• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python io.concatenate_raws函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.io.concatenate_raws函数的典型用法代码示例。如果您正苦于以下问题:Python concatenate_raws函数的具体用法?Python concatenate_raws怎么用?Python concatenate_raws使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了concatenate_raws函数的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_basics

def test_basics():
    """Test annotation class."""
    raw = read_raw_fif(fif_fname)
    assert raw.annotations is not None  # XXX to be fixed in #5416
    assert len(raw.annotations.onset) == 0  # XXX to be fixed in #5416
    pytest.raises(IOError, read_annotations, fif_fname)
    onset = np.array(range(10))
    duration = np.ones(10)
    description = np.repeat('test', 10)
    dt = datetime.utcnow()
    meas_date = raw.info['meas_date']
    # Test time shifts.
    for orig_time in [None, dt, meas_date[0], meas_date]:
        annot = Annotations(onset, duration, description, orig_time)

    pytest.raises(ValueError, Annotations, onset, duration, description[:9])
    pytest.raises(ValueError, Annotations, [onset, 1], duration, description)
    pytest.raises(ValueError, Annotations, onset, [duration, 1], description)

    # Test combining annotations with concatenate_raws
    raw2 = raw.copy()
    delta = raw.times[-1] + 1. / raw.info['sfreq']
    orig_time = (meas_date[0] + meas_date[1] * 1e-6 + raw2._first_time)
    offset = orig_time - _handle_meas_date(raw2.info['meas_date'])
    annot = Annotations(onset, duration, description, orig_time)
    assert ' segments' in repr(annot)
    raw2.set_annotations(annot)
    assert_array_equal(raw2.annotations.onset, onset + offset)
    assert id(raw2.annotations) != id(annot)
    concatenate_raws([raw, raw2])
    assert_and_remove_boundary_annot(raw)
    assert_allclose(onset + offset + delta, raw.annotations.onset, rtol=1e-5)
    assert_array_equal(annot.duration, raw.annotations.duration)
    assert_array_equal(raw.annotations.description, np.repeat('test', 10))
开发者ID:adykstra,项目名称:mne-python,代码行数:34,代码来源:test_annotations.py


示例2: test_annotations

def test_annotations():
    """Test annotation class."""
    raw = Raw(fif_fname)
    onset = np.array(range(10))
    duration = np.ones(10) + raw.first_samp
    description = np.repeat('test', 10)
    dt = datetime.utcnow()
    meas_date = raw.info['meas_date']
    # Test time shifts.
    for orig_time in [None, dt, meas_date[0], meas_date]:
        annot = Annotations(onset, duration, description, orig_time)

    assert_raises(ValueError, Annotations, onset, duration, description[:9])
    assert_raises(ValueError, Annotations, [onset, 1], duration, description)
    assert_raises(ValueError, Annotations, onset, [duration, 1], description)

    # Test combining annotations with concatenate_raws
    annot = Annotations(onset, duration, description, dt)
    sfreq = raw.info['sfreq']
    raw2 = raw.copy()
    raw2.annotations = annot
    concatenate_raws([raw, raw2])
    assert_array_equal(annot.onset, raw.annotations.onset)
    assert_array_equal(annot.duration, raw.annotations.duration)

    raw2.annotations = Annotations(onset, duration * 2, description, None)
    last_samp = raw.last_samp - 1
    concatenate_raws([raw, raw2])
    onsets = np.concatenate([onset,
                             onset + (last_samp - raw.first_samp) / sfreq])
    assert_array_equal(raw.annotations.onset, onsets)
    assert_array_equal(raw.annotations.onset[:10], onset)
    assert_array_equal(raw.annotations.duration[:10], duration)
    assert_array_equal(raw.annotations.duration[10:], duration * 2)
    assert_array_equal(raw.annotations.description, np.repeat('test', 20))
开发者ID:EmanuelaLiaci,项目名称:mne-python,代码行数:35,代码来源:test_annotations.py


示例3: test_resample

def test_resample():
    """Test resample (with I/O and multiple files)
    """
    tempdir = _TempDir()
    raw = Raw(fif_fname).crop(0, 3, False)
    raw.preload_data()
    raw_resamp = raw.copy()
    sfreq = raw.info['sfreq']
    # test parallel on upsample
    raw_resamp.resample(sfreq * 2, n_jobs=2)
    assert_equal(raw_resamp.n_times, len(raw_resamp.times))
    raw_resamp.save(op.join(tempdir, 'raw_resamp-raw.fif'))
    raw_resamp = Raw(op.join(tempdir, 'raw_resamp-raw.fif'), preload=True)
    assert_equal(sfreq, raw_resamp.info['sfreq'] / 2)
    assert_equal(raw.n_times, raw_resamp.n_times / 2)
    assert_equal(raw_resamp._data.shape[1], raw_resamp.n_times)
    assert_equal(raw._data.shape[0], raw_resamp._data.shape[0])
    # test non-parallel on downsample
    raw_resamp.resample(sfreq, n_jobs=1)
    assert_equal(raw_resamp.info['sfreq'], sfreq)
    assert_equal(raw._data.shape, raw_resamp._data.shape)
    assert_equal(raw.first_samp, raw_resamp.first_samp)
    assert_equal(raw.last_samp, raw.last_samp)
    # upsampling then downsampling doubles resampling error, but this still
    # works (hooray). Note that the stim channels had to be sub-sampled
    # without filtering to be accurately preserved
    # note we have to treat MEG and EEG+STIM channels differently (tols)
    assert_allclose(raw._data[:306, 200:-200],
                    raw_resamp._data[:306, 200:-200],
                    rtol=1e-2, atol=1e-12)
    assert_allclose(raw._data[306:, 200:-200],
                    raw_resamp._data[306:, 200:-200],
                    rtol=1e-2, atol=1e-7)

    # now check multiple file support w/resampling, as order of operations
    # (concat, resample) should not affect our data
    raw1 = raw.copy()
    raw2 = raw.copy()
    raw3 = raw.copy()
    raw4 = raw.copy()
    raw1 = concatenate_raws([raw1, raw2])
    raw1.resample(10)
    raw3.resample(10)
    raw4.resample(10)
    raw3 = concatenate_raws([raw3, raw4])
    assert_array_equal(raw1._data, raw3._data)
    assert_array_equal(raw1._first_samps, raw3._first_samps)
    assert_array_equal(raw1._last_samps, raw3._last_samps)
    assert_array_equal(raw1._raw_lengths, raw3._raw_lengths)
    assert_equal(raw1.first_samp, raw3.first_samp)
    assert_equal(raw1.last_samp, raw3.last_samp)
    assert_equal(raw1.info['sfreq'], raw3.info['sfreq'])
开发者ID:Odingod,项目名称:mne-python,代码行数:52,代码来源:test_raw.py


示例4: test_crop

def test_crop():
    """Test cropping raw files
    """
    # split a concatenated file to test a difficult case
    raw = Raw([fif_fname, fif_fname], preload=False)
    split_size = 10.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp + 1)

    # do an annoying case (off-by-one splitting)
    tmins = np.r_[1., np.round(np.arange(0., nsamp - 1, split_size * sfreq))]
    tmins = np.sort(tmins)
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
    tmaxs /= sfreq
    tmins /= sfreq
    raws = [None] * len(tmins)
    for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
        raws[ri] = raw.crop(tmin, tmax, True)
    all_raw_2 = concatenate_raws(raws, preload=False)
    assert_equal(raw.first_samp, all_raw_2.first_samp)
    assert_equal(raw.last_samp, all_raw_2.last_samp)
    assert_array_equal(raw[:, :][0], all_raw_2[:, :][0])

    tmins = np.round(np.arange(0., nsamp - 1, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
    tmaxs /= sfreq
    tmins /= sfreq

    # going in revere order so the last fname is the first file (need it later)
    raws = [None] * len(tmins)
    for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
        raws[ri] = raw.copy()
        raws[ri].crop(tmin, tmax, False)
    # test concatenation of split file
    all_raw_1 = concatenate_raws(raws, preload=False)

    all_raw_2 = raw.crop(0, None, True)
    for ar in [all_raw_1, all_raw_2]:
        assert_equal(raw.first_samp, ar.first_samp)
        assert_equal(raw.last_samp, ar.last_samp)
        assert_array_equal(raw[:, :][0], ar[:, :][0])

    # test shape consistency of cropped raw
    data = np.zeros((1, 1002001))
    info = create_info(1, 1000)
    raw = RawArray(data, info)
    for tmin in range(0, 1001, 100):
        raw1 = raw.crop(tmin=tmin, tmax=tmin + 2, copy=True)
        assert_equal(raw1[:][0].shape, (1, 2001))
开发者ID:Pablo-Arias,项目名称:mne-python,代码行数:49,代码来源:test_raw_fiff.py


示例5: test_annotations

def test_annotations():
    """Test annotation class."""
    raw = read_raw_fif(fif_fname)
    onset = np.array(range(10))
    duration = np.ones(10)
    description = np.repeat('test', 10)
    dt = datetime.utcnow()
    meas_date = raw.info['meas_date']
    # Test time shifts.
    for orig_time in [None, dt, meas_date[0], meas_date]:
        annot = Annotations(onset, duration, description, orig_time)

    assert_raises(ValueError, Annotations, onset, duration, description[:9])
    assert_raises(ValueError, Annotations, [onset, 1], duration, description)
    assert_raises(ValueError, Annotations, onset, [duration, 1], description)

    # Test combining annotations with concatenate_raws
    raw2 = raw.copy()
    orig_time = (meas_date[0] + meas_date[1] * 0.000001 +
                 raw2.first_samp / raw2.info['sfreq'])
    annot = Annotations(onset, duration, description, orig_time)
    raw2.annotations = annot
    assert_array_equal(raw2.annotations.onset, onset)
    concatenate_raws([raw, raw2])
    assert_array_almost_equal(onset + 20., raw.annotations.onset, decimal=2)
    assert_array_equal(annot.duration, raw.annotations.duration)
    assert_array_equal(raw.annotations.description, np.repeat('test', 10))

    # Test combining with RawArray and orig_times
    data = np.random.randn(2, 1000) * 10e-12
    sfreq = 100.
    info = create_info(ch_names=['MEG1', 'MEG2'], ch_types=['grad'] * 2,
                       sfreq=sfreq)
    info['meas_date'] = 0
    raws = []
    for i, fs in enumerate([1000, 100, 12]):
        raw = RawArray(data.copy(), info, first_samp=fs)
        ants = Annotations([1., 2.], [.5, .5], 'x', fs / sfreq)
        raw.annotations = ants
        raws.append(raw)
    raw = concatenate_raws(raws)
    assert_array_equal(raw.annotations.onset, [1., 2., 11., 12., 21., 22.])
    raw.annotations.delete(2)
    assert_array_equal(raw.annotations.onset, [1., 2., 12., 21., 22.])
    raw.annotations.append(5, 1.5, 'y')
    assert_array_equal(raw.annotations.onset, [1., 2., 12., 21., 22., 5])
    assert_array_equal(raw.annotations.duration, [.5, .5, .5, .5, .5, 1.5])
    assert_array_equal(raw.annotations.description, ['x', 'x', 'x', 'x', 'x',
                                                     'y'])
开发者ID:hoechenberger,项目名称:mne-python,代码行数:49,代码来源:test_annotations.py


示例6: test_crop

def test_crop():
    """Test cropping raw files
    """
    # split a concatenated file to test a difficult case
    raw = Raw([fif_fname, fif_fname], preload=False)
    split_size = 10.0  # in seconds
    sfreq = raw.info["sfreq"]
    nsamp = raw.last_samp - raw.first_samp + 1

    # do an annoying case (off-by-one splitting)
    tmins = np.r_[1.0, np.round(np.arange(0.0, nsamp - 1, split_size * sfreq))]
    tmins = np.sort(tmins)
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
    tmaxs /= sfreq
    tmins /= sfreq
    raws = [None] * len(tmins)
    for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
        raws[ri] = raw.crop(tmin, tmax, True)
    all_raw_2 = concatenate_raws(raws, preload=False)
    assert_equal(raw.first_samp, all_raw_2.first_samp)
    assert_equal(raw.last_samp, all_raw_2.last_samp)
    assert_array_equal(raw[:, :][0], all_raw_2[:, :][0])

    tmins = np.round(np.arange(0.0, nsamp - 1, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
    tmaxs /= sfreq
    tmins /= sfreq

    # going in revere order so the last fname is the first file (need it later)
    raws = [None] * len(tmins)
    for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
        raws[ri] = raw.copy()
        raws[ri].crop(tmin, tmax, False)
    # test concatenation of split file
    all_raw_1 = concatenate_raws(raws, preload=False)

    all_raw_2 = raw.crop(0, None, True)
    for ar in [all_raw_1, all_raw_2]:
        assert_equal(raw.first_samp, ar.first_samp)
        assert_equal(raw.last_samp, ar.last_samp)
        assert_array_equal(raw[:, :][0], ar[:, :][0])
开发者ID:jasmainak,项目名称:mne-python,代码行数:41,代码来源:test_raw.py


示例7: test_annotation_epoching

def test_annotation_epoching():
    """Test that annotations work properly with concatenated edges."""
    # Create data with just a DC component
    data = np.ones((1, 1000))
    info = create_info(1, 1000., 'eeg')
    raw = concatenate_raws([RawArray(data, info) for ii in range(3)])
    events = np.array([[a, 0, 1] for a in [0, 500, 1000, 1500, 2000]])
    epochs = Epochs(raw, events, tmin=0, tmax=0.999, baseline=None,
                    preload=True)  # 1000 samples long
    assert_equal(len(epochs.drop_log), len(events))
    assert_equal(len(epochs), 3)
    assert_equal([0, 2, 4], epochs.selection)
开发者ID:nfoti,项目名称:mne-python,代码行数:12,代码来源:test_annotations.py


示例8: test_annotation_filtering

def test_annotation_filtering():
    """Test that annotations work properly with filtering."""
    # Create data with just a DC component
    data = np.ones((1, 1000))
    info = create_info(1, 1000., 'eeg')
    raws = [RawArray(data * (ii + 1), info) for ii in range(4)]
    kwargs_pass = dict(l_freq=None, h_freq=50., fir_design='firwin')
    kwargs_stop = dict(l_freq=50., h_freq=None, fir_design='firwin')
    # lowpass filter, which should not modify the data
    raws_pass = [raw.copy().filter(**kwargs_pass) for raw in raws]
    # highpass filter, which should zero it out
    raws_stop = [raw.copy().filter(**kwargs_stop) for raw in raws]
    # concat the original and the filtered segments
    raws_concat = concatenate_raws([raw.copy() for raw in raws])
    raws_zero = raws_concat.copy().apply_function(lambda x: x * 0)
    raws_pass_concat = concatenate_raws(raws_pass)
    raws_stop_concat = concatenate_raws(raws_stop)
    # make sure we did something reasonable with our individual-file filtering
    assert_allclose(raws_concat[0][0], raws_pass_concat[0][0], atol=1e-14)
    assert_allclose(raws_zero[0][0], raws_stop_concat[0][0], atol=1e-14)
    # ensure that our Annotations cut up the filtering properly
    raws_concat_pass = raws_concat.copy().filter(skip_by_annotation='edge',
                                                 **kwargs_pass)
    assert_allclose(raws_concat[0][0], raws_concat_pass[0][0], atol=1e-14)
    raws_concat_stop = raws_concat.copy().filter(skip_by_annotation='edge',
                                                 **kwargs_stop)
    assert_allclose(raws_zero[0][0], raws_concat_stop[0][0], atol=1e-14)
    # one last test: let's cut out a section entirely:
    # here the 1-3 second window should be skipped
    raw = raws_concat.copy()
    raw.annotations.append(1., 2., 'foo')
    raw.filter(l_freq=50., h_freq=None, fir_design='firwin',
               skip_by_annotation='foo')
    # our filter will zero out anything not skipped:
    mask = np.concatenate((np.zeros(1000), np.ones(2000), np.zeros(1000)))
    expected_data = raws_concat[0][0][0] * mask
    assert_allclose(raw[0][0][0], expected_data, atol=1e-14)
开发者ID:nfoti,项目名称:mne-python,代码行数:37,代码来源:test_annotations.py


示例9: test_raw_array_orig_times

def test_raw_array_orig_times():
    """Test combining with RawArray and orig_times."""
    data = np.random.randn(2, 1000) * 10e-12
    sfreq = 100.
    info = create_info(ch_names=['MEG1', 'MEG2'], ch_types=['grad'] * 2,
                       sfreq=sfreq)
    info['meas_date'] = (np.pi, 0)
    raws = []
    for first_samp in [12300, 100, 12]:
        raw = RawArray(data.copy(), info, first_samp=first_samp)
        ants = Annotations([1., 2.], [.5, .5], 'x', np.pi + first_samp / sfreq)
        raw.set_annotations(ants)
        raws.append(raw)
    raw = RawArray(data.copy(), info)
    raw.set_annotations(Annotations([1.], [.5], 'x', None))
    raws.append(raw)
    raw = concatenate_raws(raws, verbose='debug')
    assert_and_remove_boundary_annot(raw, 3)
    assert_array_equal(raw.annotations.onset, [124., 125., 134., 135.,
                                               144., 145., 154.])
    raw.annotations.delete(2)
    assert_array_equal(raw.annotations.onset, [124., 125., 135., 144.,
                                               145., 154.])
    raw.annotations.append(5, 1.5, 'y')
    assert_array_equal(raw.annotations.onset,
                       [5., 124., 125., 135., 144., 145., 154.])
    assert_array_equal(raw.annotations.duration,
                       [1.5, .5, .5, .5, .5, .5, .5])
    assert_array_equal(raw.annotations.description,
                       ['y', 'x', 'x', 'x', 'x', 'x', 'x'])

    # These three things should be equivalent
    expected_orig_time = (raw.info['meas_date'][0] +
                          raw.info['meas_date'][1] / 1000000)
    for empty_annot in (
            Annotations([], [], [], expected_orig_time),
            Annotations([], [], [], None),
            None):
        raw.set_annotations(empty_annot)
        assert isinstance(raw.annotations, Annotations)
        assert len(raw.annotations) == 0
        assert raw.annotations.orig_time == expected_orig_time
开发者ID:adykstra,项目名称:mne-python,代码行数:42,代码来源:test_annotations.py


示例10: test_resample

def test_resample():
    """Test resample (with I/O and multiple files)
    """
    tempdir = _TempDir()
    raw = Raw(fif_fname).crop(0, 3, False)
    raw.load_data()
    raw_resamp = raw.copy()
    sfreq = raw.info['sfreq']
    # test parallel on upsample
    raw_resamp.resample(sfreq * 2, n_jobs=2, npad='auto')
    assert_equal(raw_resamp.n_times, len(raw_resamp.times))
    raw_resamp.save(op.join(tempdir, 'raw_resamp-raw.fif'))
    raw_resamp = Raw(op.join(tempdir, 'raw_resamp-raw.fif'), preload=True)
    assert_equal(sfreq, raw_resamp.info['sfreq'] / 2)
    assert_equal(raw.n_times, raw_resamp.n_times / 2)
    assert_equal(raw_resamp._data.shape[1], raw_resamp.n_times)
    assert_equal(raw._data.shape[0], raw_resamp._data.shape[0])
    # test non-parallel on downsample
    raw_resamp.resample(sfreq, n_jobs=1, npad='auto')
    assert_equal(raw_resamp.info['sfreq'], sfreq)
    assert_equal(raw._data.shape, raw_resamp._data.shape)
    assert_equal(raw.first_samp, raw_resamp.first_samp)
    assert_equal(raw.last_samp, raw.last_samp)
    # upsampling then downsampling doubles resampling error, but this still
    # works (hooray). Note that the stim channels had to be sub-sampled
    # without filtering to be accurately preserved
    # note we have to treat MEG and EEG+STIM channels differently (tols)
    assert_allclose(raw._data[:306, 200:-200],
                    raw_resamp._data[:306, 200:-200],
                    rtol=1e-2, atol=1e-12)
    assert_allclose(raw._data[306:, 200:-200],
                    raw_resamp._data[306:, 200:-200],
                    rtol=1e-2, atol=1e-7)

    # now check multiple file support w/resampling, as order of operations
    # (concat, resample) should not affect our data
    raw1 = raw.copy()
    raw2 = raw.copy()
    raw3 = raw.copy()
    raw4 = raw.copy()
    raw1 = concatenate_raws([raw1, raw2])
    raw1.resample(10., npad='auto')
    raw3.resample(10., npad='auto')
    raw4.resample(10., npad='auto')
    raw3 = concatenate_raws([raw3, raw4])
    assert_array_equal(raw1._data, raw3._data)
    assert_array_equal(raw1._first_samps, raw3._first_samps)
    assert_array_equal(raw1._last_samps, raw3._last_samps)
    assert_array_equal(raw1._raw_lengths, raw3._raw_lengths)
    assert_equal(raw1.first_samp, raw3.first_samp)
    assert_equal(raw1.last_samp, raw3.last_samp)
    assert_equal(raw1.info['sfreq'], raw3.info['sfreq'])

    # test resampling of stim channel

    # basic decimation
    stim = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
    raw = RawArray([stim], create_info(1, len(stim), ['stim']))
    assert_allclose(raw.resample(8., npad='auto')._data,
                    [[1, 1, 0, 0, 1, 1, 0, 0]])

    # decimation of multiple stim channels
    raw = RawArray(2 * [stim], create_info(2, len(stim), 2 * ['stim']))
    assert_allclose(raw.resample(8., npad='auto')._data,
                    [[1, 1, 0, 0, 1, 1, 0, 0],
                     [1, 1, 0, 0, 1, 1, 0, 0]])

    # decimation that could potentially drop events if the decimation is
    # done naively
    stim = [0, 0, 0, 1, 1, 0, 0, 0]
    raw = RawArray([stim], create_info(1, len(stim), ['stim']))
    assert_allclose(raw.resample(4., npad='auto')._data,
                    [[0, 1, 1, 0]])

    # two events are merged in this case (warning)
    stim = [0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0]
    raw = RawArray([stim], create_info(1, len(stim), ['stim']))
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        raw.resample(8., npad='auto')
        assert_true(len(w) == 1)

    # events are dropped in this case (warning)
    stim = [0, 1, 1, 0, 0, 1, 1, 0]
    raw = RawArray([stim], create_info(1, len(stim), ['stim']))
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        raw.resample(4., npad='auto')
        assert_true(len(w) == 1)

    # test resampling events: this should no longer give a warning
    stim = [0, 1, 1, 0, 0, 1, 1, 0]
    raw = RawArray([stim], create_info(1, len(stim), ['stim']))
    events = find_events(raw)
    raw, events = raw.resample(4., events=events, npad='auto')
    assert_equal(events, np.array([[0, 0, 1], [2, 0, 1]]))

    # test copy flag
    stim = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
    raw = RawArray([stim], create_info(1, len(stim), ['stim']))
#.........这里部分代码省略.........
开发者ID:Pablo-Arias,项目名称:mne-python,代码行数:101,代码来源:test_raw_fiff.py


示例11: test_multiple_files

def test_multiple_files():
    """Test loading multiple files simultaneously
    """
    # split file
    tempdir = _TempDir()
    raw = Raw(fif_fname).crop(0, 10, False)
    raw.load_data()
    raw.load_data()  # test no operation
    split_size = 3.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp)
    tmins = np.round(np.arange(0., nsamp, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp]))
    tmaxs /= sfreq
    tmins /= sfreq
    assert_equal(raw.n_times, len(raw.times))

    # going in reverse order so the last fname is the first file (need later)
    raws = [None] * len(tmins)
    for ri in range(len(tmins) - 1, -1, -1):
        fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri)
        raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri])
        raws[ri] = Raw(fname)
    events = [find_events(r, stim_channel='STI 014') for r in raws]
    last_samps = [r.last_samp for r in raws]
    first_samps = [r.first_samp for r in raws]

    # test concatenation of split file
    assert_raises(ValueError, concatenate_raws, raws, True, events[1:])
    all_raw_1, events1 = concatenate_raws(raws, preload=False,
                                          events_list=events)
    assert_equal(raw.first_samp, all_raw_1.first_samp)
    assert_equal(raw.last_samp, all_raw_1.last_samp)
    assert_allclose(raw[:, :][0], all_raw_1[:, :][0])
    raws[0] = Raw(fname)
    all_raw_2 = concatenate_raws(raws, preload=True)
    assert_allclose(raw[:, :][0], all_raw_2[:, :][0])

    # test proper event treatment for split files
    events2 = concatenate_events(events, first_samps, last_samps)
    events3 = find_events(all_raw_2, stim_channel='STI 014')
    assert_array_equal(events1, events2)
    assert_array_equal(events1, events3)

    # test various methods of combining files
    raw = Raw(fif_fname, preload=True)
    n_times = raw.n_times
    # make sure that all our data match
    times = list(range(0, 2 * n_times, 999))
    # add potentially problematic points
    times.extend([n_times - 1, n_times, 2 * n_times - 1])

    raw_combo0 = Raw([fif_fname, fif_fname], preload=True)
    _compare_combo(raw, raw_combo0, times, n_times)
    raw_combo = Raw([fif_fname, fif_fname], preload=False)
    _compare_combo(raw, raw_combo, times, n_times)
    raw_combo = Raw([fif_fname, fif_fname], preload='memmap8.dat')
    _compare_combo(raw, raw_combo, times, n_times)
    assert_raises(ValueError, Raw, [fif_fname, ctf_fname])
    assert_raises(ValueError, Raw, [fif_fname, fif_bad_marked_fname])
    assert_equal(raw[:, :][0].shape[1] * 2, raw_combo0[:, :][0].shape[1])
    assert_equal(raw_combo0[:, :][0].shape[1], raw_combo0.n_times)

    # with all data preloaded, result should be preloaded
    raw_combo = Raw(fif_fname, preload=True)
    raw_combo.append(Raw(fif_fname, preload=True))
    assert_true(raw_combo.preload is True)
    assert_equal(raw_combo.n_times, raw_combo._data.shape[1])
    _compare_combo(raw, raw_combo, times, n_times)

    # with any data not preloaded, don't set result as preloaded
    raw_combo = concatenate_raws([Raw(fif_fname, preload=True),
                                  Raw(fif_fname, preload=False)])
    assert_true(raw_combo.preload is False)
    assert_array_equal(find_events(raw_combo, stim_channel='STI 014'),
                       find_events(raw_combo0, stim_channel='STI 014'))
    _compare_combo(raw, raw_combo, times, n_times)

    # user should be able to force data to be preloaded upon concat
    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=True)],
                                 preload=True)
    assert_true(raw_combo.preload is True)
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=True)],
                                 preload='memmap3.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=True),
                                  Raw(fif_fname, preload=True)],
                                 preload='memmap4.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=False)],
                                 preload='memmap5.dat')
    _compare_combo(raw, raw_combo, times, n_times)

#.........这里部分代码省略.........
开发者ID:Pablo-Arias,项目名称:mne-python,代码行数:101,代码来源:test_raw_fiff.py


示例12: print

from mne.decoding import CSP

print(__doc__)

# #############################################################################
# # Set parameters and read data

# avoid classification of evoked responses by using epochs that start 1s after
# cue onset.
tmin, tmax = -1., 4.
event_id = dict(hands=2, feet=3)
subject = 1
runs = [6, 10, 14]  # motor imagery: hands vs feet

raw_fnames = eegbci.load_data(subject, runs)
raw = concatenate_raws([read_raw_edf(f, preload=True) for f in raw_fnames])

# strip channel names of "." characters
raw.rename_channels(lambda x: x.strip('.'))

# Apply band-pass filter
raw.filter(7., 30., fir_design='firwin', skip_by_annotation='edge')

events, _ = events_from_annotations(raw, event_id=dict(T1=2, T2=3))

picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
                   exclude='bads')

# Read epochs (train will be done only between 1 and 2s)
# Testing will be done with a running classifier
epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
开发者ID:adykstra,项目名称:mne-python,代码行数:31,代码来源:plot_decoding_csp_eeg.py


示例13: test_basics

def test_basics():
    """Test annotation class."""
    raw = read_raw_fif(fif_fname)
    assert raw.annotations is not None  # XXX to be fixed in #5416
    assert len(raw.annotations.onset) == 0  # XXX to be fixed in #5416
    pytest.raises(IOError, read_annotations, fif_fname)
    onset = np.array(range(10))
    duration = np.ones(10)
    description = np.repeat('test', 10)
    dt = datetime.utcnow()
    meas_date = raw.info['meas_date']
    # Test time shifts.
    for orig_time in [None, dt, meas_date[0], meas_date]:
        annot = Annotations(onset, duration, description, orig_time)

    pytest.raises(ValueError, Annotations, onset, duration, description[:9])
    pytest.raises(ValueError, Annotations, [onset, 1], duration, description)
    pytest.raises(ValueError, Annotations, onset, [duration, 1], description)

    # Test combining annotations with concatenate_raws
    raw2 = raw.copy()
    delta = raw.times[-1] + 1. / raw.info['sfreq']
    orig_time = (meas_date[0] + meas_date[1] * 1e-6 + raw2._first_time)
    offset = orig_time - _handle_meas_date(raw2.info['meas_date'])
    annot = Annotations(onset, duration, description, orig_time)
    assert ' segments' in repr(annot)
    raw2.set_annotations(annot)
    assert_array_equal(raw2.annotations.onset, onset + offset)
    assert id(raw2.annotations) != id(annot)
    concatenate_raws([raw, raw2])
    raw.annotations.delete(-1)  # remove boundary annotations
    raw.annotations.delete(-1)

    assert_allclose(onset + offset + delta, raw.annotations.onset, rtol=1e-5)
    assert_array_equal(annot.duration, raw.annotations.duration)
    assert_array_equal(raw.annotations.description, np.repeat('test', 10))

    # Test combining with RawArray and orig_times
    data = np.random.randn(2, 1000) * 10e-12
    sfreq = 100.
    info = create_info(ch_names=['MEG1', 'MEG2'], ch_types=['grad'] * 2,
                       sfreq=sfreq)
    info['meas_date'] = (np.pi, 0)
    raws = []
    for first_samp in [12300, 100, 12]:
        raw = RawArray(data.copy(), info, first_samp=first_samp)
        ants = Annotations([1., 2.], [.5, .5], 'x', np.pi + first_samp / sfreq)
        raw.set_annotations(ants)
        raws.append(raw)
    raw = RawArray(data.copy(), info)
    raw.set_annotations(Annotations([1.], [.5], 'x', None))
    raws.append(raw)
    raw = concatenate_raws(raws, verbose='debug')
    boundary_idx = np.where(raw.annotations.description == 'BAD boundary')[0]
    assert len(boundary_idx) == 3
    raw.annotations.delete(boundary_idx)
    boundary_idx = np.where(raw.annotations.description == 'EDGE boundary')[0]
    assert len(boundary_idx) == 3
    raw.annotations.delete(boundary_idx)
    assert_array_equal(raw.annotations.onset, [124., 125., 134., 135.,
                                               144., 145., 154.])
    raw.annotations.delete(2)
    assert_array_equal(raw.annotations.onset, [124., 125., 135., 144.,
                                               145., 154.])
    raw.annotations.append(5, 1.5, 'y')
    assert_array_equal(raw.annotations.onset, [124., 125., 135., 144.,
                                               145., 154.,   5.])
    assert_array_equal(raw.annotations.duration, [.5, .5, .5, .5, .5, .5, 1.5])
    assert_array_equal(raw.annotations.description, ['x', 'x', 'x', 'x', 'x',
                                                     'x', 'y'])
开发者ID:kambysese,项目名称:mne-python,代码行数:70,代码来源:test_annotations.py


示例14: test_annotation_filtering

def test_annotation_filtering():
    """Test that annotations work properly with filtering."""
    # Create data with just a DC component
    data = np.ones((1, 1000))
    info = create_info(1, 1000., 'eeg')
    raws = [RawArray(data * (ii + 1), info) for ii in range(4)]
    kwargs_pass = dict(l_freq=None, h_freq=50., fir_design='firwin')
    kwargs_stop = dict(l_freq=50., h_freq=None, fir_design='firwin')
    # lowpass filter, which should not modify the data
    raws_pass = [raw.copy().filter(**kwargs_pass) for raw in raws]
    # highpass filter, which should zero it out
    raws_stop = [raw.copy().filter(**kwargs_stop) for raw in raws]
    # concat the original and the filtered segments
    raws_concat = concatenate_raws([raw.copy() for raw in raws])
    raws_zero = raws_concat.copy().apply_function(lambda x: x * 0)
    raws_pass_concat = concatenate_raws(raws_pass)
    raws_stop_concat = concatenate_raws(raws_stop)
    # make sure we did something reasonable with our individual-file filtering
    assert_allclose(raws_concat[0][0], raws_pass_concat[0][0], atol=1e-14)
    assert_allclose(raws_zero[0][0], raws_stop_concat[0][0], atol=1e-14)
    # ensure that our Annotations cut up the filtering properly
    raws_concat_pass = raws_concat.copy().filter(skip_by_annotation='edge',
                                                 **kwargs_pass)
    assert_allclose(raws_concat[0][0], raws_concat_pass[0][0], atol=1e-14)
    raws_concat_stop = raws_concat.copy().filter(skip_by_annotation='edge',
                                                 **kwargs_stop)
    assert_allclose(raws_zero[0][0], raws_concat_stop[0][0], atol=1e-14)
    # one last test: let's cut out a section entirely:
    # here the 1-3 second window should be skipped
    raw = raws_concat.copy()
    raw.annotations.append(1., 2., 'foo')
    with catch_logging() as log:
        raw.filter(l_freq=50., h_freq=None, fir_design='firwin',
                   skip_by_annotation='foo', verbose='info')
    log = log.getvalue()
    assert '2 contiguous segments' in log
    raw.annotations.append(2., 1., 'foo')  # shouldn't change anything
    with catch_logging() as log:
        raw.filter(l_freq=50., h_freq=None, fir_design='firwin',
                   skip_by_annotation='foo', verbose='info')
    log = log.getvalue()
    assert '2 contiguous segments' in log
    # our filter will zero out anything not skipped:
    mask = np.concatenate((np.zeros(1000), np.ones(2000), np.zeros(1000)))
    expected_data = raws_concat[0][0][0] * mask
    assert_allclose(raw[0][0][0], expected_data, atol=1e-14)

    # Let's try another one
    raw = raws[0].copy()
    raw.set_annotations(Annotations([0.], [0.5], ['BAD_ACQ_SKIP']))
    my_data, times = raw.get_data(reject_by_annotation='omit',
                                  return_times=True)
    assert_allclose(times, raw.times[500:])
    assert my_data.shape == (1, 500)
    raw_filt = raw.copy().filter(skip_by_annotation='bad_acq_skip',
                                 **kwargs_stop)
    expected = data.copy()
    expected[:, 500:] = 0
    assert_allclose(raw_filt[:][0], expected, atol=1e-14)

    raw = raws[0].copy()
    raw.set_annotations(Annotations([0.5], [0.5], ['BAD_ACQ_SKIP']))
    my_data, times = raw.get_data(reject_by_annotation='omit',
                                  return_times=True)
    assert_allclose(times, raw.times[:500])
    assert my_data.shape == (1, 500)
    raw_filt = raw.copy().filter(skip_by_annotation='bad_acq_skip',
                                 **kwargs_stop)
    expected = data.copy()
    expected[:, :500] = 0
    assert_allclose(raw_filt[:][0], expected, atol=1e-14)
开发者ID:kambysese,项目名称:mne-python,代码行数:71,代码来源:test_annotations.py


示例15: test_events_from_annot_in_raw_objects

def test_events_from_annot_in_raw_objects():
    """Test basic functionality of events_fron_annot for raw objects."""
    raw = read_raw_fif(fif_fname)
    events = mne.find_events(raw)
    event_id = {
        'Auditory/Left': 1,
        'Auditory/Right': 2,
        'Visual/Left': 3,
        'Visual/Right': 4,
        'Visual/Smiley': 32,
        'Motor/Button': 5
    }
    event_map = {v: k for k, v in event_id.items()}
    annot = Annotations(onset=raw.times[events[:, 0] - raw.first_samp],
                        duration=np.zeros(len(events)),
                        description=[event_map[vv] for vv in events[:, 2]],
                        orig_time=None)
    raw.set_annotations(annot)

    events2, event_id2 = \
        events_from_annotations(raw, event_id=event_id, regexp=None)
    assert_array_equal(events, events2)
    assert_equal(event_id, event_id2)

    events3, event_id3 = \
        events_from_annotations(raw, event_id=None, regexp=None)

    assert_array_equal(events[:, 0], events3[:, 0])
    assert set(event_id.keys()) == set(event_id3.keys())

    # ensure that these actually got sorted properly
    expected_event_id = {
        desc: idx + 1 for idx, desc in enumerate(sorted(event_id.keys()))}
    assert event_id3 == expected_event_id

    first = np.unique(events3[:, 2])
    second = np.arange(1, len(event_id) + 1, 1).astype(first.dtype)
    assert_array_equal(first, second)

    first = np.unique(list(event_id3.values()))
    second = np.arange(1, len(event_id) + 1, 1).astype(first.dtype)
    assert_array_equal(first, second)

    events4, event_id4 =\
        events_from_annotations(raw, event_id=None, regexp='.*Left')

    expected_event_id4 = {k: v for k, v in event_id.items() if 'Left' in k}
    assert_equal(event_id4.keys(), expected_event_id4.keys())

    expected_events4 = events[(events[:, 2] == 1) | (events[:, 2] == 3)]
    assert_array_equal(expected_events4[:, 0], events4[:, 0])

    events5, event_id5 = \
        events_from_annotations(raw, event_id=event_id, regexp='.*Left')

    expected_event_id5 = {k: v for k, v in event_id.items() if 'Left' in k}
    assert_equal(event_id5, expected_event_id5)

    expected_events5 = events[(events[:, 2] == 1) | (events[:, 2] == 3)]
    assert_array_equal(expected_events5, events5)

    with pytest.raises(ValueError, match='not find any of the events'):
        events_from_annotations(raw, regexp='not_there')

    with pytest.raises(ValueError, match='Invalid input event_id'):
        events_from_annotations(raw, event_id='wrong')

    # concat does not introduce BAD or EDGE
    raw_concat = concatenate_raws([raw.copy(), raw.copy()])
    _, event_id = events_from_annotations(raw_concat)
    assert isinstance(event_id, dict)
    assert len(event_id) > 0
    for kind in ('BAD', 'EDGE'):
        assert '%s boundary' % kind in raw_concat.annotations.description
        for key in event_id.keys():
            assert kind not in key

    # remove all events
    raw.set_annotations(None)
    events7, _ = events_from_annotations(raw)
    assert_array_equal(events7, np.empty((0, 3), dtype=int))
开发者ID:adykstra,项目名称:mne-python,代码行数:81,代码来源:test_annotations.py


示例16: enumerate

    cond_tags += [('not-' if i == 0 else '') + conds.columns[k]
                  for k, i in enumerate(c[2:], 2)]
    conditions.append('/'.join(map(str, cond_tags)))
print(conditions[:10])

##############################################################################
# Let's make the event_id dictionary
event_id = dict(zip(conditions, conds.trigger + 1))
event_id['0/human bodypart/human/not-face/animal/natural']

##############################################################################
# Read MEG data
n_runs = 4  # 4 for full data (use less to speed up computations)
fname = op.join(data_path, 'sample_subject_%i_tsss_mc.fif')
raws = [read_raw_fif(fname % block) for block in range(n_runs)]
raw = concatenate_raws(raws)

events = mne.find_events(raw, min_duration=.002)

events = events[events[:, 2] <= max_trigger]
mne.viz.plot_events(events, sfreq=raw.info['sfreq'])

##############################################################################
# Epoch data
picks = mne.pick_types(raw.info, meg=True)
epochs = mne.Epochs(raw, events=events, event_id=event_id, baseline=None,
                    picks=picks, tmin=-.1, tmax=.500, preload=True)

##############################################################################
# Let's plot some conditions
epochs['face'].average().plot()
开发者ID:hoechenberger,项目名称:mne-python,代码行数:31,代码来源:decoding_rsa.py


示例17: dict

from pyriemann.stats import PermutationTest
from pyriemann.estimation import Covariances

###############################################################################
## Set parameters and read data

# avoid classification of evoked responses by using epochs that start 1s after
# cue onset.
tmin, tmax = 1., 3.
event_id = dict(hands=2, feet=3)
subject = 1
runs = [6, 10, 14]  # motor imagery: hands vs feet

raw_files = [read_raw_edf(f, preload=True,verbose=False) for f in eegbci.load_data(subject, runs) ]
raw = concatenate_raws(raw_files)

# strip channel names
raw.info['ch_names'] = [chn.strip('.') for chn in raw.info['ch_names']]

# Apply band-pass filter
raw.filter(7., 35., method='iir')

events = find_events(raw, shortest_event=0, stim_channel='STI 014')
picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
                   exclude='bads')

# Read epochs (train will be done only between 1 and 2s)
# Testing will be done with a running classifier
epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
                baseline=None, preload=True, add_eeg_ref=False,verbose=False)
开发者ID:kingjr,项目名称:pyRiemann,代码行数:30,代码来源:oneWay_Manova.py


示例18: test_crop

def test_crop():
    """Test cropping with annotations."""
    raw = read_raw_fif(fif_fname)
    events = mne.find_events(raw)
    onset = events[events[:, 2] == 1, 0] / raw.info['sfreq']
    duration  

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python io.read_info函数代码示例发布时间:2022-05-27
下一篇:
Python fixes.partial函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap