• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tools.assert_array_equal函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mvpa2.testing.tools.assert_array_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_array_equal函数的具体用法?Python assert_array_equal怎么用?Python assert_array_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_array_equal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_sifter_with_balancing

def test_sifter_with_balancing():
    # extended previous test which was already
    # "... somewhat duplicating the doctest"
    ds = Dataset(samples=np.arange(12).reshape((-1, 2)),
                 sa={'chunks':   [ 0 ,  1 ,  2 ,  3 ,  4,   5 ],
                     'targets':  ['c', 'c', 'c', 'p', 'p', 'p']})

    # Without sifter -- just to assure that we do get all of them
    # i.e. 6*5*4*3/(4!) = 15
    par = ChainNode([NFoldPartitioner(cvtype=4, attr='chunks')])
    assert_equal(len(list(par.generate(ds))), 15)

    # so we will take 4 chunks out of available 7, but would care only
    # about those partitions where we have balanced number of 'c' and 'p'
    # entries
    assert_raises(ValueError,
                  lambda x: list(Sifter([('targets', dict(wrong=1))]).generate(x)),
                  ds)

    par = ChainNode([NFoldPartitioner(cvtype=4, attr='chunks'),
                     Sifter([('partitions', 2),
                             ('targets',
                              dict(uvalues=['c', 'p'],
                                   balanced=True))])
                     ])
    dss = list(par.generate(ds))
    # print [ x[x.sa.partitions==2].sa.targets for x in dss ]
    assert_equal(len(dss), 9)
    for ds_ in dss:
        testing = ds[ds_.sa.partitions == 2]
        assert_array_equal(np.unique(testing.sa.targets), ['c', 'p'])
        # and we still have both targets  present in training
        training = ds[ds_.sa.partitions == 1]
        assert_array_equal(np.unique(training.sa.targets), ['c', 'p'])
开发者ID:Soletmons,项目名称:PyMVPA,代码行数:34,代码来源:test_generators.py


示例2: test_sphere_scaled

def test_sphere_scaled():
    s1 = ne.Sphere(3)
    s = ne.Sphere(3, element_sizes=(1, 1))

    # Should give exactly the same results since element_sizes are 1s
    for p in ((0, 0), (-23, 1)):
        assert_array_equal(s1(p), s(p))
        ok_(len(s(p)) == len(set(s(p))))

    # Raise exception if query dimensionality does not match element_sizes
    assert_raises(ValueError, s, (1,))

    s = ne.Sphere(3, element_sizes=(1.5, 2))
    assert_array_equal(s((0, 0)),
                       [(-2, 0), (-1, -1), (-1, 0), (-1, 1),
                        (0, -1), (0, 0), (0, 1),
                        (1, -1), (1, 0), (1, 1), (2, 0)])

    s = ne.Sphere(1.5, element_sizes=(1.5, 1.5, 1.5))
    res = s((0, 0, 0))
    ok_(np.all([np.sqrt(np.sum(np.array(x)**2)) <= 1.5 for x in res]))
    ok_(len(res) == 7)

    # all neighbors so no more than 1 voxel away -- just a cube, for
    # some "sphere" effect radius had to be 3.0 ;)
    td = np.sqrt(3*1.5**2)
    s = ne.Sphere(td, element_sizes=(1.5, 1.5, 1.5))
    res = s((0, 0, 0))
    ok_(np.all([np.sqrt(np.sum(np.array(x)**2)) <= td for x in res]))
    ok_(np.all([np.sum(np.abs(x) > 1) == 0 for x in res]))
    ok_(len(res) == 27)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:31,代码来源:test_neighborhood.py


示例3: test_identity

def test_identity():
    # IdentityNeighborhood() behaves like Sphere(0.5) without all of the
    # computation. Test on a few different coordinates.
    neighborhood = ne.IdentityNeighborhood()
    sphere = ne.Sphere(0.5)
    for center in ((0, 0, 0), (1, 1, 1), (0, 0), (0, )):
        assert_array_equal(neighborhood(center), sphere(center))
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:7,代码来源:test_neighborhood.py


示例4: test_mapper_vs_zscore

def test_mapper_vs_zscore():
    """Test by comparing to results of elderly z-score function
    """
    # data: 40 sample feature line in 20d space (40x20; samples x features)
    dss = [
        dataset_wizard(np.concatenate(
            [np.arange(40) for i in range(20)]).reshape(20,-1).T,
                targets=1, chunks=1),
        ] + datasets.values()

    for ds in dss:
        ds1 = deepcopy(ds)
        ds2 = deepcopy(ds)

        zsm = ZScoreMapper(chunks_attr=None)
        assert_raises(RuntimeError, zsm.forward, ds1.samples)
        idhashes = (idhash(ds1), idhash(ds1.samples))
        zsm.train(ds1)
        idhashes_train = (idhash(ds1), idhash(ds1.samples))
        assert_equal(idhashes, idhashes_train)

        # forward dataset
        ds1z_ds = zsm.forward(ds1)
        idhashes_forwardds = (idhash(ds1), idhash(ds1.samples))
        # must not modify samples in place!
        assert_equal(idhashes, idhashes_forwardds)

        # forward samples explicitly
        ds1z = zsm.forward(ds1.samples)
        idhashes_forward = (idhash(ds1), idhash(ds1.samples))
        assert_equal(idhashes, idhashes_forward)

        zscore(ds2, chunks_attr=None)
        assert_array_almost_equal(ds1z, ds2.samples)
        assert_array_equal(ds1.samples, ds.samples)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:35,代码来源:test_zscoremapper.py


示例5: test_corrstability_smoketest

def test_corrstability_smoketest(ds):
    if not 'chunks' in ds.sa:
        return
    if len(ds.sa['targets'].unique) > 30:
        # was regression dataset
        return
    # very basic testing since
    cs = CorrStability()
    #ds = datasets['uni2small']
    out = cs(ds)
    assert_equal(out.shape, (ds.nfeatures,))
    ok_(np.all(out >= -1.001))  # it should be a correlation after all
    ok_(np.all(out <= 1.001))

    # and theoretically those nonbogus features should have higher values
    if 'nonbogus_targets' in ds.fa:
        bogus_features = np.array([x==None for x in  ds.fa.nonbogus_targets])
        assert_array_less(np.mean(out[bogus_features]), np.mean(out[~bogus_features]))
    # and if we move targets to alternative location
    ds = ds.copy(deep=True)
    ds.sa['alt'] = ds.T
    ds.sa.pop('targets')
    assert_raises(KeyError, cs, ds)
    cs = CorrStability('alt')
    out_ = cs(ds)
    assert_array_equal(out, out_)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:26,代码来源:test_corrstability.py


示例6: test_basic

 def test_basic(self):
     dataset = data_generators.linear1d_gaussian_noise()
     k = GeneralizedLinearKernel()
     clf = GPR(k)
     clf.train(dataset)
     y = clf.predict(dataset.samples)
     assert_array_equal(y.shape, dataset.targets.shape)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:7,代码来源:test_gpr.py


示例7: test_cv_no_generator_custom_splitter

    def test_cv_no_generator_custom_splitter(self):
        ds = Dataset(np.arange(4), sa={'category': ['to', 'to', 'from', 'from'],
                                       'targets': ['a', 'b', 'c', 'd']})

        class Measure(Classifier):

            def _train(self, ds_):
                assert_array_equal(ds_.samples, ds.samples[2:])
                assert_array_equal(ds_.sa.category, ['from'] * len(ds_))

            def _predict(self, ds_):
                assert(ds_ is not ds)  # we pass a shallow copy
                # could be called to predit training or testing data
                if np.all(ds_.sa.targets != ['c', 'd']):
                    assert_array_equal(ds_.samples, ds.samples[:2])
                    assert_array_equal(ds_.sa.category, ['to'] * len(ds_))
                else:
                    assert_array_equal(ds_.sa.category, ['from'] * len(ds_))

                return ['c', 'd']

        measure = Measure()
        cv = CrossValidation(measure, splitter=Splitter('category', ['from', 'to']))
        res = cv(ds)
        assert_array_equal(res, [[1]])  # failed perfectly ;-)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:25,代码来源:test_clfcrossval.py


示例8: test_chained_crossvalidation_searchlight

def test_chained_crossvalidation_searchlight():
    from mvpa2.clfs.gnb import GNB
    from mvpa2.clfs.meta import MappedClassifier
    from mvpa2.generators.partition import NFoldPartitioner
    from mvpa2.mappers.base import ChainMapper
    from mvpa2.mappers.base import Mapper
    from mvpa2.measures.base import CrossValidation
    from mvpa2.measures.searchlight import sphere_searchlight
    from mvpa2.testing.datasets import datasets

    dataset = datasets['3dlarge'].copy()
    dataset.fa['voxel_indices'] = dataset.fa.myspace
    sample_clf = GNB()              # fast and deterministic

    class ZScoreFeaturesMapper(Mapper):
        """Very basic mapper which would take care about standardizing
        all features within each sample separately
        """
        def _forward_data(self, data):
            return (data - np.mean(data, axis=1)[:, None])/np.std(data, axis=1)[:, None]

    # only do partial to save time
    sl_kwargs = dict(radius=2, center_ids=[3, 50])
    clf_mapped = MappedClassifier(sample_clf, ZScoreFeaturesMapper())
    cv = CrossValidation(clf_mapped, NFoldPartitioner())
    sl = sphere_searchlight(cv, **sl_kwargs)
    results_mapped = sl(dataset)

    cv_chained = ChainMapper([ZScoreFeaturesMapper(auto_train=True),
                              CrossValidation(sample_clf, NFoldPartitioner())])
    sl_chained = sphere_searchlight(cv_chained, **sl_kwargs)
    results_chained = sl_chained(dataset)

    assert_array_equal(results_mapped, results_chained)
开发者ID:beausievers,项目名称:PyMVPA,代码行数:34,代码来源:test_usecases.py


示例9: test_remove_invariant_as_a_mapper

def test_remove_invariant_as_a_mapper():
    from mvpa2.featsel.helpers import RangeElementSelector
    from mvpa2.featsel.base import StaticFeatureSelection, SensitivityBasedFeatureSelection
    from mvpa2.testing.datasets import datasets
    from mvpa2.datasets.miscfx import remove_invariant_features

    mapper = SensitivityBasedFeatureSelection(
              lambda x: np.std(x, axis=0),
              RangeElementSelector(lower=0, inclusive=False),
              train_analyzer=False,
              auto_train=True)

    ds = datasets['uni2large'].copy()

    ds.a['mapper'] = StaticFeatureSelection(np.arange(ds.nfeatures))
    ds.fa['index'] = np.arange(ds.nfeatures)
    ds.samples[:, [1, 8]] = 10

    ds_out = mapper(ds)

    # Validate that we are getting the same results as remove_invariant_features
    ds_rifs = remove_invariant_features(ds)
    assert_array_equal(ds_out.samples, ds_rifs.samples)
    assert_array_equal(ds_out.fa.index, ds_rifs.fa.index)

    assert_equal(ds_out.fa.index[1], 2)
    assert_equal(ds_out.fa.index[8], 10)
开发者ID:beausievers,项目名称:PyMVPA,代码行数:27,代码来源:test_usecases.py


示例10: test_aggregation

    def test_aggregation(self):
        data = dataset_wizard(np.arange( 20 ).reshape((4, 5)), targets=1, chunks=1)

        ag_data = aggregate_features(data, np.mean)

        ok_(ag_data.nsamples == 4)
        ok_(ag_data.nfeatures == 1)
        assert_array_equal(ag_data.samples[:, 0], [2, 7, 12, 17])
开发者ID:armaneshaghi,项目名称:PyMVPA,代码行数:8,代码来源:test_datasetfx.py


示例11: _assert_ds_mat_attributes_equal

def _assert_ds_mat_attributes_equal(ds, m, attr_keys=('a', 'sa', 'fa')):
    # ds is a Dataset object, m a matlab-like dictionary
    for attr_k in attr_keys:
        attr_v = getattr(ds, attr_k)

        for k in attr_v.keys():
            v = attr_v[k].value
            assert_array_equal(m[attr_k][k][0, 0].ravel(), v)
开发者ID:StevenLOL,项目名称:PyMVPA,代码行数:8,代码来源:test_cosmo.py


示例12: test_basic

 def test_basic(self):
     skip_if_no_external('scipy') # needed by GPR code
     dataset = data_generators.linear1d_gaussian_noise()
     k = GeneralizedLinearKernel()
     clf = GPR(k)
     clf.train(dataset)
     y = clf.predict(dataset.samples)
     assert_array_equal(y.shape, dataset.targets.shape)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:8,代码来源:test_gpr.py


示例13: test_partitionmapper

def test_partitionmapper():
    ds = give_data()
    oep = OddEvenPartitioner()
    parts = list(oep.generate(ds))
    assert_equal(len(parts), 2)
    for i, p in enumerate(parts):
        assert_array_equal(p.sa['partitions'].unique, [1, 2])
        assert_equal(p.a.partitions_set, i)
        assert_equal(len(p), len(ds))
开发者ID:Soletmons,项目名称:PyMVPA,代码行数:9,代码来源:test_generators.py


示例14: test_sphere

def test_sphere():
    # test sphere initialization
    s = ne.Sphere(1)
    center0 = (0, 0, 0)
    center1 = (1, 1, 1)
    assert_equal(len(s(center0)), 7)
    target = array([array([-1,  0,  0]),
              array([ 0, -1,  0]),
              array([ 0,  0, -1]),
              array([0, 0, 0]),
              array([0, 0, 1]),
              array([0, 1, 0]),
              array([1, 0, 0])])
    # test of internals -- no recomputation of increments should be done
    prev_increments = s._increments
    assert_array_equal(s(center0), target)
    ok_(prev_increments is s._increments)
    # query lower dimensionality
    _ = s((0, 0))
    ok_(not prev_increments is s._increments)

    # test Sphere call
    target = [array([0, 1, 1]),
              array([1, 0, 1]),
              array([1, 1, 0]),
              array([1, 1, 1]),
              array([1, 1, 2]),
              array([1, 2, 1]),
              array([2, 1, 1])]
    res = s(center1)
    assert_array_equal(array(res), target)
    # They all should be tuples
    ok_(np.all([isinstance(x, tuple) for x in res]))

    # test for larger diameter
    s = ne.Sphere(4)
    assert_equal(len(s(center1)), 257)

    # test extent keyword
    #s = ne.Sphere(4,extent=(1,1,1))
    #assert_array_equal(array(s((0,0,0))), array([[0,0,0]]))

    # test Errors during initialisation and call
    #assert_raises(ValueError, ne.Sphere, 2)
    #assert_raises(ValueError, ne.Sphere, 1.0)

    # no longer extent available
    assert_raises(TypeError, ne.Sphere, 1, extent=(1))
    assert_raises(TypeError, ne.Sphere, 1, extent=(1.0, 1.0, 1.0))

    s = ne.Sphere(1)
    #assert_raises(ValueError, s, (1))
    if __debug__:
        # No float coordinates allowed for now...
        # XXX might like to change that ;)
        # 
        assert_raises(ValueError, s, (1.0, 1.0, 1.0))
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:57,代码来源:test_neighborhood.py


示例15: _assert_ds_less_or_equal

def _assert_ds_less_or_equal(x, y):
    # x and y are a Dataset; x should contain a subset of
    # elements in .sa, fa, a and have the same samples as y
    # Note: no support for fancy objects such as mappers
    assert_array_equal(x.samples, y.samples)
    for label in ('a', 'fa', 'sa'):
        vx = getattr(x, label)
        vy = getattr(y, label)
        _assert_array_collectable_less_or_equal(vx, vy)
开发者ID:StevenLOL,项目名称:PyMVPA,代码行数:9,代码来源:test_cosmo.py


示例16: test_size_random_prototypes

 def test_size_random_prototypes(self):
     self.build_vector_based_pm()
     fraction = 0.5
     prototype_number = max(int(len(self.samples)*fraction),1)
     ## debug("MAP","Generating "+str(prototype_number)+" random prototypes.")
     self.prototypes2 = np.array(random.sample(list(self.samples), prototype_number))
     self.pm2 = PrototypeMapper(similarities=self.similarities, prototypes=self.prototypes2)
     self.pm2.train(self.samples)
     assert_array_equal(self.pm2.proj.shape, (self.samples.shape[0], self.pm2.prototypes.shape[0]*len(self.similarities)))
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:9,代码来源:test_prototypemapper.py


示例17: test_nonfinite_features_removal

    def test_nonfinite_features_removal(self):
        r = np.random.normal(size=(4, 5))
        ds = dataset_wizard(r, targets=1, chunks=1)
        ds.samples[2,0]=np.NaN
        ds.samples[3,3]=np.Inf

        dsc = remove_nonfinite_features(ds)

        self.assertTrue(dsc.nfeatures == 3)
        assert_array_equal(ds[:, [1, 2, 4]].samples, dsc.samples)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:10,代码来源:test_datasetfx.py


示例18: test_balancer

def test_balancer():
    ds = give_data()
    # only mark the selection in an attribute
    bal = Balancer()
    res = bal(ds)
    # we get a new dataset, with shared samples
    assert_false(ds is res)
    assert_true(ds.samples is res.samples.base)
    # should kick out 2 samples in each chunk of 10
    assert_almost_equal(np.mean(res.sa.balanced_set), 0.8)
    # same as above, but actually apply the selection
    bal = Balancer(apply_selection=True, count=5)
    # just run it once
    res = bal(ds)
    # we get a new dataset, with shared samples
    assert_false(ds is res)
    # should kick out 2 samples in each chunk of 10
    assert_equal(len(res), int(0.8 * len(ds)))
    # now use it as a generator
    dses = list(bal.generate(ds))
    assert_equal(len(dses), 5)
    # with limit
    bal = Balancer(limit={'chunks': 3}, apply_selection=True)
    res = bal(ds)
    assert_equal(res.sa['chunks'].unique, (3,))
    assert_equal(get_nelements_per_value(res.sa.targets).values(),
                 [2] * 4)
    # same but include all offlimit samples
    bal = Balancer(limit={'chunks': 3}, include_offlimit=True,
                   apply_selection=True)
    res = bal(ds)
    assert_array_equal(res.sa['chunks'].unique, range(10))
    # chunk three still balanced, but the rest is not, i.e. all samples included
    assert_equal(get_nelements_per_value(res[res.sa.chunks == 3].sa.targets).values(),
                 [2] * 4)
    assert_equal(get_nelements_per_value(res.sa.chunks).values(),
                 [10, 10, 10, 8, 10, 10, 10, 10, 10, 10])
    # fixed amount
    bal = Balancer(amount=1, limit={'chunks': 3}, apply_selection=True)
    res = bal(ds)
    assert_equal(get_nelements_per_value(res.sa.targets).values(),
                 [1] * 4)
    # fraction
    bal = Balancer(amount=0.499, limit=None, apply_selection=True)
    res = bal(ds)
    assert_array_equal(
            np.round(np.array(get_nelements_per_value(ds.sa.targets).values()) * 0.5),
            np.array(get_nelements_per_value(res.sa.targets).values()))
    # check on feature attribute
    ds.fa['one'] = np.tile([1,2], 5)
    ds.fa['chk'] = np.repeat([1,2], 5)
    bal = Balancer(attr='one', amount=2, limit='chk', apply_selection=True)
    res = bal(ds)
    assert_equal(get_nelements_per_value(res.fa.one).values(),
                 [4] * 2)
开发者ID:Soletmons,项目名称:PyMVPA,代码行数:55,代码来源:test_generators.py


示例19: test_attrpermute

def test_attrpermute():
    ds = give_data()
    ds.sa['ids'] = range(len(ds))
    pristine_data = ds.samples.copy()
    permutation = AttributePermutator(['targets', 'ids'], assure=True)
    pds = permutation(ds)
    # should not touch the data
    assert_array_equal(pristine_data, pds.samples)
    # even keep the very same array
    assert_true(pds.samples.base is ds.samples)
    # there is no way that it can be the same attribute
    assert_false(np.all(pds.sa.ids == ds.sa.ids))
    # ids should reflect permutation setup
    assert_array_equal(pds.sa.targets, ds.sa.targets[pds.sa.ids])
    # other attribute should remain intact
    assert_array_equal(pds.sa.chunks, ds.sa.chunks)

    # now chunk-wise permutation
    permutation = AttributePermutator('ids', limit='chunks')
    pds = permutation(ds)
    # first ten should remain first ten
    assert_false(np.any(pds.sa.ids[:10] > 9))

    # same thing, but only permute single chunk
    permutation = AttributePermutator('ids', limit={'chunks': 3})
    pds = permutation(ds)
    # one chunk should change
    assert_false(np.any(pds.sa.ids[30:40] > 39))
    assert_false(np.any(pds.sa.ids[30:40] < 30))
    # the rest not
    assert_array_equal(pds.sa.ids[:30], range(30))

    # or a list of chunks
    permutation = AttributePermutator('ids', limit={'chunks': [3,4]})
    pds = permutation(ds)
    # two chunks should change
    assert_false(np.any(pds.sa.ids[30:50] > 49))
    assert_false(np.any(pds.sa.ids[30:50] < 30))
    # the rest not
    assert_array_equal(pds.sa.ids[:30], range(30))

    # and now try generating more permutations
    nruns = 2
    permutation = AttributePermutator(['targets', 'ids'], assure=True, count=nruns)
    pds = list(permutation.generate(ds))
    assert_equal(len(pds), nruns)
    for p in pds:
        assert_false(np.all(p.sa.ids == ds.sa.ids))

    # permute feature attrs
    ds.fa['ids'] = range(ds.shape[1])
    permutation = AttributePermutator('fa.ids', assure=True)
    pds = permutation(ds)
    assert_false(np.all(pds.fa.ids == ds.fa.ids))
开发者ID:arnaudsj,项目名称:PyMVPA,代码行数:54,代码来源:test_generators.py


示例20: test_streamline_equal_mapper

    def test_streamline_equal_mapper(self):
        self.build_streamline_things()

        self.prototypes_equal = self.dataset.samples
        self.pm = PrototypeMapper(similarities=self.similarities,
                                  prototypes=self.prototypes_equal,
                                  demean=False)
        self.pm.train(self.dataset.samples)
        ## debug("MAP","projected data: "+str(self.pm.proj))
        # check size:
        assert_array_equal(self.pm.proj.shape, (len(self.dataset.samples), len(self.prototypes_equal)*len(self.similarities)))
        # test symmetry
        assert_array_almost_equal(self.pm.proj, self.pm.proj.T)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:13,代码来源:test_prototypemapper.py



注:本文中的mvpa2.testing.tools.assert_array_equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tools.assert_equal函数代码示例发布时间:2022-05-27
下一篇:
Python surf.generate_sphere函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap