本文整理汇总了Python中msqr.modular_sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python modular_sqrt函数的具体用法?Python modular_sqrt怎么用?Python modular_sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了modular_sqrt函数的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: from_signature
def from_signature(cls, sig, recid, h, curve):
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
from ecdsa import util, numbertheory
import msqr
curveFp = curve.curve
G = curve.generator
order = G.order()
# extract r,s from signature
r, s = util.sigdecode_string(sig, order)
# 1.1
x = r + (recid / 2) * order
# 1.3
alpha = (x * x * x + curveFp.a() * x + curveFp.b()) % curveFp.p()
beta = msqr.modular_sqrt(alpha, curveFp.p())
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = Point(curveFp, x, y, order)
# 1.5 compute e from message:
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r, order)
Q = inv_r * (s * R + minus_e * G)
return cls.from_public_point(Q, curve)
开发者ID:iamfx,项目名称:reddcoin-electrum,代码行数:25,代码来源:bitcoin.py
示例2: _decode_pub_compressed
def _decode_pub_compressed(bytes):
if bytes[0] not in ['\x02', '\x03']:
raise Error('first byte not x02 or \x03')
x = decode_bigint(bytes[1:])
alpha = (x * x * x + curve_secp256k1.a() * x + curve_secp256k1.b()) % curve_secp256k1.p()
beta = msqr.modular_sqrt(alpha, curve_secp256k1.p())
y = beta if (beta - ord(bytes[0])) % 2 == 0 else curve_secp256k1.p() - beta
return ecdsa.ellipticcurve.Point(
curve_secp256k1, x, y, secp256k1.order)
开发者ID:evrimulgen,项目名称:Blockchain-Tracker,代码行数:9,代码来源:key.py
示例3: verify_message
def verify_message(self, address, signature, message):
"""See http://www.secg.org/download/aid-780/sec1-v2.pdf
for the math"""
import msqr
curve = curve_secp256k1
G = generator_secp256k1
order = G.order()
# extract r,s from signature
sig = base64.b64decode(signature)
if len(sig) != 65:
raise BaseException("Wrong encoding")
r, s = ecdsa.util.sigdecode_string(sig[1:], order)
nV = ord(sig[0])
if nV < 27 or nV >= 35:
raise BaseException("Bad encoding")
if nV >= 31:
compressed = True
nV -= 4
else:
compressed = False
recid = nV - 27
# 1.1
x = r + (recid/2) * order
# 1.3
alpha = (x * x * x + curve.a() * x + curve.b()) % curve.p()
beta = msqr.modular_sqrt(alpha, curve.p())
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = ecdsa.ellipticcurve.Point(curve, x, y, order)
# 1.5 compute e from message:
h = Hash(msg_magic(message))
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = ecdsa.numbertheory.inverse_mod(r, order)
Q = inv_r * (s * R + minus_e * G)
public_key = ecdsa.VerifyingKey.from_public_point(Q, curve=SECP256k1)
# check that Q is the public key
public_key.verify_digest(
sig[1:], h, sigdecode=ecdsa.util.sigdecode_string
)
# check that we get the original signing address
addr = public_key_to_bc_address(encode_point(public_key, compressed))
if address != addr:
raise BaseException("Bad signature")
开发者ID:M31MOTH,项目名称:python-libbitcoinclient,代码行数:46,代码来源:bitcoin.py
注:本文中的msqr.modular_sqrt函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论