• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python proj.make_eeg_average_ref_proj函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.proj.make_eeg_average_ref_proj函数的典型用法代码示例。如果您正苦于以下问题:Python make_eeg_average_ref_proj函数的具体用法?Python make_eeg_average_ref_proj怎么用?Python make_eeg_average_ref_proj使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了make_eeg_average_ref_proj函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_make_eeg_average_ref_proj

def test_make_eeg_average_ref_proj():
    """Test EEG average reference projection."""
    raw = read_raw_fif(raw_fname, preload=True)
    eeg = mne.pick_types(raw.info, meg=False, eeg=True)

    # No average EEG reference
    assert not np.all(raw._data[eeg].mean(axis=0) < 1e-19)

    # Apply average EEG reference
    car = make_eeg_average_ref_proj(raw.info)
    reref = raw.copy()
    reref.add_proj(car)
    reref.apply_proj()
    assert_array_almost_equal(reref._data[eeg].mean(axis=0), 0, decimal=19)

    # Error when custom reference has already been applied
    raw.info['custom_ref_applied'] = True
    pytest.raises(RuntimeError, make_eeg_average_ref_proj, raw.info)

    # test that an average EEG ref is not added when doing proj
    raw.set_eeg_reference(projection=True)
    assert _has_eeg_average_ref_proj(raw.info['projs'])
    raw.del_proj(idx=-1)
    assert not _has_eeg_average_ref_proj(raw.info['projs'])
    raw.apply_proj()
    assert not _has_eeg_average_ref_proj(raw.info['projs'])
开发者ID:jhouck,项目名称:mne-python,代码行数:26,代码来源:test_proj.py


示例2: test_sensitivity_maps

def test_sensitivity_maps():
    """Test sensitivity map computation."""
    fwd = mne.read_forward_solution(fwd_fname)
    fwd = mne.convert_forward_solution(fwd, surf_ori=True)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        projs = read_proj(eog_fname)
        projs.extend(read_proj(ecg_fname))
    decim = 6
    for ch_type in ['eeg', 'grad', 'mag']:
        w = read_source_estimate(sensmap_fname % (ch_type, 'lh')).data
        stc = sensitivity_map(fwd, projs=None, ch_type=ch_type,
                              mode='free', exclude='bads')
        assert_array_almost_equal(stc.data, w, decim)
        assert_true(stc.subject == 'sample')
        # let's just make sure the others run
        if ch_type == 'grad':
            # fixed (2)
            w = read_source_estimate(sensmap_fname % (ch_type, '2-lh')).data
            stc = sensitivity_map(fwd, projs=None, mode='fixed',
                                  ch_type=ch_type, exclude='bads')
            assert_array_almost_equal(stc.data, w, decim)
        if ch_type == 'mag':
            # ratio (3)
            w = read_source_estimate(sensmap_fname % (ch_type, '3-lh')).data
            stc = sensitivity_map(fwd, projs=None, mode='ratio',
                                  ch_type=ch_type, exclude='bads')
            assert_array_almost_equal(stc.data, w, decim)
        if ch_type == 'eeg':
            # radiality (4), angle (5), remaining (6), and  dampening (7)
            modes = ['radiality', 'angle', 'remaining', 'dampening']
            ends = ['4-lh', '5-lh', '6-lh', '7-lh']
            for mode, end in zip(modes, ends):
                w = read_source_estimate(sensmap_fname % (ch_type, end)).data
                stc = sensitivity_map(fwd, projs=projs, mode=mode,
                                      ch_type=ch_type, exclude='bads')
                assert_array_almost_equal(stc.data, w, decim)

    # test corner case for EEG
    stc = sensitivity_map(fwd, projs=[make_eeg_average_ref_proj(fwd['info'])],
                          ch_type='eeg', exclude='bads')
    # test corner case for projs being passed but no valid ones (#3135)
    assert_raises(ValueError, sensitivity_map, fwd, projs=None, mode='angle')
    assert_raises(RuntimeError, sensitivity_map, fwd, projs=[], mode='angle')
    # test volume source space
    fname = op.join(sample_path, 'sample_audvis_trunc-meg-vol-7-fwd.fif')
    fwd = mne.read_forward_solution(fname)
    sensitivity_map(fwd)
开发者ID:HSMin,项目名称:mne-python,代码行数:48,代码来源:test_proj.py


示例3: test_make_eeg_average_ref_proj

def test_make_eeg_average_ref_proj():
    """Test EEG average reference projection"""
    raw = Raw(raw_fname, add_eeg_ref=False, preload=True)
    eeg = mne.pick_types(raw.info, meg=False, eeg=True)

    # No average EEG reference
    assert_true(not np.all(raw._data[eeg].mean(axis=0) < 1e-19))

    # Apply average EEG reference
    car = make_eeg_average_ref_proj(raw.info)
    reref = raw.copy()
    reref.add_proj(car)
    reref.apply_proj()
    assert_array_almost_equal(reref._data[eeg].mean(axis=0), 0, decimal=19)

    # Error when custom reference has already been applied
    raw.info['custom_ref_applied'] = True
    assert_raises(RuntimeError, make_eeg_average_ref_proj, raw.info)
开发者ID:The3DWizard,项目名称:mne-python,代码行数:18,代码来源:test_proj.py


示例4: test_sensitivity_maps

def test_sensitivity_maps():
    """Test sensitivity map computation."""
    fwd = mne.read_forward_solution(fwd_fname, surf_ori=True)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        projs = read_proj(eog_fname)
        projs.extend(read_proj(ecg_fname))
    decim = 6
    for ch_type in ["eeg", "grad", "mag"]:
        w = read_source_estimate(sensmap_fname % (ch_type, "lh")).data
        stc = sensitivity_map(fwd, projs=None, ch_type=ch_type, mode="free", exclude="bads")
        assert_array_almost_equal(stc.data, w, decim)
        assert_true(stc.subject == "sample")
        # let's just make sure the others run
        if ch_type == "grad":
            # fixed (2)
            w = read_source_estimate(sensmap_fname % (ch_type, "2-lh")).data
            stc = sensitivity_map(fwd, projs=None, mode="fixed", ch_type=ch_type, exclude="bads")
            assert_array_almost_equal(stc.data, w, decim)
        if ch_type == "mag":
            # ratio (3)
            w = read_source_estimate(sensmap_fname % (ch_type, "3-lh")).data
            stc = sensitivity_map(fwd, projs=None, mode="ratio", ch_type=ch_type, exclude="bads")
            assert_array_almost_equal(stc.data, w, decim)
        if ch_type == "eeg":
            # radiality (4), angle (5), remaining (6), and  dampening (7)
            modes = ["radiality", "angle", "remaining", "dampening"]
            ends = ["4-lh", "5-lh", "6-lh", "7-lh"]
            for mode, end in zip(modes, ends):
                w = read_source_estimate(sensmap_fname % (ch_type, end)).data
                stc = sensitivity_map(fwd, projs=projs, mode=mode, ch_type=ch_type, exclude="bads")
                assert_array_almost_equal(stc.data, w, decim)

    # test corner case for EEG
    stc = sensitivity_map(fwd, projs=[make_eeg_average_ref_proj(fwd["info"])], ch_type="eeg", exclude="bads")
    # test corner case for projs being passed but no valid ones (#3135)
    assert_raises(ValueError, sensitivity_map, fwd, projs=None, mode="angle")
    assert_raises(RuntimeError, sensitivity_map, fwd, projs=[], mode="angle")
    # test volume source space
    fname = op.join(sample_path, "sample_audvis_trunc-meg-vol-7-fwd.fif")
    fwd = mne.read_forward_solution(fname)
    sensitivity_map(fwd)
开发者ID:nwilming,项目名称:mne-python,代码行数:42,代码来源:test_proj.py


示例5: test_sensitivity_maps

def test_sensitivity_maps():
    """Test sensitivity map computation"""
    fwd = mne.read_forward_solution(fwd_fname, surf_ori=True)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        proj_eog = read_proj(eog_fname)
    decim = 6
    for ch_type in ['eeg', 'grad', 'mag']:
        w = read_source_estimate(sensmap_fname % (ch_type, 'lh')).data
        stc = sensitivity_map(fwd, projs=None, ch_type=ch_type,
                              mode='free', exclude='bads')
        assert_array_almost_equal(stc.data, w, decim)
        assert_true(stc.subject == 'sample')
        # let's just make sure the others run
        if ch_type == 'grad':
            # fixed (2)
            w = read_source_estimate(sensmap_fname % (ch_type, '2-lh')).data
            stc = sensitivity_map(fwd, projs=None, mode='fixed',
                                  ch_type=ch_type, exclude='bads')
            assert_array_almost_equal(stc.data, w, decim)
        if ch_type == 'mag':
            # ratio (3)
            w = read_source_estimate(sensmap_fname % (ch_type, '3-lh')).data
            stc = sensitivity_map(fwd, projs=None, mode='ratio',
                                  ch_type=ch_type, exclude='bads')
            assert_array_almost_equal(stc.data, w, decim)
        if ch_type == 'eeg':
            # radiality (4), angle (5), remaining (6), and  dampening (7)
            modes = ['radiality', 'angle', 'remaining', 'dampening']
            ends = ['4-lh', '5-lh', '6-lh', '7-lh']
            for mode, end in zip(modes, ends):
                w = read_source_estimate(sensmap_fname % (ch_type, end)).data
                stc = sensitivity_map(fwd, projs=proj_eog, mode=mode,
                                      ch_type=ch_type, exclude='bads')
                assert_array_almost_equal(stc.data, w, decim)

    # test corner case for EEG
    stc = sensitivity_map(fwd, projs=[make_eeg_average_ref_proj(fwd['info'])],
                          ch_type='eeg', exclude='bads')
开发者ID:Lem97,项目名称:mne-python,代码行数:39,代码来源:test_proj.py


示例6: test_dipole_fitting

def test_dipole_fitting():
    """Test dipole fitting"""
    amp = 10e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False, force_fixed=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
                for s in fwd['src']]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    with warnings.catch_warnings(record=True):  # semi-def cov
        evoked = generate_evoked(fwd, stc, evoked, cov, snr=20,
                                 random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(np.concatenate([
        pick_types(evoked.info, meg=True, eeg=False)[::2],
        pick_types(evoked.info, meg=False, eeg=True)[::2]]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
        '--noise', fname_cov, '--dip', fname_dtemp,
        '--mri', fname_fwd, '--reg', '0', '--tmin', '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals ** 2, axis=0))
    assert_true((data_rms > resi_rms).all())

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    dip.crop(dip_c.times[0], dip_c.times[-1])
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did at least as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
                                                     axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    assert_true(dists[0] >= dists[1], 'dists: %s' % dists)
    assert_true(corrs[0] <= corrs[1], 'corrs: %s' % corrs)
    assert_true(gc_dists[0] >= gc_dists[1], 'gc-dists (ori): %s' % gc_dists)
    assert_true(amp_errs[0] >= amp_errs[1], 'amplitude errors: %s' % amp_errs)
开发者ID:ImmanuelSamuel,项目名称:mne-python,代码行数:71,代码来源:test_dipole.py


示例7: test_dipole_fitting

def test_dipole_fitting():
    """Test dipole fitting"""
    amp = 10e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, "test.dip")
    fname_sim = op.join(tempdir, "test-ave.fif")
    fwd = convert_forward_solution(read_forward_solution(fname_fwd), surf_ori=False, force_fixed=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s["vertno"])[:n_per_hemi]) for s in fwd["src"]]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd, stc, evoked.info, cov, snr=20, random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(
        np.concatenate(
            [pick_types(evoked.info, meg=True, eeg=False)[::2], pick_types(evoked.info, meg=False, eeg=True)[::2]]
        )
    )
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess(
        [
            "mne_dipole_fit",
            "--meas",
            fname_sim,
            "--meg",
            "--eeg",
            "--noise",
            fname_cov,
            "--dip",
            fname_dtemp,
            "--mri",
            fname_fwd,
            "--reg",
            "0",
            "--tmin",
            "0",
        ]
    )
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals ** 2, axis=0))
    factor = 1.0
    # XXX weird, inexplicable differenc for 3.5 build we'll assume is due to
    # Anaconda bug for now...
    if os.getenv("TRAVIS", "false") == "true" and sys.version[:3] in ("3.5", "2.7"):
        factor = 0.8
    assert_true((data_rms > factor * resi_rms).all(), msg="%s (factor: %s)" % ((data_rms / resi_rms).min(), factor))

    # Compare to original points
    transform_surface_to(fwd["src"][0], "head", fwd["mri_head_t"])
    transform_surface_to(fwd["src"][1], "head", fwd["mri_head_t"])
    src_rr = np.concatenate([s["rr"][v] for s, v in zip(fwd["src"], vertices)], axis=0)
    src_nn = np.concatenate([s["nn"][v] for s, v in zip(fwd["src"], vertices)], axis=0)

    # MNE-C skips the last "time" point :(
    dip.crop(dip_c.times[0], dip_c.times[-1])
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did at least as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    assert_true(dists[0] >= dists[1] * factor, "dists: %s" % dists)
    assert_true(corrs[0] <= corrs[1] / factor, "corrs: %s" % corrs)
    assert_true(gc_dists[0] >= gc_dists[1] * factor, "gc-dists (ori): %s" % gc_dists)
    assert_true(amp_errs[0] >= amp_errs[1] * factor, "amplitude errors: %s" % amp_errs)
    assert_true(gofs[0] <= gofs[1] / factor, "gof: %s" % gofs)
开发者ID:demianw,项目名称:mne-python,代码行数:86,代码来源:test_dipole.py


示例8: test_dipole_fitting

def test_dipole_fitting():
    """Test dipole fitting."""
    amp = 100e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False, force_fixed=True,
                                   use_cps=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
                for s in fwd['src']]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd, stc, evoked.info, cov, nave=evoked.nave,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(np.concatenate([
        pick_types(evoked.info, meg=True, eeg=False)[::2],
        pick_types(evoked.info, meg=False, eeg=True)[::2]]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
        '--noise', fname_cov, '--dip', fname_dtemp,
        '--mri', fname_fwd, '--reg', '0', '--tmin', '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    with pytest.warns(RuntimeWarning, match='projection'):
        dip, residual = fit_dipole(evoked, cov, sphere, fname_fwd)
    assert isinstance(residual, Evoked)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residual.data ** 2, axis=0))
    assert (data_rms > resi_rms * 0.95).all(), \
        '%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    assert_equal(fwd['src'][0]['coord_frame'], FIFF.FIFFV_COORD_HEAD)
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    out = dip.crop(dip_c.times[0], dip_c.times[-1])
    assert (dip is out)
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did about as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
                                                     axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    # XXX possibly some OpenBLAS numerical differences make
    # things slightly worse for us
    factor = 0.7
    assert dists[0] / factor >= dists[1], 'dists: %s' % dists
    assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
    assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
        'gc-dists (ori): %s' % gc_dists
    assert amp_errs[0] / factor >= amp_errs[1],\
        'amplitude errors: %s' % amp_errs
    # This one is weird because our cov/sim/picking is weird
    assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs
开发者ID:SherazKhan,项目名称:mne-python,代码行数:83,代码来源:test_dipole.py


示例9: DeFleCT_make_estimator

def DeFleCT_make_estimator(forward, noise_cov, labels, lambda2_cov=3/10.,
                           lambda2_S=1/9., pick_meg=True, pick_eeg=False,
                           mode='svd', n_svd_comp=1, verbose=None):
    """
    Create the DeFleCT estimator for a set of labels

    Parameters:
    -----------
    forward: forward solution (assumes surf_ori=True)
    noise_cov: noise covariance matrix
    lambda2_cov: regularisation paramter for noise covariance matrix (whitening)
    pick_meg: Which MEG channels to pick (True/False/'grad'/'mag')
    pick_eeg: Which EEG channels to pick (True/False)
    labels: list of labels, first one is the target for DeFleCT
    mode : 'mean' | 'sum' | 'svd' |
        PSFs can be computed for different summary measures with labels:
        'sum' or 'mean': sum or means of sub-leadfields for labels
        This corresponds to situations where labels can be assumed to be
        homogeneously activated.
        'svd': SVD components of sub-leadfields for labels
        This is better suited for situations where activation patterns are
        assumed to be more variable.
        "sub-leadfields" are the parts of the forward solutions that belong to
        vertices within invidual labels.
    n_svd_comp : integer
        Number of SVD components for which PSFs will be computed and output
        (irrelevant for 'sum' and 'mean'). Explained variances within
        sub-leadfields are shown in screen output.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns:
    --------
    w: np-array (1xn_chan), spatial filter for first column of P
    F: np-array, whitened leadfield matrix (n_chan x n_vert)
    P: np-array, whitened projection matrix (n_chan x n_comp)
    noise_cov_mat: noise covariance matrix as used in DeFleCT
    whitener: whitening matrix as used in DeFleCT
    """
    
    # get wanted channels
    picks = pick_types(forward['info'], meg=pick_meg, eeg=pick_eeg, eog=False,
                        stim=False, exclude='bads')     
    
    fwd_ch_names_all = [c['ch_name'] for c in forward['info']['chs']]
    fwd_ch_names = [fwd_ch_names_all[pp] for pp in picks]
    ch_names = [c for c in fwd_ch_names
                if ((c not in noise_cov['bads']) and
                    (c not in forward['info']['bads'])) and
                    (c in noise_cov.ch_names)]         

    if not len(forward['info']['bads']) == len(noise_cov['bads']) or \
            not all([b in noise_cov['bads'] for b in forward['info']['bads']]):
        logger.info('\nforward["info"]["bads"] and noise_cov["bads"] do not '
            'match excluding bad channels from both')

    # reduce forward to desired channels
    forward = pick_channels_forward(forward, ch_names) 
    noise_cov = pick_channels_cov(noise_cov, ch_names)
    
    logger.info("\nNoise covariance matrix has %d channels." % 
                                                    noise_cov.data.shape[0] )

    info_fwd = deepcopy(forward['info'])
    info_fwd['sfreq'] = 1000.
    if pick_eeg:        
        avgproj = make_eeg_average_ref_proj(info_fwd, activate=True)
        info_fwd['projs'] = []
        info_fwd['projs'].append(avgproj)        
    else:
        info_fwd['projs'] = noise_cov['projs']
    
    if lambda2_cov:  # regularize covariance matrix "old style"
        lbd = lambda2_cov
        noise_cov_reg = cov_regularize(noise_cov, info_fwd, mag=lbd['mag'],
                                    grad=lbd['gra'], eeg=lbd['eeg'], proj=True)
    else:  # use cov_mat as is
        noise_cov_reg = noise_cov

    fwd_info, leadfield, noise_cov_fwd, whitener, n_nzero = _prepare_forward(
                             forward, info_fwd, noise_cov_reg,
                             pca=False, rank=None, verbose=None)
    leadfield = leadfield[:,2::3]  # assumes surf_ori=True, (normal component)
    n_chan, n_vert = leadfield.shape
    logger.info("\nLeadfield has dimensions %d by %d\n" % (n_chan, n_vert))    

    # if EEG present: remove mean of columns for EEG (average-reference)
    if pick_eeg:
        print "\nReferening EEG \n"
        EEG_idx = [cc for cc in range(len(ch_names)) if ch_names[cc][:3]=='EEG']
        nr_eeg = len(EEG_idx)
        lfdmean = leadfield[EEG_idx,:].mean(axis=0)
        leadfield[EEG_idx,:] = leadfield[EEG_idx,:] - lfdmean[np.newaxis,:]

    #### CREATE SUBLEADFIELDs FOR LABELS
    # extract SUBLEADFIELDS for labels
    label_lfd_summary = DeFleCT_make_subleadfields(labels, forward, leadfield,
                            mode='svd', n_svd_comp=n_svd_comp, verbose=None)

    #### COMPUTE DEFLECT ESTIMATOR
#.........这里部分代码省略.........
开发者ID:olafhauk,项目名称:mne-python,代码行数:101,代码来源:DeFleCT.py



注:本文中的mne.proj.make_eeg_average_ref_proj函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python realtime.MockRtClient类代码示例发布时间:2022-05-27
下一篇:
Python maxwell.maxwell_filter函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap