• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python param.opt_param函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中neon.util.param.opt_param函数的典型用法代码示例。如果您正苦于以下问题:Python opt_param函数的具体用法?Python opt_param怎么用?Python opt_param使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了opt_param函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

 def __init__(self, **kwargs):
     self.live = False
     self.server = None
     opt_param(self, ['batch_size'], default_value=1)
     opt_param(self, ['input_dtype', 'target_dtype'],
               default_value=np.float32)
     self.__dict__.update(kwargs)
开发者ID:ypkang,项目名称:neon,代码行数:7,代码来源:delimfiles.py


示例2: initialize

    def initialize(self, kwargs):
        super(ConvLayer, self).initialize(kwargs)
        self.initialize_local()
        if self.pad != 0 and isinstance(self.backend, CPU):
            raise NotImplementedError('pad != 0, for CPU backend in ConvLayer')

        opt_param(self, ['shared_bias'], True)
        if self.shared_bias:
            self.bias_shape = (self.nofm, 1)
            self.bias_expand = self.backend.empty((self.nout, 1),
                                                  dtype=self.weight_dtype)
        else:
            self.bias_shape = (self.nout, 1)

        self.allocate_output_bufs()
        self.allocate_param_bufs()

        opt_param(self, ['prodbuf', 'bpropbuf', 'updatebuf'], None)
        if isinstance(self.backend, CPU):
            self.prodbuf = self.backend.empty((self.nofm, self.batch_size))
            self.bpropbuf = self.backend.empty((self.fsize, self.batch_size))
            self.updatebuf = self.backend.empty(self.weights.shape)

        if self.backend.__module__ == 'neon.backends.gpu':
            self.conv_params = self.backend.ng.conv_layer(
                N=self.batch_size, C=self.nifm, K=self.nofm,
                D=1, H=self.ifmshape[0], W=self.ifmshape[1], T=1,
                R=self.fshape[0], S=self.fshape[1],
                pad_d=0, pad_h=self.pad, pad_w=self.pad,
                str_d=1, str_h=self.stride, str_w=self.stride,
                grid_P=0, grid_Q=0,
                dtype=self.weight_dtype)
            self.prodbuf = self.bpropbuf = self.updatebuf = self.conv_params
开发者ID:AI-Cdrone,项目名称:neon,代码行数:33,代码来源:convolutional.py


示例3: allocate_param_bufs

    def allocate_param_bufs(self):
        if self.params_initialized:
            return
        make_ebuf = self.backend.empty
        self.weights = self.weight_init.generate(self.weight_shape,
                                                 self.weight_dtype)
        self.weights.name = self.name  # naming weights for timing diagnostics
        self.weight_updates = make_ebuf(self.weight_shape, self.updates_dtype)

        self.use_biases = 'bias_init' in self.weight_init.__dict__
        opt_param(self, ['brule_init'], None)
        if self.use_biases is True:
            self.biases = make_ebuf(self.bias_shape, self.weight_dtype)
            self.biases.fill(self.weight_init.bias_init)
            self.bias_updates = make_ebuf(self.bias_shape, self.updates_dtype)
            self.params.extend([self.weights, self.biases])
            self.updates.extend([self.weight_updates, self.bias_updates])
        else:
            self.params.extend([self.weights])
            self.updates.extend([self.weight_updates])

        if self.accumulate:
            self.utemp = map(lambda x: make_ebuf(x.shape, self.updates_dtype),
                             self.updates)
        for upm in self.updates:
            upm.fill(0.0)
        self.learning_rule = self.init_learning_rule(self.lrule_init)
        self.bias_rule = None
        if self.brule_init is not None and self.use_biases:
            self.bias_rule = self.init_learning_rule(self.brule_init)
            self.bias_rule.allocate_state([self.updates[-1]])
            self.learning_rule.allocate_state(self.updates[:-1])
        else:
            self.learning_rule.allocate_state(self.updates)
        self.params_initialized = True
开发者ID:JesseLivezey,项目名称:neon,代码行数:35,代码来源:layer.py


示例4: __init__

    def __init__(self, **kwargs):
        super(AutoUniformValGen, self).__init__(**kwargs)
        opt_param(self, ['relu'], False)
        opt_param(self, ['islocal'], False)

        self.low = float('nan')
        self.high = float('nan')
开发者ID:AI-Cdrone,项目名称:neon,代码行数:7,代码来源:val_init.py


示例5: __init__

    def __init__(self, **kwargs):
        self.macro_batched = False
        self.__dict__.update(kwargs)

        opt_param(self, ['backend_type'], 'np.float32')
        self.backend_type = ensure_dtype(self.backend_type)  # string to dtype
        logger.info("Setting dtype to" + str(self.backend_type))
开发者ID:neuroidss,项目名称:neon,代码行数:7,代码来源:mobydick.py


示例6: initialize

 def initialize(self, kwargs):
     opt_param(self, ['keep'], 0.5)
     super(DropOutLayer, self).initialize(kwargs)
     self.keepmask = self.backend.empty((self.nin, self.batch_size),
                                        dtype=self.weight_dtype)
     self.train_mode = True
     self.allocate_output_bufs()
开发者ID:AI-Cdrone,项目名称:neon,代码行数:7,代码来源:dropout.py


示例7: initialize

 def initialize(self, kwargs):
     super(RecurrentCostLayer, self).initialize(kwargs)
     req_param(self, ['cost', 'ref_layer'])
     opt_param(self, ['ref_label'], 'targets')
     self.targets = None
     self.cost.olayer = self.prev_layer
     self.cost.initialize(kwargs)
     self.deltas = self.cost.get_deltabuf()
开发者ID:JesseLivezey,项目名称:neon,代码行数:8,代码来源:recurrent.py


示例8: __init__

 def __init__(self, **kwargs):
     self.accumulate = True
     # Reusing deltas not supported for RNNs yet
     self.reuse_deltas = False
     super(RNN, self).__init__(**kwargs)
     req_param(self, ['unrolls'])
     self.rec_layer = self.layers[1]
     opt_param(self, ['num_grad_params'], None)
开发者ID:nkhuyu,项目名称:neon,代码行数:8,代码来源:rnn.py


示例9: __init__

 def __init__(self, **kwargs):
     self.initialized = False
     self.__dict__.update(kwargs)
     req_param(self, ['dataset', 'model'])
     opt_param(self, ['backend'])
     opt_param(self, ['live'], False)
     if self.backend is not None:
         self.initialize(self.backend)
开发者ID:neuroidss,项目名称:neon,代码行数:8,代码来源:fit.py


示例10: allocate_param_bufs

    def allocate_param_bufs(self):
        if self.params_initialized:
            return

        def make_ebuf(shape, dtype, persist_values):
            b = self.backend.empty(shape, dtype, persist_values)
            if self.backend.is_dist:
                b.ptype = 'replica' if self.is_local else 'vfragment'
            return b

        self.weight_init.is_local = self.is_local
        self.weights = self.weight_init.generate(self.weight_shape,
                                                 self.weight_dtype)
        self.weights.name = self.name  # naming weights for timing diagnostics
        self.weight_updates = make_ebuf(self.weight_shape,
                                        dtype=self.updates_dtype,
                                        persist_values=True)

        self.make_views()

        self.use_biases = 'bias_init' in self.weight_init.__dict__
        opt_param(self, ['brule_init'], None)
        if self.use_biases is True:
            self.biases = make_ebuf(self.bias_shape, dtype=self.weight_dtype,
                                    persist_values=False)
            self.biases.fill(self.weight_init.bias_init)
            self.bias_updates = make_ebuf(self.bias_shape,
                                          dtype=self.updates_dtype,
                                          persist_values=False)
            self.params.extend([self.weights, self.biases])
            self.updates.extend([self.weight_updates, self.bias_updates])
        else:
            self.params.extend([self.weights])
            self.updates.extend([self.weight_updates])

        if self.accumulate:
            self.utemp = [make_ebuf(x.shape,
                                    dtype=self.updates_dtype,
                                    persist_values=False)
                          for x in self.updates]

        for upm in self.updates:
            upm.fill(0.0)
        self.learning_rule = self.init_learning_rule(self.lrule_init)
        self.bias_rule = None
        if self.brule_init is not None and self.use_biases:
            lrn = self.learning_rule.name + 'bias'
            self.bias_rule = self.init_learning_rule(self.brule_init, name=lrn)
            self.bias_rule.allocate_state([self.updates[-1]])
            self.learning_rule.allocate_state(self.updates[:-1])
        else:
            self.learning_rule.allocate_state(self.updates)

        if self.backend.is_dist:
            # Create a mempool used for sharing in parallel mode
            self.make_mempool()

        self.params_initialized = True
开发者ID:neuroidss,项目名称:neon,代码行数:58,代码来源:layer.py


示例11: initialize

 def initialize(self, kwargs):
     opt_param(self, ['keep'], 0.5)
     super(DropOutLayer, self).initialize(kwargs)
     bkend = self.backend
     make_zbuf = bkend.allocate_fragment if self.is_local else bkend.empty
     self.keepmask = make_zbuf((self.nin, self.batch_size),
                               dtype=self.weight_dtype)
     self.train_mode = True
     self.allocate_output_bufs()
开发者ID:neuroidss,项目名称:neon,代码行数:9,代码来源:dropout.py


示例12: __init__

 def __init__(self, **kwargs):
     self.initialized = False
     self.__dict__.update(kwargs)
     req_param(self, ['layers', 'batch_size'])
     opt_param(self, ['step_print'], -1)
     opt_param(self, ['accumulate'], False)
     opt_param(self, ['reuse_deltas'], True)
     opt_param(self, ['timing_plots'], False)
     opt_param(self, ['serialize_schedule'])
开发者ID:Eynaliyev,项目名称:neon,代码行数:9,代码来源:mlp.py


示例13: __init__

    def __init__(self, name, lr_params):
        self.name = name

        opt_param(self, ['velocity_dtype', 'param_dtype', 'gradient_dtype'],
                  np.float32)
        opt_param(self, ['backend_type'], 'np.float32')
        if self.backend_type == 'np.float16':
            logger.info("Setting learning rule dtypes to float16")
            for item in ('velocity_dtype', 'param_dtype', 'gradient_dtype'):
                setattr(self, item, np.float16)
开发者ID:AI-Cdrone,项目名称:neon,代码行数:10,代码来源:learning_rule.py


示例14: allocate_output_bufs

    def allocate_output_bufs(self):
        make_zbuf = self.backend.zeros
        opt_param(self, ['out_shape'], (self.nout, self.batch_size))
        opt_param(self, ['delta_shape'], (self.nin, self.batch_size))

        self.output = make_zbuf(self.out_shape, self.output_dtype)

        self.pre_act = self.activation.pre_act_buffer(self.backend,
                                                      self.output,
                                                      self.pre_act_dtype)
开发者ID:JesseLivezey,项目名称:neon,代码行数:10,代码来源:layer.py


示例15: initialize

    def initialize(self, kwargs):
        super(CrossMapPoolingLayer, self).initialize(kwargs)
        req_param(self, ['nofm'])

        self.initialize_local()
        self.allocate_output_bufs()
        self.allocate_param_bufs()
        opt_param(self, ['updatebuf'], None)
        if isinstance(self.backend, CPU):
            self.updatebuf = self.backend.empty((1, 1))
开发者ID:AI-Cdrone,项目名称:neon,代码行数:10,代码来源:pooling.py


示例16: initialize

    def initialize(self, kwargs):
        """
        Initialize the Batch Normalization transform. This function will be
        called from WeightLayer.initialize with a reference to the layer.

        Arguments:
            _eps (numeric, optional): value used for numerical stability when
                                      normalizing by variance
            _iscale (numeric, optional): explicitly set an affine scale value
                                         to be used in inference instead of
                                         calculated scale from training
            _ishift (numeric, optional): explicitly set an affine shift value
                                         to be used in inference instead of
                                         calculated shift from training
        """
        self.__dict__.update(kwargs)
        self.dtype = self.layer.weight_dtype
        self.bigtype = np.float32 if self.dtype is np.float16 else self.dtype
        opt_param(self, ['_iscale', '_ishift'])
        opt_param(self, ['_eps'], 1e-6)
        req_param(self, ['layer'])

        self.backend = self.layer.backend
        self.is_local = self.layer.is_local
        self.batch_size = self.layer.batch_size
        if self.is_local:
            self.in1d = (self.layer.nofm, 1)
            self.ofmsize = self.layer.ofmsize
            self.orig_shape = (self.layer.nofm * self.ofmsize, self.batch_size)
            self.in_shape = (self.layer.nofm, self.ofmsize * self.batch_size)
        else:
            self.in_shape = (self.layer.nout, self.batch_size)
            self.in1d = (self.layer.nout, 1)

        self.train_mode = True
        logger.info("BatchNormalization set to train mode")
        self.nbatches = 0

        self._xhat = self.backend.zeros(self.in_shape, dtype=self.dtype)

        self._mean = self.backend.zeros(self.in1d, dtype=self.bigtype)
        self._vars = self.backend.zeros(self.in1d, dtype=self.bigtype)

        # Global mean and var to be used during inference
        self._gmean = self.backend.zeros(self.in1d, dtype=self.bigtype)
        self._gvars = self.backend.zeros(self.in1d, dtype=self.bigtype)

        # learned params and their update buffers
        self._beta = self.backend.zeros(self.in1d, dtype=self.bigtype)
        self._gamma = self.backend.ones(self.in1d, dtype=self.bigtype)
        self.layer.params.extend([self._beta, self._gamma])

        self._beta_updates = self.backend.zeros(self.in1d, dtype=self.bigtype)
        self._gamma_updates = self.backend.zeros(self.in1d, dtype=self.bigtype)
        self.layer.updates.extend([self._beta_updates, self._gamma_updates])
开发者ID:Tao2015,项目名称:neon,代码行数:55,代码来源:batch_norm.py


示例17: initialize

    def initialize(self, kwargs):
        super(WeightLayer, self).initialize(kwargs)
        req_param(self, ['weight_init', 'lrule_init', 'nin', 'nout'])
        opt_param(self, ['accumulate'], False)
        opt_param(self, ['batch_norm'], False)

        self.weight_init.initialize(self.backend)
        self.params = []
        self.updates = []

        if self.batch_norm:
            self.bn = BatchNorm()
            kwargs['layer'] = self
            self.bn.initialize(kwargs)
开发者ID:jjcorreao,项目名称:neon,代码行数:14,代码来源:layer.py


示例18: initialize

    def initialize(self, kwargs):
        super(WeightLayer, self).initialize(kwargs)
        req_param(self, ['nin', 'nout'])
        opt_param(self, ['weight_init'], default_weight_init())
        opt_param(self, ['lrule_init'], default_lrule_init())
        opt_param(self, ['accumulate'], False)
        opt_param(self, ['batch_norm'], False)
        opt_param(self, ['mempool'])  # Used for parallel mode

        self.weight_init.initialize(self.backend)
        self.params = []
        self.updates = []

        if self.batch_norm:
            self.bn = BatchNorm()
            kwargs['layer'] = self
            self.bn.initialize(kwargs)
开发者ID:neuroidss,项目名称:neon,代码行数:17,代码来源:layer.py


示例19: allocate_output_bufs

    def allocate_output_bufs(self):
        make_zbuf = self.backend.zeros
        opt_param(self, ['out_shape'], (self.nout, self.batch_size))
        self.output = make_zbuf(self.out_shape, self.output_dtype)

        self.pre_act = self.activation.pre_act_buffer(self.backend,
                                                      self.output,
                                                      self.pre_act_dtype)

        # TODO: Get rid of output and pre_act. But they seem to be used in the
        # cost to set a buffer size.
        self.pre_act_list = [self.pre_act] + \
                            [make_zbuf(self.out_shape, self.pre_act_dtype)
                             for k in range(1, self.unrolls)]
        self.output_list = [self.output] + \
                           [make_zbuf(self.out_shape, self.output_dtype)
                            for k in range(1, self.unrolls)]
开发者ID:JesseLivezey,项目名称:neon,代码行数:17,代码来源:recurrent.py


示例20: allocate_output_bufs

    def allocate_output_bufs(self):
        if self.is_local:
            make_zbuf = self.backend.allocate_fragment
        else:
            make_zbuf = self.backend.empty

        opt_param(self, ['out_shape'], (self.nout, self.batch_size))
        opt_param(self, ['delta_shape'], (self.nin, self.batch_size))

        self.output = make_zbuf(self.out_shape, dtype=self.output_dtype,
                                persist_values=True)

        self.pre_act = self.activation.pre_act_buffer(self.backend,
                                                      self.output,
                                                      self.pre_act_dtype)
        if self.backend.is_dist:
            self.output.ptype = 'fragment' if self.is_local else 'replica'
开发者ID:neuroidss,项目名称:neon,代码行数:17,代码来源:layer.py



注:本文中的neon.util.param.opt_param函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python param.req_param函数代码示例发布时间:2022-05-27
下一篇:
Python compat.range函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap