本文整理汇总了Python中networkx.average_shortest_path_length函数的典型用法代码示例。如果您正苦于以下问题:Python average_shortest_path_length函数的具体用法?Python average_shortest_path_length怎么用?Python average_shortest_path_length使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了average_shortest_path_length函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: compare_graphs
def compare_graphs(graph):
n = nx.number_of_nodes(graph)
m = nx.number_of_edges(graph)
k = np.mean(list(nx.degree(graph).values()))
erdos = nx.erdos_renyi_graph(n, p=m/float(n*(n-1)/2))
barabasi = nx.barabasi_albert_graph(n, m=int(k)-7)
small_world = nx.watts_strogatz_graph(n, int(k), p=0.04)
print(' ')
print('Compare the number of edges')
print(' ')
print('My network: ' + str(nx.number_of_edges(graph)))
print('Erdos: ' + str(nx.number_of_edges(erdos)))
print('Barabasi: ' + str(nx.number_of_edges(barabasi)))
print('SW: ' + str(nx.number_of_edges(small_world)))
print(' ')
print('Compare average clustering coefficients')
print(' ')
print('My network: ' + str(nx.average_clustering(graph)))
print('Erdos: ' + str(nx.average_clustering(erdos)))
print('Barabasi: ' + str(nx.average_clustering(barabasi)))
print('SW: ' + str(nx.average_clustering(small_world)))
print(' ')
print('Compare average path length')
print(' ')
print('My network: ' + str(nx.average_shortest_path_length(graph)))
print('Erdos: ' + str(nx.average_shortest_path_length(erdos)))
print('Barabasi: ' + str(nx.average_shortest_path_length(barabasi)))
print('SW: ' + str(nx.average_shortest_path_length(small_world)))
print(' ')
print('Compare graph diameter')
print(' ')
print('My network: ' + str(nx.diameter(graph)))
print('Erdos: ' + str(nx.diameter(erdos)))
print('Barabasi: ' + str(nx.diameter(barabasi)))
print('SW: ' + str(nx.diameter(small_world)))
开发者ID:feygina,项目名称:social-network-VK-analysis,代码行数:35,代码来源:functions_for_vk_users.py
示例2: testRun
def testRun(self):
sim = watts_strogatz.WS()
sim.run(
steps=self.starting_network_size,
rewiring_probability=self.rewiring_probability,
lattice_connections=self.lattice_connections,
starting_network_size=self.starting_network_size)
with sim.graph.handle as graph:
self.assertEqual(
self.comparison_graph.number_of_nodes(),
graph.number_of_nodes())
self.assertEqual(
self.comparison_graph.number_of_edges(),
graph.number_of_edges())
if False:
self.assertAlmostEqual(
nx.diameter(self.comparison_graph),
nx.diameter(graph),
delta=1.
)
self.assertAlmostEqual(
nx.average_shortest_path_length(self.comparison_graph),
nx.average_shortest_path_length(graph),
delta=1.
)
开发者ID:rik0,项目名称:pynetsym,代码行数:27,代码来源:test_sw.py
示例3: main
def main():
tempo_dir = "../corpus-local/tempo-txt"
file_regex = ".*\.txt"
G = build_graph(tempo_dir, file_regex)
"""
ccs = nx.clustering(G)
avg_clust = sum(ccs.values()) / len(ccs)
"""
print tempo_dir
print "\tAda " + str(len(G.nodes())) + " node."
print "\tAda " + str(len(G.edges())) + " edge."
print "\tClustering coefficient : " + str(nx.average_clustering(G))
print "\tAverage shortest path length"
for g in nx.connected_component_subgraphs(G):
print "\t\t" + str(nx.average_shortest_path_length(g))
kompas_dir = "../corpus-local/kompas-txt"
G = build_graph(kompas_dir, file_regex)
print kompas_dir
print "\tAda " + str(len(G.nodes())) + " node."
print "\tAda " + str(len(G.edges())) + " edge."
print "\tClustering coefficient : " + str(nx.average_clustering(G))
print "\tAverage shortest path length"
for g in nx.connected_component_subgraphs(G):
print "\t\t" + str(nx.average_shortest_path_length(g))
开发者ID:barliant,项目名称:krextown,代码行数:26,代码来源:graftempo.py
示例4: strongly_connected_components
def strongly_connected_components():
conn = sqlite3.connect("zhihu.db")
#following_data = pd.read_sql('select user_url, followee_url from Following where followee_url in (select user_url from User where agree_num > 50000) and user_url in (select user_url from User where agree_num > 50000)', conn)
following_data = pd.read_sql('select user_url, followee_url from Following where followee_url in (select user_url from User where agree_num > 10000) and user_url in (select user_url from User where agree_num > 10000)', conn)
conn.close()
G = nx.DiGraph()
cnt = 0
for d in following_data.iterrows():
G.add_edge(d[1][0],d[1][1])
cnt += 1
print 'links number:', cnt
scompgraphs = nx.strongly_connected_component_subgraphs(G)
scomponents = sorted(nx.strongly_connected_components(G), key=len, reverse=True)
print 'components nodes distribution:', [len(c) for c in scomponents]
#plot graph of component, calculate saverage_shortest_path_length of components who has over 1 nodes
index = 0
print 'average_shortest_path_length of components who has over 1 nodes:'
for tempg in scompgraphs:
index += 1
if len(tempg.nodes()) != 1:
print nx.average_shortest_path_length(tempg)
print 'diameter', nx.diameter(tempg)
print 'radius', nx.radius(tempg)
pylab.figure(index)
nx.draw_networkx(tempg)
pylab.show()
# Components-as-nodes Graph
cG = nx.condensation(G)
pylab.figure('Components-as-nodes Graph')
nx.draw_networkx(cG)
pylab.show()
开发者ID:TSOTDeng,项目名称:zhihu-analysis-python,代码行数:35,代码来源:zhihu_analysis.py
示例5: algorithm
def algorithm(w1,w2,w3,w4,G1,G2,G3,G4):
try:
cc=np.array([nx.average_clustering(G1,weight='weight'),nx.average_clustering(G2,weight='weight'),nx.average_clustering(G3,weight='weight'),nx.average_clustering(G4,weight='weight')])
spl=np.array([nx.average_shortest_path_length(G1,weight='weight'),nx.average_shortest_path_length(G2,weight='weight'),nx.average_shortest_path_length(G3,weight='weight'),nx.average_shortest_path_length(G4,weight='weight')])
nds=np.array([nx.number_of_nodes(G1),nx.number_of_nodes(G2),nx.number_of_nodes(G3),nx.number_of_nodes(G4)])
edgs= np.array([nx.number_of_edges(G1),nx.number_of_edges(G2),nx.number_of_edges(G3),nx.number_of_edges(G4)])
if valid(cc):
cc=stats.zscore(cc)
else:
cc=np.array([.1,.1,.1,.1])
cc= cc-min(cc)+.1
if valid(spl):
spl=stats.zscore(spl)
else:
spl=np.array([.1,.1,.1,.1])
spl= spl-min(spl)+.1
if valid(nds):
nds=stats.zscore(nds)
else:
nds=np.array([.1,.1,.1,.1])
nds = nds-min(nds)+.1
if valid(edgs):
edgs=stats.zscore(edgs)
else:
edgs=np.array([.1,.1,.1,.1])
edgs=edgs-min(edgs)+.1
r1=(w1*cc[0]+w2*spl[0]+w3*nds[0]+w4*edgs[0])*1000
r2=(w1*cc[1]+w2*spl[1]+w3*nds[1]+w4*edgs[1])*1000
r3=(w1*cc[2]+w2*spl[2]+w3*nds[2]+w4*edgs[2])*1000
r4=(w1*cc[3]+w2*spl[3]+w3*nds[3]+w4*edgs[3])*1000
d={'Player 1:': r1, 'Player 2:': r2,'Player 3:': r3, 'Player 4:': r4}
rank = sorted(d.items(), key=lambda x: x[1], reverse=True)
return ["USAU RANKINGS",str(rank[0][0])+ " " + str(int(rank[0][1])),str(rank[1][0])+" "+ str(int(rank[1][1])),str(rank[2][0])+" "+ str(int(rank[2][1])),str(rank[3][0])+" "+str(int(rank[3][1]))]
except:
return ["Unable to compute rankings! Need data","Player 1","Player 2","Player 3","Player 4"]
开发者ID:dagley11,项目名称:Garuda_Game,代码行数:35,代码来源:Graph.py
示例6: subcomponent_stats
def subcomponent_stats(self, g_bound=10):
for g in nx.connected_component_subgraphs(self.graph):
if g.order() < g_bound:
continue
print "g order: ", g.order()
print "g size: ", g.order()
print "average shortest path length: ", nx.average_shortest_path_length(g)
print "path length ratio: ", nx.average_shortest_path_length(g) / g.order()
print "clustering coeff: ", nx.average_clustering(g)
开发者ID:howonlee,项目名称:btw-graphs,代码行数:9,代码来源:sand.py
示例7: test_average_shortest_path
def test_average_shortest_path(self):
l=nx.average_shortest_path_length(self.cycle)
assert_almost_equal(l,2)
l=nx.average_shortest_path_length(self.cycle,weighted=True)
assert_almost_equal(l,2)
l=nx.average_shortest_path_length(nx.path_graph(5))
assert_almost_equal(l,2)
l=nx.average_shortest_path_length(nx.path_graph(5),weighted=True)
assert_almost_equal(l,2)
开发者ID:c0ns0le,项目名称:zenoss-4,代码行数:9,代码来源:test_generic.py
示例8: test_clustering
def test_clustering(size):
print("Barabasi-Albert:")
ba = networkx.barabasi_albert_graph(1000, 4)
print("Clustering: ", networkx.average_clustering(ba))
print("Average length: ", networkx.average_shortest_path_length(ba))
print("Watts-Strogatz:")
ws = networkx.watts_strogatz_graph(size, 4, 0.001)
print("Clustering: ", networkx.average_clustering(ws))
print("Average length: ", networkx.average_shortest_path_length(ws))
开发者ID:onesandzeroes,项目名称:Complexity,代码行数:9,代码来源:scale_free_net.py
示例9: test_weighted
def test_weighted(self):
G = nx.Graph()
nx.add_cycle(G, range(7), weight=2)
ans = nx.average_shortest_path_length(G, weight='weight')
assert_almost_equal(ans, 4)
G = nx.Graph()
nx.add_path(G, range(5), weight=2)
ans = nx.average_shortest_path_length(G, weight='weight')
assert_almost_equal(ans, 4)
开发者ID:jianantian,项目名称:networkx,代码行数:9,代码来源:test_generic.py
示例10: test_weighted_average_shortest_path
def test_weighted_average_shortest_path(self):
G=nx.Graph()
G.add_cycle(range(7),weight=2)
l=nx.average_shortest_path_length(G,weight=True)
assert_almost_equal(l,4)
G=nx.Graph()
G.add_path(range(5),weight=2)
l=nx.average_shortest_path_length(G,weight=True)
assert_almost_equal(l,4)
开发者ID:datachomper,项目名称:googleants,代码行数:9,代码来源:test_generic.py
示例11: gen_graph_stats
def gen_graph_stats (graph):
G = nx.read_graphml(graph)
stats = {}
edges, nodes = 0,0
for e in G.edges_iter(): edges += 1
for n in G.nodes_iter(): nodes += 1
stats['Edges'] = (edges,'The number of edges within the Graph')
stats['Nodes'] = (nodes, 'The number of nodes within the Graph')
print "%i edges, %i nodes" % (edges, nodes)
# Accessing the highest degree node
center, degree = sorted(G.degree().items(), key=itemgetter(1), reverse=True)[0]
stats['Center Node'] = ('%s: %0.5f' % (center,degree),'The center most node in the graph. Which has the highest degree')
hairball = nx.subgraph(G, [x for x in nx.connected_components(G)][0])
print "Average shortest path: %0.4f" % nx.average_shortest_path_length(hairball)
stats['Average Shortest Path Length'] = (nx.average_shortest_path_length(hairball), '')
# print "Center: %s" % G[center]
# print "Shortest Path to Center: %s" % p
print "Degree: %0.5f" % degree
stats['Degree'] = (degree,'The node degree is the number of edges adjacent to that node.')
print "Order: %i" % G.number_of_nodes()
stats['Order'] = (G.number_of_nodes(),'The number of nodes in the graph.')
print "Size: %i" % G.number_of_edges()
stats['Size'] = (G.number_of_edges(),'The number of edges in the graph.')
print "Clustering: %0.5f" % nx.average_clustering(G)
stats['Average Clustering'] = (nx.average_clustering(G),'The average clustering coefficient for the graph.')
print "Transitivity: %0.5f" % nx.transitivity(G)
stats['Transitivity'] = (nx.transitivity(G),'The fraction of all possible triangles present in the graph.')
part = community.best_partition(G)
# values = [part.get(node) for node in G.nodes()]
# nx.draw_spring(G, cmap = plt.get_cmap('jet'), node_color = values, node_size=30, with_labels=False)
# plt.show()
mod = community.modularity(part,G)
print "modularity: %0.5f" % mod
stats['Modularity'] = (mod,'The modularity of a partition of a graph.')
knn = nx.k_nearest_neighbors(G)
print knn
stats['K Nearest Neighbors'] = (knn,'the average degree connectivity of graph.\nThe average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degre')
return G, stats
开发者ID:neviim,项目名称:Georgetown-Capstone,代码行数:56,代码来源:Graph_stats.py
示例12: analyze_graph
def analyze_graph(G):
"""
Computes various network metrics for a graph G,
returns a dictionary:
values =
{
"charcount" = len(G.nodes()),
"edgecount" = len(G.edges()),
"maxdegree" = max(G.degree().values()) or "NaN" if ValueError: max() arg is an empty sequence,
"avgdegree" = sum(G.degree().values())/len(G.nodes()) or "NaN" if ZeroDivisionError: division by zero,
"density" = nx.density(G) or "NaN",
"avgpathlength" = nx.average_shortest_path_length(G) or "NaN" if NetworkXError: Graph is not connected,
then it tries to get the average_shortest_path_length from the giant component,
"avgpathlength" = nx.average_shortest_path_length(max(nx.connected_component_subgraphs(G), key=len))
except NetworkXPointlessConcept: ('Connectivity is undefined ', 'for the null graph.'),
"clustering_coefficient" = nx.average_clustering(G) or "NaN" if ZeroDivisionError: float division by zero
}
"""
values = {}
values["charcount"] = len(G.nodes())
values["edgecount"] = len(G.edges())
try:
values["maxdegree"] = max(G.degree().values())
except:
print("ValueError: max() arg is an empty sequence")
values["maxdegree"] = "NaN"
try:
values["avgdegree"] = sum(G.degree().values())/len(G.nodes())
except:
print("ZeroDivisionError: division by zero")
values["avgdegree"] = "NaN"
try:
values["density"] = nx.density(G)
except:
values["density"] = "NaN"
try:
values["avgpathlength"] = nx.average_shortest_path_length(G)
except nx.NetworkXError:
print("NetworkXError: Graph is not connected.")
try:
values["avgpathlength"] = nx.average_shortest_path_length(max(nx.connected_component_subgraphs(G), key=len))
except:
values["avgpathlength"] = "NaN"
except:
print("NetworkXPointlessConcept: ('Connectivity is undefined ', 'for the null graph.')")
values["avgdegree"] = "NaN"
try:
values["clustering_coefficient"] = nx.average_clustering(G)
except:
print("ZeroDivisionError: float division by zero")
values["clustering_coefficient"] = "NaN"
return values
开发者ID:cligs,项目名称:toolbox,代码行数:56,代码来源:run_dramavis.py
示例13: average_shortest_path
def average_shortest_path(self):
undirected = self.graph.to_undirected()
paths = []
try:
paths.append(nx.average_shortest_path_length(self.graph))
except nx.networkx.exception.NetworkXError:
for i, g in enumerate(nx.connected_component_subgraphs(undirected)):
if len(g.nodes()) != 1:
paths.append(nx.average_shortest_path_length(g))
return paths
开发者ID:LoreDema,项目名称:Text_to_graph,代码行数:10,代码来源:Graph.py
示例14: get_small_worldness
def get_small_worldness(filename):
import networkx as nx
threshold = 0
f = open(filename[:-4]+'_small_worldness.dat','w')
for i in range(0,101):
threshold = float(i)/100
G = get_threshold_matrix(filename, threshold)
ER_graph = nx.erdos_renyi_graph(nx.number_of_nodes(G), nx.density(G))
cluster = nx.average_clustering(G)
ER_cluster = nx.average_clustering(ER_graph)
transi = nx.transitivity(G)
ER_transi = nx.transitivity(ER_graph)
print 'threshold: %f, average cluster coefficient: %f, random nw: %f, transitivity: %f, random nw: %f' %(threshold, cluster, ER_cluster, transi, ER_transi)
f.write("%f\t%f\t%f" % (threshold, cluster, ER_cluster))
components = nx.connected_component_subgraphs(G)
ER_components = nx.connected_component_subgraphs(ER_graph)
values = []
ER_values = []
for i in range(len(components)):
if nx.number_of_nodes(components[i]) > 1:
values.append(nx.average_shortest_path_length(components[i]))
for i in range(len(ER_components)):
if nx.number_of_nodes(ER_components[i]) > 1:
ER_values.append(nx.average_shortest_path_length(ER_components[i]))
if len(values) == 0:
f.write("\t0.")
else:
f.write("\t%f" % (sum(values)/len(values)))
if len(ER_values) == 0:
f.write("\t0.")
else:
f.write("\t%f" % (sum(ER_values)/len(ER_values)))
f.write("\t%f\t%f" % (transi, ER_transi))
if (ER_cluster*sum(values)*len(values)*sum(ER_values)*len(ER_values)) >0 :
S_WS = (cluster/ER_cluster) / ((sum(values)/len(values)) / (sum(ER_values)/len(ER_values)))
else:
S_WS = 0.
if (ER_transi*sum(values)*len(values)*sum(ER_values)*len(ER_values)) >0 :
S_Delta = (transi/ER_transi) / ((sum(values)/len(values)) / (sum(ER_values)/len(ER_values)))
else:
S_Delta = 0.
f.write("\t%f\t%f" % (S_WS, S_Delta))
f.write("\n")
f.close()
print "1:threshold 2:cluster-coefficient 3:random-cluster-coefficient 4:shortest-pathlength 5:random-shortest-pathlength 6:transitivity 7:random-transitivity 8:S-Watts-Strogatz 9:S-transitivity"
开发者ID:sheyma,项目名称:lab_rot_berlin,代码行数:55,代码来源:threshold_matrix.py
示例15: evaluator
def evaluator(G):
calc = list()
ev1 = nx.average_clustering(G)
if nx.is_connected(G) == True:
ev2 = nx.average_shortest_path_length(G)
else:
for sub in nx.connected_component_subgraphs(G):
if len(sub.nodes()) > 1:
calc.append(nx.average_shortest_path_length(sub))
ev2 = sum(calc)/len(calc)
print 'Average clustering and average shortest path length coefficients:', (ev1, ev2)
开发者ID:izabelcavassim,项目名称:Proteomics,代码行数:11,代码来源:network.py
示例16: get_average_shortest_path_len
def get_average_shortest_path_len(syst, mat):
graph = nx.from_numpy_matrix(syst.jacobian)
try:
spl = nx.average_shortest_path_length(graph)
except nx.exception.NetworkXError:
try:
spl = np.mean([nx.average_shortest_path_length(g) \
for g in nx.connected_component_subgraphs(graph)])
except ZeroDivisionError:
return None
return spl
开发者ID:kpj,项目名称:SDEMotif,代码行数:11,代码来源:processing.py
示例17: make_graph
def make_graph(self,save_graph=True):
graph = nx.DiGraph()
all_tweets = [tweet for page in self.results for tweet in page['results']]
for tweet in all_tweets:
rt_sources = self.get_rt_sources(tweet["text"])
if not rt_sources: continue
for rt_source in rt_sources:
graph.add_edge(rt_source, tweet["from_user"], {"tweet_id": tweet["id"]})
#--Calculate graph summary statistics
if nx.is_connected(graph.to_undirected()):
diameter = nx.diameter(graph.to_undirected())
average_shortest_path = nx.average_shortest_path_length(graph.to_undirected())
print 'Diameter: ', diameter
print 'Average Shortest Path: ',average_shortest_path
else:
print "Graph is not connected so calculating the diameter and average shortest path length on all connected components."
diameter = []
average_shortest_path = []
for subgraph in nx.connected_component_subgraphs(graph.to_undirected()):
diameter.append(nx.diameter(subgraph))
average_shortest_path.append(nx.average_shortest_path_length(subgraph))
from numpy import median
from scipy.stats import scoreatpercentile
print 'Diameter: ',median(diameter),u'\xB1',str(scoreatpercentile(diameter,75)-scoreatpercentile(diameter,25))
print 'Average Path Length :',median(average_shortest_path),u'\xB1',str(scoreatpercentile(average_shortest_path,75)-scoreatpercentile(average_shortest_path,25))
degree_sequence=sorted(nx.degree(graph).values(),reverse=True) # degree sequence
import matplotlib.pyplot as plt
plt.loglog(degree_sequence,'b-',marker='o')
plt.title("Distribution of Degrees for %s tweets" %(self.drug_name), fontsize=20)
plt.ylabel("Degree", fontsize=20)
plt.xlabel("Rank", fontsize=20)
# draw graph in inset
ax = plt.axes([0.35,0.25,0.55,0.55])
plt.axis('off')
nx.draw(graph, ax=ax, alpha=0.8, with_labels=False)
plt.savefig("degree_distribution_%s.png"%(self.drug_name.replace(' ','_')), dpi=300)
plt.close()
if save_graph:
output_file = self.drug_name.replace(' ','_') + '.dot'
try:
nx.drawing.write_dot(graph,output_file)
print 'Graph saved as ',output_file
except (ImportError, UnicodeEncodeError) as e:
dot = ['"%s" -> "%s" [tweetid=%s]' % (node1,node2,graph[node1][node2]['tweet_id'])
for node1,node2, in graph.edges()]
with codecs.open(output_file,'w', encoding='utf-8') as f:
f.write('strict digraph G{\n%s\n}' % (';\n'.join(dot),))
print 'Saved ',output_file,' by brute force'
return diameter, average_shortest_path
开发者ID:charudatta-navare,项目名称:ToxTweet,代码行数:52,代码来源:twitterQuery.py
示例18: myavgpathlength
def myavgpathlength(G):
try:
apl = nx.average_shortest_path_length(G)
return [apl]
except nx.NetworkXError as e:
#this means graph is not connected
if isinstance(G,nx.DiGraph):
return [nx.average_shortest_path_length(nx.strongly_connected_component_subgraphs(G)[0])]
else:
return [nx.average_shortest_path_length(nx.connected_component_subgraphs(G)[0])]
except ZeroDivisionError as e:
return [1]
开发者ID:Jason3424,项目名称:Network-Motif,代码行数:12,代码来源:mynetalgs.py
示例19: compute_measures
def compute_measures(bigDict):
""" Computes the measures for each network
Measures to compute:
nr_of_nodes
nr_of_edges
max_edge_value
min_edge_value
is_connected
number_connected_components
average_unweighted_node_degree
average_weighted_node_degree
average_clustering_coefficient
average_weighted_shortest_path_length
average_unweighted_shortest_path_length
To be added:
single node values, e.g. node degree of brainstem etc.
Non-scalar return values: (not used yet)
degree_distribution
edge_weight_distribution
"""
returnMeasures = {}
for key, netw in bigDict.items():
outm = {}
outm['nr_of_nodes'] = netw.number_of_nodes()
outm['nr_of_edges'] = netw.number_of_edges()
outm['max_edge_value'] = np.max([d['weight']for f,t,d in netw.edges(data=True)])
outm['min_edge_value'] = np.min([d['weight']for f,t,d in netw.edges(data=True)])
outm['is_connected'] = nx.is_connected(netw)
outm['number_connected_components'] = nx.number_connected_components(netw)
outm['average_unweighted_node_degree'] = np.mean(nx.degree(netw, weighted = False).values())
outm['average_weighted_node_degree'] = np.mean(nx.degree(netw, weighted = True).values())
outm['average_clustering_coefficient'] = nx.average_clustering(netw)
outm['average_weighted_shortest_path_length'] = nx.average_shortest_path_length(netw, weighted = True)
outm['average_unweighted_shortest_path_length'] = nx.average_shortest_path_length(netw, weighted = False)
returnMeasures[key] = outm
return returnMeasures
开发者ID:1d99net,项目名称:cmp,代码行数:53,代码来源:network_statistics.py
示例20: test_lattice_reference
def test_lattice_reference():
G = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng)
Gl = lattice_reference(G, niter=1, seed=rng)
L = nx.average_shortest_path_length(G)
Ll = nx.average_shortest_path_length(Gl)
assert_true(Ll > L)
assert_raises(nx.NetworkXError, lattice_reference, nx.Graph())
assert_raises(nx.NetworkXNotImplemented, lattice_reference, nx.DiGraph())
H = nx.Graph(((0, 1), (2, 3)))
Hl = lattice_reference(H, niter=1)
开发者ID:jianantian,项目名称:networkx,代码行数:12,代码来源:test_smallworld.py
注:本文中的networkx.average_shortest_path_length函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论