" % buf.getvalue())
return os.linesep.join(lines)
开发者ID:Dynavisor,项目名称:taskflow,代码行数:31,代码来源:graph.py
示例17: creation
def creation(k):
global RGG,pos
tmp_dense=0.0
RGG=nx.Graph()
RGG.add_nodes_from(range(N))
pos={}
dense=net_creation(k)
for i in range(N):
x=round(rnd.random(),2)
y=round(rnd.random(),2)
#Allocate the random x,y coordinates
RGG.node[i]['pos']=[x,y]
pos[i]=RGG.node[i]['pos']
for i in range(N-1):
for j in range(i+1,N):
if euclidean_dist(i,j)<R:
RGG.add_edge(i,j)
tmp_dense=nx.density(RGG)
if tmp_dense>=dense:
break
if tmp_dense>=dense:
break
开发者ID:kateBaou,项目名称:Dynamic_Social_Networks,代码行数:25,代码来源:RGGpickle.py
示例18: gpn_stats
def gpn_stats(genes, gpn, version):
LOGGER.info("Computing GPN statistics")
nodes = sorted(gpn.nodes_iter())
components = sorted(nx.connected_components(gpn), key=len, reverse=True)
ass = nx.degree_assortativity_coefficient(gpn)
deg = [gpn.degree(node) for node in nodes]
stats = pd.DataFrame(data={
"version": version,
"release": pd.to_datetime(RELEASE[version]),
"num_genes": len(genes),
"num_nodes": len(nodes),
"num_links": gpn.size(),
"density": nx.density(gpn),
"num_components": len(components),
"largest_component": len(components[0]),
"assortativity": ass,
"avg_deg": mean(deg),
"hub_deg": max(deg)
}, index=[1])
stats["release"] = pd.to_datetime(stats["release"])
dists = pd.DataFrame(data={
"version": version,
"release": [pd.to_datetime(RELEASE[version])] * len(nodes),
"node": [node.unique_id for node in nodes],
"degree": deg,
})
return (stats, dists)
开发者ID:Midnighter,项目名称:pyorganism,代码行数:27,代码来源:store_network_statistics.py
示例19: run_main
def run_main(file):
NumberOfStations=465
print file
adjmatrix = np.loadtxt(file,delimiter=' ',dtype=np.dtype('int32'))
# for i in range (0,NumberOfStations):
# if(adjmatrix[i,i]==1):
# print "posicion: ["+str(i)+","+str(i)+"]"
g = nx.from_numpy_matrix(adjmatrix, create_using = nx.MultiGraph())
degree = g.degree()
density = nx.density(g)
degree_centrality = nx.degree_centrality(g)
clossness_centrality = nx.closeness_centrality(g)
betweenless_centrality = nx.betweenness_centrality(g)
print degree
print density
print degree_centrality
print clossness_centrality
print betweenless_centrality
#nx.draw(g)
# np.savetxt(OutputFile, Matrix, delimiter=' ',newline='\n',fmt='%i')
开发者ID:Joan93,项目名称:BigData,代码行数:25,代码来源:AdjMatrix_Analisys.py
示例20: __init__
def __init__(self, graph, slow_stuff = False):
graph.info()
# paolo - 20070919 - computing also the strongly connected
# components directly on the directed graph. Changing a
# directed graph into an undirected usually destroys a lot of
# its structure and meaning. Let see. while in the published
# API there is a method
# strongly_connected_component_subgraphs(graph), I don't have it
# on my machine (probably I have an older networkx version),
# so for now I commented the following code. the method
# strongly_connected_component_subgraphs(graph) was added on
# 07/21/07. See https://networkx.lanl.gov/changeset/640 . On
# my machine I have "python-networkx/feisty uptodate 0.32-2"
# while on networkx svn there is already version 0.35.1
if False:
self.strongconcom_subgraphs = component.strongly_connected_component_subgraphs(graph)
strongconcom_subgraph_size = map(len, self.strongconcom_subgraphs)
print "size of largest strongly connected components:",
print ", ".join(map(str, strongconcom_subgraph_size[:10])), "..."
print "%nodes in largest strongly connected component:",
print 1.0 * strongconcom_subgraph_size[0] / len(graph)
undir_graph = graph.to_undirected()
self.concom_subgraphs = component.connected_component_subgraphs(undir_graph)
concom_subgraph_size = map(len, self.concom_subgraphs)
print "size of largest connected components:",
print ", ".join(map(str, concom_subgraph_size[:10])), "..."
print "%nodes in largest connected component:",
print 1.0 * concom_subgraph_size[0] / len(graph)
#only work on connected graphs, maybe we could run it on the
#largest strongly connected component.
#print "diameter:", distance.diameter(G)
#print "radius:", distance.radius(graph)
print "density:", networkx.density(graph)
print "degree histogram:", networkx.degree_histogram(graph)[:15]
print "average_clustering:", cluster.average_clustering(graph)
print "transitivity:", cluster.transitivity(graph)
if slow_stuff:
#not yet in my networkx revision -- try try except
print "number_of_cliques", cliques.number_of_cliques(graph)
"""this returns a dict with the betweenness centrality of
every node, maybe we want to compute the average
betweenness centrality but before it is important to
understand which measures usually are usually reported in
papers as peculiar for capturing the characteristics and
structure of a directed graph."""
print "betweenness_centrality:",
print centrality.betweenness_centrality(graph)
开发者ID:SuperbBob,项目名称:trust-metrics,代码行数:60,代码来源:analysis.py
注:本文中的networkx.density函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论