• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python msmbuilder.MSMLib类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中msmbuilder.MSMLib的典型用法代码示例。如果您正苦于以下问题:Python MSMLib类的具体用法?Python MSMLib怎么用?Python MSMLib使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了MSMLib类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test

    def test(self):

        num_macro = 5

        TC = get("PCCA_ref/tProb.mtx")
        A = get("PCCA_ref/Assignments.Fixed.h5")['arr_0']
        print A

        macro_map, macro_assign = PCCA.run_pcca(num_macro, A, TC)
        r_macro_map = get("PCCA_ref/MacroMapping.dat")

        macro_map = macro_map.astype(np.int)
        r_macro_map = r_macro_map.astype(np.int)

        # The order of macrostates might be different between the reference and
        # new lumping. We therefore find a permutation to match them.
        permutation_mapping = np.zeros(macro_assign.max() + 1, 'int')
        for i in range(num_macro):
            j = np.where(macro_map == i)[0][0]
            permutation_mapping[i] = r_macro_map[j]

        macro_map_permuted = permutation_mapping[macro_map]
        MSMLib.apply_mapping_to_assignments(macro_assign, permutation_mapping)

        r_macro_assign = get("PCCA_ref/MacroAssignments.h5")['arr_0']

        eq(macro_map_permuted, r_macro_map)
        eq(macro_assign, r_macro_assign)
开发者ID:dvanatta,项目名称:msmbuilder,代码行数:28,代码来源:test_wrappers.py


示例2: test_estimate_rate_matrix_1

def test_estimate_rate_matrix_1():
    np.random.seed(42)
    assignments = np.random.randint(2, size=(10, 10))
    counts = MSMLib.get_count_matrix_from_assignments(assignments)
    K = MSMLib.estimate_rate_matrix(counts, assignments).todense()

    correct = np.matrix([[-40.40909091, 0.5], [0.33928571, -50.55357143]])
    eq(K, correct)
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:8,代码来源:test_msmlib.py


示例3: test_apply_mapping_to_assignments_1

def test_apply_mapping_to_assignments_1():
    l = 100
    assignments = np.random.randint(l, size=(10, 10))
    mapping = np.ones(l)

    MSMLib.apply_mapping_to_assignments(assignments, mapping)

    eq(assignments, np.ones((10, 10)))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:8,代码来源:test_msmlib.py


示例4: test_1

    def test_1(self):

        C = MSMLib.get_count_matrix_from_assignments(self.assignments, 2)
        rc, t, p, m = MSMLib.build_msm(C, symmetrize="MLE", ergodic_trimming=True)

        eq(rc.todense(), np.matrix([[6.46159184, 4.61535527], [4.61535527, 2.30769762]]), decimal=4)
        eq(t.todense(), np.matrix([[0.58333689, 0.41666311], [0.66666474, 0.33333526]]), decimal=4)
        eq(p, np.array([0.61538595, 0.38461405]), decimal=5)
        eq(m, np.array([0, 1]))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:9,代码来源:test_msmlib.py


示例5: test_get_count_matrix_from_assignments_3

def test_get_count_matrix_from_assignments_3():
    np.random.seed(42)
    assignments = np.random.randint(3, size=(10, 10))

    val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=False).todense()
    eq(val, np.matrix([[5.0, 3.0, 4.0], [2.0, 12.0, 3.0], [4.0, 3.0, 4.0]]))

    val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=True).todense()
    eq(val, np.matrix([[8.0, 9.0, 11.0], [5.0, 18.0, 6.0], [11.0, 5.0, 7.0]]))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:9,代码来源:test_msmlib.py


示例6: run_pcca_plus

def run_pcca_plus(num_macrostates, assignments, tProb, flux_cutoff=0.0,
    objective_function="crispness",do_minimization=True):
    
    logger.info("Running PCCA+...")
    A, chi, vr, MAP = lumping.pcca_plus(tProb, num_macrostates, flux_cutoff=flux_cutoff,
        do_minimization=do_minimization, objective_function=objective_function)

    MSMLib.apply_mapping_to_assignments(assignments, MAP)    

    return chi, A, MAP, assignments
开发者ID:chrismichel,项目名称:msmbuilder,代码行数:10,代码来源:PCCA.py


示例7: construct_counts_matrix

def construct_counts_matrix(assignments):
    """Build and return a counts matrix from assignments.
    
    Symmetrize either with transpose or MLE based on the value of the
    self.symmetrize variable
        
    Also modifies the assignments file that you pass it to reflect ergodic
    trimming
    
    Parameters
    ----------
    assignments : np.ndarray
        2D array of MSMBuilder assignments
    
    Returns
    -------
    counts : scipy.sparse.csr_matrix
        transition counts
    
    """
        
    n_states  = np.max(assignments.flatten()) + 1
    raw_counts = MSMLib.get_count_matrix_from_assignments(assignments, n_states,
                                               lag_time=Project().lagtime,
                                               sliding_window=True)
        
    ergodic_counts = None
    if Project().trim:
        raise NotImplementedError(('Trimming is not yet supported because '
                                   'we need to keep track of the mapping from trimmed to '
                                   ' untrimmed states for joint clustering to be right'))
        try:
            ergodic_counts, mapping = MSMLib.ergodic_trim(raw_counts)
            MSMLib.apply_mapping_to_assignments(assignments, mapping)
            counts = ergodic_counts
        except Exception as e:
            logger.warning("MSMLib.ergodic_trim failed with message '{0}'".format(e))

    else:
        logger.info("Ignoring ergodic trimming")
        counts = raw_counts
        
    if Project().symmetrize == 'transpose':
        logger.debug('Transpose symmetrizing')
        counts = counts + counts.T
    elif Project().symmetrize == 'mle':
        logger.debug('MLE symmetrizing')
        counts = MSMLib.mle_reversible_count_matrix(counts)
    elif Project().symmetrize == 'none' or (not Project().symmetrize):
        logger.debug('Skipping symmetrization')
    else:
        raise ValueError("Could not understand symmetrization method: %s" % Project().symmetrize)
        
    return counts
开发者ID:rmcgibbo,项目名称:msmaccelerator,代码行数:54,代码来源:Builder.py


示例8: test_trim_states

def test_trim_states():
    
    # run the (just tested) ergodic trim
    counts = scipy.sparse.csr_matrix(np.matrix('2 1 0; 1 2 0; 0 0 1'))
    trimmed, mapping = MSMLib.ergodic_trim(counts)
    
    # now try the segmented method
    states_to_trim = MSMLib.ergodic_trim_indices(counts)
    trimmed_counts = MSMLib.trim_states(states_to_trim, counts, assignments=None)
    
    eq(trimmed.todense(), trimmed_counts.todense())
开发者ID:synapticarbors,项目名称:msmbuilder,代码行数:11,代码来源:test_msmlib.py


示例9: run_pcca

def run_pcca(num_macrostates, assignments, tProb):
    logger.info("Running PCCA...")
    if len(np.unique(assignments[np.where(assignments != -1)])) != tProb.shape[0]:
        raise ValueError('Different number of states in assignments and tProb!')
    MAP = lumping.PCCA(tProb, num_macrostates)

    # MAP the new assignments and save, make sure don't
    # mess up negaitve one's (ie where don't have data)
    MSMLib.apply_mapping_to_assignments(assignments, MAP)

    return MAP, assignments
开发者ID:chrismichel,项目名称:msmbuilder,代码行数:11,代码来源:PCCA.py


示例10: test_get_count_matrix_from_assignments_3

def test_get_count_matrix_from_assignments_3():
    np.random.seed(42)
    assignments = np.random.randint(3, size=(10,10))

    val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=False).todense()
    npt.assert_equal(val, np.matrix([[ 5.,   3.,   4.],
                         [  2.,  12.,   3.],
                         [ 4.,   3.,   4.]]))
                         
    val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=True).todense()
    npt.assert_equal(val, np.matrix([[8.,   9.,  11.],
                          [ 5.,  18.,   6.],
                          [ 11.,   5.,   7.]]))                 
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:13,代码来源:test_msmlib.py


示例11: compare_kyle_to_lutz

    def compare_kyle_to_lutz(self, raw_counts):
        """Kyle wrote the most recent MLE code.  We compare to the previous
        code that was written by Lutz.
        """

        counts = MSMLib.ergodic_trim(raw_counts)[0]

        x_kyle = MSMLib.mle_reversible_count_matrix(counts)
        x_kyle /= x_kyle.sum()

        x_lutz = MSMLib.__mle_reversible_count_matrix_lutz__(counts)
        x_lutz /= x_lutz.sum()

        eq(x_kyle.toarray(), x_lutz.toarray())
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:14,代码来源:test_msmlib.py


示例12: test_apply_mapping_to_assignments_2

def test_apply_mapping_to_assignments_2():
    "preseve the -1s"

    l = 100
    assignments = np.random.randint(l, size=(10, 10))
    assignments[0, 0] = -1
    mapping = np.ones(l)

    correct = np.ones((10, 10))
    correct[0, 0] = -1

    MSMLib.apply_mapping_to_assignments(assignments, mapping)

    eq(assignments, correct)
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:14,代码来源:test_msmlib.py


示例13: test_estimate_rate_matrix_2

def test_estimate_rate_matrix_2():
    np.random.seed(42)
    counts_dense = np.random.randint(100, size=(4, 4))
    counts_sparse = scipy.sparse.csr_matrix(counts_dense)

    t_mat_dense = MSMLib.estimate_transition_matrix(counts_dense)
    t_mat_sparse = MSMLib.estimate_transition_matrix(counts_sparse)

    correct = np.array([[0.22368421, 0.40350877, 0.06140351, 0.31140351],
                        [0.24193548, 0.08064516, 0.33064516, 0.34677419],
                        [0.22155689, 0.22155689, 0.26047904, 0.29640719],
                        [0.23469388, 0.02040816, 0.21428571, 0.53061224]])

    eq(t_mat_dense, correct)
    eq(t_mat_dense, np.array(t_mat_sparse.todense()))
开发者ID:lilipeng,项目名称:msmbuilder,代码行数:15,代码来源:test_msmlib.py


示例14: test_estimate_transition_matrix_1

def test_estimate_transition_matrix_1():
    np.random.seed(42)
    count_matrix = np.array([[6, 3, 7], [4, 6, 9], [2, 6, 7]])
    t = MSMLib.estimate_transition_matrix(count_matrix)
    eq(t, np.array([[0.375, 0.1875, 0.4375],
                    [0.21052632, 0.31578947, 0.47368421],
                    [0.13333333, 0.4, 0.46666667]]))
开发者ID:lilipeng,项目名称:msmbuilder,代码行数:7,代码来源:test_msmlib.py


示例15: run_pcca

def run_pcca(num_macrostates, assignments, tProb, output_dir):
    MacroAssignmentsFn = os.path.join(output_dir, "MacroAssignments.h5")
    MacroMapFn = os.path.join(output_dir, "MacroMapping.dat")
    arglib.die_if_path_exists([MacroAssignmentsFn, MacroMapFn])

    logger.info("Running PCCA...")
    MAP = lumping.PCCA(tProb, num_macrostates)

    # MAP the new assignments and save, make sure don't
    # mess up negaitve one's (ie where don't have data)
    MSMLib.apply_mapping_to_assignments(assignments, MAP)

    np.savetxt(MacroMapFn, MAP, "%d")
    msmbuilder.io.saveh(MacroAssignmentsFn, assignments)
    
    logger.info("Saved output to: %s, %s", MacroAssignmentsFn, MacroMapFn)
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:16,代码来源:PCCA.py


示例16: main

def main(assfile, lag, nproc):
    lag=int(lag)
    nproc=int(nproc)
    Assignments=io.loadh(assfile)
    num=int(assfile.split('Assignments_sub')[1].split('.h5')[0])
    dir=os.path.dirname(assfile)
    newdir='%s/boot-sub%s' % (dir, num)
    ref_sub=numpy.loadtxt('%s/times.h5' % dir, usecols=(1,))
    ref_total=numpy.loadtxt('%s/times.h5' % dir, usecols=(2,))
    times=dict()
    for (i,j) in zip(ref_sub, ref_total):
        times[i]=j

    proj=Project.load_from('%s/ProjectInfo.yaml' % dir.split('Data')[0])
    multinom=int(times[num])
    if not os.path.exists(newdir):
        os.mkdir(newdir)
    if 'Data' in Assignments.keys():
        Assignments=Assignments['Data']
    else:
        Assignments=Assignments['arr_0']
    print Assignments.shape
    NumStates = max(Assignments.flatten()) + 1
    Counts = MSMLib.get_count_matrix_from_assignments(Assignments, lag_time=int(lag), sliding_window=True)
    Counts=Counts.todense()
    Counts=Counts*(1.0/lag)
    T=numpy.array(Counts)
    frames=numpy.where(T==0)
    T[frames]=1
    Popsample=dict()
    iteration=0
    total_iteration=100/nproc
    print "%s total iterations" % total_iteration
    if 100 % nproc != 0:
        remain=100 % nproc
    else:
        remain=False
    print "iterating thru tCount samples"
    count=0
    while iteration < 100:
        if count*nproc > 100:
            nproc=remain
        print "sampling iteration %s" % iteration
        Tfresh=T.copy()
        input = zip([Tfresh]*nproc, [multinom]*nproc, range(0, NumStates))
        pool = multiprocessing.Pool(processes=nproc)
        result = pool.map_async(parallel_get_matrix, input)
        result.wait()
        all = result.get()
        pool.terminate()
        for c_matrix in all:
            scipy.io.mmwrite('%s/tCounts-%s' % (newdir, iteration), c_matrix)
            #rev_counts, t_matrix, Populations, Mapping=x
            #scipy.io.mmwrite('%s/tProb-%s' % (newdir, iteration), t_matrix)
            #numpy.savetxt('%s/Populations-%s' % (newdir, iteration), Populations)
            #numpy.savetxt('%s/Mapping-%s' % (newdir, iteration), Mapping)
            iteration+=1
        count+=1
        print "dont with iteration %s" % iteration*nproc
开发者ID:mlawrenz,项目名称:AnaProtLigand,代码行数:59,代码来源:sub-parallel-bootstrap_Tonly_2.6_slide.py


示例17: ndgrid_msm_likelihood_score

def ndgrid_msm_likelihood_score(estimator, sequences):
    """Log-likelihood score function for an (NDGrid, MarkovStateModel) pipeline

    Parameters
    ----------
    estimator : sklearn.pipeline.Pipeline
        A pipeline estimator containing an NDGrid followed by a MarkovStateModel
    sequences: list of array-like, each of shape (n_samples_i, n_features)
        Data sequences, where n_samples_i in the number of samples
        in sequence i and n_features is the number of features.

    Returns
    -------
    log_likelihood : float
        Mean log-likelihood per data point.

    Examples
    --------
    >>> pipeline = Pipeline([
    >>>    ('grid', NDGrid()),
    >>>    ('msm', MarkovStateModel())
    >>> ])
    >>> grid = GridSearchCV(pipeline, param_grid={
    >>>    'grid__n_bins_per_feature': [10, 20, 30, 40]
    >>> }, scoring=ndgrid_msm_likelihood_score)
    >>> grid.fit(dataset)
    >>> print grid.grid_scores_

    References
    ----------
    .. [1] McGibbon, R. T., C. R. Schwantes, and V. S. Pande. "Statistical
       Model Selection for Markov Models of Biomolecular Dynamics." J. Phys.
       Chem B. (2014)
    """
    import msmbuilder.MSMLib as msmlib
    from mixtape import cluster

    grid = [model for (name, model) in estimator.steps if isinstance(model, cluster.NDGrid)][0]
    msm = [model for (name, model) in estimator.steps if isinstance(model, MarkovStateModel)][0]

    # NDGrid supports min/max being different along different directions, which
    # means that the bin widths are coordinate dependent. But I haven't
    # implemented that because I've only been using this for 1D data
    if grid.n_features != 1:
        raise NotImplementedError("file an issue on github :)")

    transition_log_likelihood = 0
    emission_log_likelihood = 0
    logtransmat = np.nan_to_num(np.log(np.asarray(msm.transmat_.todense())))
    width = grid.grid[0, 1] - grid.grid[0, 0]

    for X in grid.transform(sequences):
        counts = np.asarray(
            _apply_mapping_to_matrix(msmlib.get_counts_from_traj(X, n_states=grid.n_bins), msm.mapping_).todense()
        )
        transition_log_likelihood += np.multiply(counts, logtransmat).sum()
        emission_log_likelihood += -1 * np.log(width) * len(X)

    return (transition_log_likelihood + emission_log_likelihood) / sum(len(x) for x in sequences)
开发者ID:rbharath,项目名称:mixtape,代码行数:59,代码来源:markovstatemodel.py


示例18: run

def run(LagTime, assignments, Symmetrize='MLE', input_mapping="None", Prior=0.0, OutDir="./Data/"):

    # set the filenames for output
    FnTProb = os.path.join(OutDir, "tProb.mtx")
    FnTCounts = os.path.join(OutDir, "tCounts.mtx")
    FnMap = os.path.join(OutDir, "Mapping.dat")
    FnAss = os.path.join(OutDir, "Assignments.Fixed.h5")
    FnPops = os.path.join(OutDir, "Populations.dat")
    
    # make sure none are taken
    outputlist = [FnTProb, FnTCounts, FnMap, FnAss, FnPops]
    arglib.die_if_path_exists(outputlist)

    # if given, apply mapping to assignments
    if input_mapping != "None":
        MSMLib.apply_mapping_to_assignments(assignments, input_mapping)

    n_states = np.max(assignments.flatten()) + 1
    n_assigns_before_trim = len( np.where( assignments.flatten() != -1 )[0] )
    
    rev_counts, t_matrix, populations, mapping = MSMLib.build_msm(assignments,
        lag_time=LagTime, symmetrize=Symmetrize,
        sliding_window=True, trim=True)

    MSMLib.apply_mapping_to_assignments(assignments, mapping)
    n_assigns_after_trim = len( np.where( assignments.flatten() != -1 )[0] )

    # if had input mapping, then update it
    if input_mapping != "None":
        mapping = mapping[input_mapping]
    
    # Print a statement showing how much data was discarded in trimming
    percent = (1.0 - float(n_assigns_after_trim) / float(n_assigns_before_trim)) * 100.0
    logger.warning("Ergodic trimming discarded: %f percent of your data", percent)
 
    # Save all output
    np.savetxt(FnPops, populations)
    np.savetxt(FnMap, mapping,"%d")
    scipy.io.mmwrite(str(FnTProb), t_matrix)
    scipy.io.mmwrite(str(FnTCounts), rev_counts)
    msmbuilder.io.saveh(FnAss, assignments)

    for output in outputlist:
        logger.info("Wrote: %s", output)

    return
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:46,代码来源:BuildMSM.py


示例19: test_get_count_matrix_from_assignments_1

def test_get_count_matrix_from_assignments_1():

    assignments = np.zeros((10, 10), "int")

    val = MSMLib.get_count_matrix_from_assignments(assignments).todense()
    correct = np.matrix([[90.0]])

    eq(val, correct)
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:8,代码来源:test_msmlib.py


示例20: test_get_count_matrix_from_assignments_1

def test_get_count_matrix_from_assignments_1():
    
    assignments = np.zeros((10,10))
    
    val = MSMLib.get_count_matrix_from_assignments(assignments).todense()
    correct = np.matrix([[90.0]])
    
    npt.assert_equal(val, correct)
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:8,代码来源:test_msmlib.py



注:本文中的msmbuilder.MSMLib类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python msmbuilder.Project类代码示例发布时间:2022-05-27
下一篇:
Python mslib.wait_for_element_present函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap