本文整理汇总了Python中msmbuilder.MSMLib类的典型用法代码示例。如果您正苦于以下问题:Python MSMLib类的具体用法?Python MSMLib怎么用?Python MSMLib使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MSMLib类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test
def test(self):
num_macro = 5
TC = get("PCCA_ref/tProb.mtx")
A = get("PCCA_ref/Assignments.Fixed.h5")['arr_0']
print A
macro_map, macro_assign = PCCA.run_pcca(num_macro, A, TC)
r_macro_map = get("PCCA_ref/MacroMapping.dat")
macro_map = macro_map.astype(np.int)
r_macro_map = r_macro_map.astype(np.int)
# The order of macrostates might be different between the reference and
# new lumping. We therefore find a permutation to match them.
permutation_mapping = np.zeros(macro_assign.max() + 1, 'int')
for i in range(num_macro):
j = np.where(macro_map == i)[0][0]
permutation_mapping[i] = r_macro_map[j]
macro_map_permuted = permutation_mapping[macro_map]
MSMLib.apply_mapping_to_assignments(macro_assign, permutation_mapping)
r_macro_assign = get("PCCA_ref/MacroAssignments.h5")['arr_0']
eq(macro_map_permuted, r_macro_map)
eq(macro_assign, r_macro_assign)
开发者ID:dvanatta,项目名称:msmbuilder,代码行数:28,代码来源:test_wrappers.py
示例2: test_estimate_rate_matrix_1
def test_estimate_rate_matrix_1():
np.random.seed(42)
assignments = np.random.randint(2, size=(10, 10))
counts = MSMLib.get_count_matrix_from_assignments(assignments)
K = MSMLib.estimate_rate_matrix(counts, assignments).todense()
correct = np.matrix([[-40.40909091, 0.5], [0.33928571, -50.55357143]])
eq(K, correct)
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:8,代码来源:test_msmlib.py
示例3: test_apply_mapping_to_assignments_1
def test_apply_mapping_to_assignments_1():
l = 100
assignments = np.random.randint(l, size=(10, 10))
mapping = np.ones(l)
MSMLib.apply_mapping_to_assignments(assignments, mapping)
eq(assignments, np.ones((10, 10)))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:8,代码来源:test_msmlib.py
示例4: test_1
def test_1(self):
C = MSMLib.get_count_matrix_from_assignments(self.assignments, 2)
rc, t, p, m = MSMLib.build_msm(C, symmetrize="MLE", ergodic_trimming=True)
eq(rc.todense(), np.matrix([[6.46159184, 4.61535527], [4.61535527, 2.30769762]]), decimal=4)
eq(t.todense(), np.matrix([[0.58333689, 0.41666311], [0.66666474, 0.33333526]]), decimal=4)
eq(p, np.array([0.61538595, 0.38461405]), decimal=5)
eq(m, np.array([0, 1]))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:9,代码来源:test_msmlib.py
示例5: test_get_count_matrix_from_assignments_3
def test_get_count_matrix_from_assignments_3():
np.random.seed(42)
assignments = np.random.randint(3, size=(10, 10))
val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=False).todense()
eq(val, np.matrix([[5.0, 3.0, 4.0], [2.0, 12.0, 3.0], [4.0, 3.0, 4.0]]))
val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=True).todense()
eq(val, np.matrix([[8.0, 9.0, 11.0], [5.0, 18.0, 6.0], [11.0, 5.0, 7.0]]))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:9,代码来源:test_msmlib.py
示例6: run_pcca_plus
def run_pcca_plus(num_macrostates, assignments, tProb, flux_cutoff=0.0,
objective_function="crispness",do_minimization=True):
logger.info("Running PCCA+...")
A, chi, vr, MAP = lumping.pcca_plus(tProb, num_macrostates, flux_cutoff=flux_cutoff,
do_minimization=do_minimization, objective_function=objective_function)
MSMLib.apply_mapping_to_assignments(assignments, MAP)
return chi, A, MAP, assignments
开发者ID:chrismichel,项目名称:msmbuilder,代码行数:10,代码来源:PCCA.py
示例7: construct_counts_matrix
def construct_counts_matrix(assignments):
"""Build and return a counts matrix from assignments.
Symmetrize either with transpose or MLE based on the value of the
self.symmetrize variable
Also modifies the assignments file that you pass it to reflect ergodic
trimming
Parameters
----------
assignments : np.ndarray
2D array of MSMBuilder assignments
Returns
-------
counts : scipy.sparse.csr_matrix
transition counts
"""
n_states = np.max(assignments.flatten()) + 1
raw_counts = MSMLib.get_count_matrix_from_assignments(assignments, n_states,
lag_time=Project().lagtime,
sliding_window=True)
ergodic_counts = None
if Project().trim:
raise NotImplementedError(('Trimming is not yet supported because '
'we need to keep track of the mapping from trimmed to '
' untrimmed states for joint clustering to be right'))
try:
ergodic_counts, mapping = MSMLib.ergodic_trim(raw_counts)
MSMLib.apply_mapping_to_assignments(assignments, mapping)
counts = ergodic_counts
except Exception as e:
logger.warning("MSMLib.ergodic_trim failed with message '{0}'".format(e))
else:
logger.info("Ignoring ergodic trimming")
counts = raw_counts
if Project().symmetrize == 'transpose':
logger.debug('Transpose symmetrizing')
counts = counts + counts.T
elif Project().symmetrize == 'mle':
logger.debug('MLE symmetrizing')
counts = MSMLib.mle_reversible_count_matrix(counts)
elif Project().symmetrize == 'none' or (not Project().symmetrize):
logger.debug('Skipping symmetrization')
else:
raise ValueError("Could not understand symmetrization method: %s" % Project().symmetrize)
return counts
开发者ID:rmcgibbo,项目名称:msmaccelerator,代码行数:54,代码来源:Builder.py
示例8: test_trim_states
def test_trim_states():
# run the (just tested) ergodic trim
counts = scipy.sparse.csr_matrix(np.matrix('2 1 0; 1 2 0; 0 0 1'))
trimmed, mapping = MSMLib.ergodic_trim(counts)
# now try the segmented method
states_to_trim = MSMLib.ergodic_trim_indices(counts)
trimmed_counts = MSMLib.trim_states(states_to_trim, counts, assignments=None)
eq(trimmed.todense(), trimmed_counts.todense())
开发者ID:synapticarbors,项目名称:msmbuilder,代码行数:11,代码来源:test_msmlib.py
示例9: run_pcca
def run_pcca(num_macrostates, assignments, tProb):
logger.info("Running PCCA...")
if len(np.unique(assignments[np.where(assignments != -1)])) != tProb.shape[0]:
raise ValueError('Different number of states in assignments and tProb!')
MAP = lumping.PCCA(tProb, num_macrostates)
# MAP the new assignments and save, make sure don't
# mess up negaitve one's (ie where don't have data)
MSMLib.apply_mapping_to_assignments(assignments, MAP)
return MAP, assignments
开发者ID:chrismichel,项目名称:msmbuilder,代码行数:11,代码来源:PCCA.py
示例10: test_get_count_matrix_from_assignments_3
def test_get_count_matrix_from_assignments_3():
np.random.seed(42)
assignments = np.random.randint(3, size=(10,10))
val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=False).todense()
npt.assert_equal(val, np.matrix([[ 5., 3., 4.],
[ 2., 12., 3.],
[ 4., 3., 4.]]))
val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=True).todense()
npt.assert_equal(val, np.matrix([[8., 9., 11.],
[ 5., 18., 6.],
[ 11., 5., 7.]]))
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:13,代码来源:test_msmlib.py
示例11: compare_kyle_to_lutz
def compare_kyle_to_lutz(self, raw_counts):
"""Kyle wrote the most recent MLE code. We compare to the previous
code that was written by Lutz.
"""
counts = MSMLib.ergodic_trim(raw_counts)[0]
x_kyle = MSMLib.mle_reversible_count_matrix(counts)
x_kyle /= x_kyle.sum()
x_lutz = MSMLib.__mle_reversible_count_matrix_lutz__(counts)
x_lutz /= x_lutz.sum()
eq(x_kyle.toarray(), x_lutz.toarray())
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:14,代码来源:test_msmlib.py
示例12: test_apply_mapping_to_assignments_2
def test_apply_mapping_to_assignments_2():
"preseve the -1s"
l = 100
assignments = np.random.randint(l, size=(10, 10))
assignments[0, 0] = -1
mapping = np.ones(l)
correct = np.ones((10, 10))
correct[0, 0] = -1
MSMLib.apply_mapping_to_assignments(assignments, mapping)
eq(assignments, correct)
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:14,代码来源:test_msmlib.py
示例13: test_estimate_rate_matrix_2
def test_estimate_rate_matrix_2():
np.random.seed(42)
counts_dense = np.random.randint(100, size=(4, 4))
counts_sparse = scipy.sparse.csr_matrix(counts_dense)
t_mat_dense = MSMLib.estimate_transition_matrix(counts_dense)
t_mat_sparse = MSMLib.estimate_transition_matrix(counts_sparse)
correct = np.array([[0.22368421, 0.40350877, 0.06140351, 0.31140351],
[0.24193548, 0.08064516, 0.33064516, 0.34677419],
[0.22155689, 0.22155689, 0.26047904, 0.29640719],
[0.23469388, 0.02040816, 0.21428571, 0.53061224]])
eq(t_mat_dense, correct)
eq(t_mat_dense, np.array(t_mat_sparse.todense()))
开发者ID:lilipeng,项目名称:msmbuilder,代码行数:15,代码来源:test_msmlib.py
示例14: test_estimate_transition_matrix_1
def test_estimate_transition_matrix_1():
np.random.seed(42)
count_matrix = np.array([[6, 3, 7], [4, 6, 9], [2, 6, 7]])
t = MSMLib.estimate_transition_matrix(count_matrix)
eq(t, np.array([[0.375, 0.1875, 0.4375],
[0.21052632, 0.31578947, 0.47368421],
[0.13333333, 0.4, 0.46666667]]))
开发者ID:lilipeng,项目名称:msmbuilder,代码行数:7,代码来源:test_msmlib.py
示例15: run_pcca
def run_pcca(num_macrostates, assignments, tProb, output_dir):
MacroAssignmentsFn = os.path.join(output_dir, "MacroAssignments.h5")
MacroMapFn = os.path.join(output_dir, "MacroMapping.dat")
arglib.die_if_path_exists([MacroAssignmentsFn, MacroMapFn])
logger.info("Running PCCA...")
MAP = lumping.PCCA(tProb, num_macrostates)
# MAP the new assignments and save, make sure don't
# mess up negaitve one's (ie where don't have data)
MSMLib.apply_mapping_to_assignments(assignments, MAP)
np.savetxt(MacroMapFn, MAP, "%d")
msmbuilder.io.saveh(MacroAssignmentsFn, assignments)
logger.info("Saved output to: %s, %s", MacroAssignmentsFn, MacroMapFn)
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:16,代码来源:PCCA.py
示例16: main
def main(assfile, lag, nproc):
lag=int(lag)
nproc=int(nproc)
Assignments=io.loadh(assfile)
num=int(assfile.split('Assignments_sub')[1].split('.h5')[0])
dir=os.path.dirname(assfile)
newdir='%s/boot-sub%s' % (dir, num)
ref_sub=numpy.loadtxt('%s/times.h5' % dir, usecols=(1,))
ref_total=numpy.loadtxt('%s/times.h5' % dir, usecols=(2,))
times=dict()
for (i,j) in zip(ref_sub, ref_total):
times[i]=j
proj=Project.load_from('%s/ProjectInfo.yaml' % dir.split('Data')[0])
multinom=int(times[num])
if not os.path.exists(newdir):
os.mkdir(newdir)
if 'Data' in Assignments.keys():
Assignments=Assignments['Data']
else:
Assignments=Assignments['arr_0']
print Assignments.shape
NumStates = max(Assignments.flatten()) + 1
Counts = MSMLib.get_count_matrix_from_assignments(Assignments, lag_time=int(lag), sliding_window=True)
Counts=Counts.todense()
Counts=Counts*(1.0/lag)
T=numpy.array(Counts)
frames=numpy.where(T==0)
T[frames]=1
Popsample=dict()
iteration=0
total_iteration=100/nproc
print "%s total iterations" % total_iteration
if 100 % nproc != 0:
remain=100 % nproc
else:
remain=False
print "iterating thru tCount samples"
count=0
while iteration < 100:
if count*nproc > 100:
nproc=remain
print "sampling iteration %s" % iteration
Tfresh=T.copy()
input = zip([Tfresh]*nproc, [multinom]*nproc, range(0, NumStates))
pool = multiprocessing.Pool(processes=nproc)
result = pool.map_async(parallel_get_matrix, input)
result.wait()
all = result.get()
pool.terminate()
for c_matrix in all:
scipy.io.mmwrite('%s/tCounts-%s' % (newdir, iteration), c_matrix)
#rev_counts, t_matrix, Populations, Mapping=x
#scipy.io.mmwrite('%s/tProb-%s' % (newdir, iteration), t_matrix)
#numpy.savetxt('%s/Populations-%s' % (newdir, iteration), Populations)
#numpy.savetxt('%s/Mapping-%s' % (newdir, iteration), Mapping)
iteration+=1
count+=1
print "dont with iteration %s" % iteration*nproc
开发者ID:mlawrenz,项目名称:AnaProtLigand,代码行数:59,代码来源:sub-parallel-bootstrap_Tonly_2.6_slide.py
示例17: ndgrid_msm_likelihood_score
def ndgrid_msm_likelihood_score(estimator, sequences):
"""Log-likelihood score function for an (NDGrid, MarkovStateModel) pipeline
Parameters
----------
estimator : sklearn.pipeline.Pipeline
A pipeline estimator containing an NDGrid followed by a MarkovStateModel
sequences: list of array-like, each of shape (n_samples_i, n_features)
Data sequences, where n_samples_i in the number of samples
in sequence i and n_features is the number of features.
Returns
-------
log_likelihood : float
Mean log-likelihood per data point.
Examples
--------
>>> pipeline = Pipeline([
>>> ('grid', NDGrid()),
>>> ('msm', MarkovStateModel())
>>> ])
>>> grid = GridSearchCV(pipeline, param_grid={
>>> 'grid__n_bins_per_feature': [10, 20, 30, 40]
>>> }, scoring=ndgrid_msm_likelihood_score)
>>> grid.fit(dataset)
>>> print grid.grid_scores_
References
----------
.. [1] McGibbon, R. T., C. R. Schwantes, and V. S. Pande. "Statistical
Model Selection for Markov Models of Biomolecular Dynamics." J. Phys.
Chem B. (2014)
"""
import msmbuilder.MSMLib as msmlib
from mixtape import cluster
grid = [model for (name, model) in estimator.steps if isinstance(model, cluster.NDGrid)][0]
msm = [model for (name, model) in estimator.steps if isinstance(model, MarkovStateModel)][0]
# NDGrid supports min/max being different along different directions, which
# means that the bin widths are coordinate dependent. But I haven't
# implemented that because I've only been using this for 1D data
if grid.n_features != 1:
raise NotImplementedError("file an issue on github :)")
transition_log_likelihood = 0
emission_log_likelihood = 0
logtransmat = np.nan_to_num(np.log(np.asarray(msm.transmat_.todense())))
width = grid.grid[0, 1] - grid.grid[0, 0]
for X in grid.transform(sequences):
counts = np.asarray(
_apply_mapping_to_matrix(msmlib.get_counts_from_traj(X, n_states=grid.n_bins), msm.mapping_).todense()
)
transition_log_likelihood += np.multiply(counts, logtransmat).sum()
emission_log_likelihood += -1 * np.log(width) * len(X)
return (transition_log_likelihood + emission_log_likelihood) / sum(len(x) for x in sequences)
开发者ID:rbharath,项目名称:mixtape,代码行数:59,代码来源:markovstatemodel.py
示例18: run
def run(LagTime, assignments, Symmetrize='MLE', input_mapping="None", Prior=0.0, OutDir="./Data/"):
# set the filenames for output
FnTProb = os.path.join(OutDir, "tProb.mtx")
FnTCounts = os.path.join(OutDir, "tCounts.mtx")
FnMap = os.path.join(OutDir, "Mapping.dat")
FnAss = os.path.join(OutDir, "Assignments.Fixed.h5")
FnPops = os.path.join(OutDir, "Populations.dat")
# make sure none are taken
outputlist = [FnTProb, FnTCounts, FnMap, FnAss, FnPops]
arglib.die_if_path_exists(outputlist)
# if given, apply mapping to assignments
if input_mapping != "None":
MSMLib.apply_mapping_to_assignments(assignments, input_mapping)
n_states = np.max(assignments.flatten()) + 1
n_assigns_before_trim = len( np.where( assignments.flatten() != -1 )[0] )
rev_counts, t_matrix, populations, mapping = MSMLib.build_msm(assignments,
lag_time=LagTime, symmetrize=Symmetrize,
sliding_window=True, trim=True)
MSMLib.apply_mapping_to_assignments(assignments, mapping)
n_assigns_after_trim = len( np.where( assignments.flatten() != -1 )[0] )
# if had input mapping, then update it
if input_mapping != "None":
mapping = mapping[input_mapping]
# Print a statement showing how much data was discarded in trimming
percent = (1.0 - float(n_assigns_after_trim) / float(n_assigns_before_trim)) * 100.0
logger.warning("Ergodic trimming discarded: %f percent of your data", percent)
# Save all output
np.savetxt(FnPops, populations)
np.savetxt(FnMap, mapping,"%d")
scipy.io.mmwrite(str(FnTProb), t_matrix)
scipy.io.mmwrite(str(FnTCounts), rev_counts)
msmbuilder.io.saveh(FnAss, assignments)
for output in outputlist:
logger.info("Wrote: %s", output)
return
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:46,代码来源:BuildMSM.py
示例19: test_get_count_matrix_from_assignments_1
def test_get_count_matrix_from_assignments_1():
assignments = np.zeros((10, 10), "int")
val = MSMLib.get_count_matrix_from_assignments(assignments).todense()
correct = np.matrix([[90.0]])
eq(val, correct)
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:8,代码来源:test_msmlib.py
示例20: test_get_count_matrix_from_assignments_1
def test_get_count_matrix_from_assignments_1():
assignments = np.zeros((10,10))
val = MSMLib.get_count_matrix_from_assignments(assignments).todense()
correct = np.matrix([[90.0]])
npt.assert_equal(val, correct)
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:8,代码来源:test_msmlib.py
注:本文中的msmbuilder.MSMLib类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论