本文整理汇总了Python中mne.filter.band_pass_filter函数的典型用法代码示例。如果您正苦于以下问题:Python band_pass_filter函数的具体用法?Python band_pass_filter怎么用?Python band_pass_filter使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了band_pass_filter函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_cuda
def test_cuda():
"""Test CUDA-based filtering
"""
Fs = 500
sig_len_secs = 20
a = np.random.randn(sig_len_secs * Fs)
set_log_file(log_file, overwrite=True)
for fl in [None, 2048]:
bp = band_pass_filter(a, Fs, 4, 8, n_jobs=1, filter_length=fl)
bs = band_stop_filter(a, Fs, 4 - 0.5, 8 + 0.5, n_jobs=1,
filter_length=fl)
lp = low_pass_filter(a, Fs, 8, n_jobs=1, filter_length=fl)
hp = high_pass_filter(lp, Fs, 4, n_jobs=1, filter_length=fl)
bp_c = band_pass_filter(a, Fs, 4, 8, n_jobs='cuda', filter_length=fl,
verbose='INFO')
bs_c = band_stop_filter(a, Fs, 4 - 0.5, 8 + 0.5, n_jobs='cuda',
filter_length=fl, verbose='INFO')
lp_c = low_pass_filter(a, Fs, 8, n_jobs='cuda', filter_length=fl,
verbose='INFO')
hp_c = high_pass_filter(lp, Fs, 4, n_jobs='cuda', filter_length=fl,
verbose='INFO')
assert_array_almost_equal(bp, bp_c, 12)
assert_array_almost_equal(bs, bs_c, 12)
assert_array_almost_equal(lp, lp_c, 12)
assert_array_almost_equal(hp, hp_c, 12)
# check to make sure we actually used CUDA
set_log_file()
out = open(log_file).readlines()
assert_true(sum(['Using CUDA for FFT FIR filtering' in o
for o in out]) == 8)
开发者ID:mshamalainen,项目名称:mne-python,代码行数:34,代码来源:test_filter.py
示例2: test_filters
def test_filters():
Fs = 500
sig_len_secs = 60
# Filtering of short signals (filter length = len(a))
a = np.random.randn(sig_len_secs * Fs)
bp = band_pass_filter(a, Fs, 4, 8)
lp = low_pass_filter(a, Fs, 8)
hp = high_pass_filter(lp, Fs, 4)
assert_array_almost_equal(hp, bp, 2)
# Overlap-add filtering with a fixed filter length
filter_length = 8192
bp_oa = band_pass_filter(a, Fs, 4, 8, filter_length)
lp_oa = low_pass_filter(a, Fs, 8, filter_length)
hp_oa = high_pass_filter(lp_oa, Fs, 4, filter_length)
assert_array_almost_equal(hp_oa, bp_oa, 2)
# The two methods should give the same result
# As filtering for short signals uses a circular convolution (FFT) and
# the overlap-add filter implements a linear convolution, the signal
# boundary will be slightly different and we ignore it
n_edge_ignore = 1000
assert_array_almost_equal(hp[n_edge_ignore:-n_edge_ignore],
hp_oa[n_edge_ignore:-n_edge_ignore], 2)
开发者ID:sudo-nim,项目名称:mne-python,代码行数:25,代码来源:test_filter.py
示例3: test_cuda
def test_cuda():
"""Test CUDA-based filtering"""
# NOTE: don't make test_cuda() the last test, or pycuda might spew
# some warnings about clean-up failing
# Also, using `n_jobs='cuda'` on a non-CUDA system should be fine,
# as it should fall back to using n_jobs=1.
sfreq = 500
sig_len_secs = 20
a = rng.randn(sig_len_secs * sfreq)
with catch_logging() as log_file:
for fl in ['auto', '10s', 2048]:
bp = band_pass_filter(a, sfreq, 4, 8, fl, 1.0, 1.0, n_jobs=1,
phase='zero')
bs = band_stop_filter(a, sfreq, 4 - 1.0, 8 + 1.0, fl, 1.0, 1.0,
n_jobs=1, phase='zero')
lp = low_pass_filter(a, sfreq, 8, fl, 1.0, n_jobs=1, phase='zero')
hp = high_pass_filter(lp, sfreq, 4, fl, 1.0, n_jobs=1,
phase='zero')
bp_c = band_pass_filter(a, sfreq, 4, 8, fl, 1.0, 1.0,
n_jobs='cuda', verbose='INFO',
phase='zero')
bs_c = band_stop_filter(a, sfreq, 4 - 1.0, 8 + 1.0, fl, 1.0, 1.0,
n_jobs='cuda', verbose='INFO',
phase='zero')
lp_c = low_pass_filter(a, sfreq, 8, fl, 1.0,
n_jobs='cuda', verbose='INFO',
phase='zero')
hp_c = high_pass_filter(lp, sfreq, 4, fl, 1.0,
n_jobs='cuda', verbose='INFO',
phase='zero')
assert_array_almost_equal(bp, bp_c, 12)
assert_array_almost_equal(bs, bs_c, 12)
assert_array_almost_equal(lp, lp_c, 12)
assert_array_almost_equal(hp, hp_c, 12)
# check to make sure we actually used CUDA
out = log_file.getvalue().split('\n')[:-1]
# triage based on whether or not we actually expected to use CUDA
from mne.cuda import _cuda_capable # allow above funs to set it
tot = 12 if _cuda_capable else 0
assert_true(sum(['Using CUDA for FFT FIR filtering' in o
for o in out]) == tot)
# check resampling
for window in ('boxcar', 'triang'):
for N in (997, 1000): # one prime, one even
a = rng.randn(2, N)
for fro, to in ((1, 2), (2, 1), (1, 3), (3, 1)):
a1 = resample(a, fro, to, n_jobs=1, npad='auto',
window=window)
a2 = resample(a, fro, to, n_jobs='cuda', npad='auto',
window=window)
assert_allclose(a1, a2, rtol=1e-7, atol=1e-14)
assert_array_almost_equal(a1, a2, 14)
assert_array_equal(resample([0, 0], 2, 1, n_jobs='cuda'), [0., 0., 0., 0.])
assert_array_equal(resample(np.zeros(2, np.float32), 2, 1, n_jobs='cuda'),
[0., 0., 0., 0.])
开发者ID:chrismullins,项目名称:mne-python,代码行数:60,代码来源:test_filter.py
示例4: test_cuda
def test_cuda():
"""Test CUDA-based filtering
"""
# NOTE: don't make test_cuda() the last test, or pycuda might spew
# some warnings about clean-up failing
# Also, using `n_jobs='cuda'` on a non-CUDA system should be fine,
# as it should fall back to using n_jobs=1.
tempdir = _TempDir()
log_file = op.join(tempdir, 'temp_log.txt')
sfreq = 500
sig_len_secs = 20
a = np.random.randn(sig_len_secs * sfreq)
set_log_file(log_file, overwrite=True)
for fl in ['10s', None, 2048]:
bp = band_pass_filter(a, sfreq, 4, 8, n_jobs=1, filter_length=fl)
bs = band_stop_filter(a, sfreq, 4 - 0.5, 8 + 0.5, n_jobs=1,
filter_length=fl)
lp = low_pass_filter(a, sfreq, 8, n_jobs=1, filter_length=fl)
hp = high_pass_filter(lp, sfreq, 4, n_jobs=1, filter_length=fl)
bp_c = band_pass_filter(a, sfreq, 4, 8, n_jobs='cuda',
filter_length=fl, verbose='INFO')
bs_c = band_stop_filter(a, sfreq, 4 - 0.5, 8 + 0.5, n_jobs='cuda',
filter_length=fl, verbose='INFO')
lp_c = low_pass_filter(a, sfreq, 8, n_jobs='cuda', filter_length=fl,
verbose='INFO')
hp_c = high_pass_filter(lp, sfreq, 4, n_jobs='cuda', filter_length=fl,
verbose='INFO')
assert_array_almost_equal(bp, bp_c, 12)
assert_array_almost_equal(bs, bs_c, 12)
assert_array_almost_equal(lp, lp_c, 12)
assert_array_almost_equal(hp, hp_c, 12)
# check to make sure we actually used CUDA
set_log_file()
with open(log_file) as fid:
out = fid.readlines()
# triage based on whether or not we actually expected to use CUDA
from mne.cuda import _cuda_capable # allow above funs to set it
tot = 12 if _cuda_capable else 0
assert_true(sum(['Using CUDA for FFT FIR filtering' in o
for o in out]) == tot)
# check resampling
a = np.random.RandomState(0).randn(3, sig_len_secs * sfreq)
a1 = resample(a, 1, 2, n_jobs=2, npad=0)
a2 = resample(a, 1, 2, n_jobs='cuda', npad=0)
a3 = resample(a, 2, 1, n_jobs=2, npad=0)
a4 = resample(a, 2, 1, n_jobs='cuda', npad=0)
assert_array_almost_equal(a3, a4, 14)
assert_array_almost_equal(a1, a2, 14)
assert_array_equal(resample([0, 0], 2, 1, n_jobs='cuda'), [0., 0., 0., 0.])
assert_array_equal(resample(np.zeros(2, np.float32), 2, 1, n_jobs='cuda'),
[0., 0., 0., 0.])
开发者ID:leggitta,项目名称:mne-python,代码行数:56,代码来源:test_filter.py
示例5: test_cuda
def test_cuda():
"""Test CUDA-based filtering
"""
# NOTE: don't make test_cuda() the last test, or pycuda might spew
# some warnings about clean-up failing
# Also, using `n_jobs='cuda'` on a non-CUDA system should be fine,
# as it should fall back to using n_jobs=1.
sfreq = 500
sig_len_secs = 20
a = rng.randn(sig_len_secs * sfreq)
with catch_logging() as log_file:
for fl in ['10s', None, 2048]:
bp = band_pass_filter(a, sfreq, 4, 8, n_jobs=1, filter_length=fl)
bs = band_stop_filter(a, sfreq, 4 - 0.5, 8 + 0.5, n_jobs=1,
filter_length=fl)
lp = low_pass_filter(a, sfreq, 8, n_jobs=1, filter_length=fl)
hp = high_pass_filter(lp, sfreq, 4, n_jobs=1, filter_length=fl)
bp_c = band_pass_filter(a, sfreq, 4, 8, n_jobs='cuda',
filter_length=fl, verbose='INFO')
bs_c = band_stop_filter(a, sfreq, 4 - 0.5, 8 + 0.5, n_jobs='cuda',
filter_length=fl, verbose='INFO')
lp_c = low_pass_filter(a, sfreq, 8, n_jobs='cuda',
filter_length=fl, verbose='INFO')
hp_c = high_pass_filter(lp, sfreq, 4, n_jobs='cuda',
filter_length=fl, verbose='INFO')
assert_array_almost_equal(bp, bp_c, 12)
assert_array_almost_equal(bs, bs_c, 12)
assert_array_almost_equal(lp, lp_c, 12)
assert_array_almost_equal(hp, hp_c, 12)
# check to make sure we actually used CUDA
out = log_file.getvalue().split('\n')[:-1]
# triage based on whether or not we actually expected to use CUDA
from mne.cuda import _cuda_capable # allow above funs to set it
tot = 12 if _cuda_capable else 0
assert_true(sum(['Using CUDA for FFT FIR filtering' in o
for o in out]) == tot)
# check resampling
a = rng.randn(3, sig_len_secs * sfreq)
a1 = resample(a, 1, 2, n_jobs=2, npad=0)
a2 = resample(a, 1, 2, n_jobs='cuda', npad=0)
a3 = resample(a, 2, 1, n_jobs=2, npad=0)
a4 = resample(a, 2, 1, n_jobs='cuda', npad=0)
assert_array_almost_equal(a3, a4, 14)
assert_array_almost_equal(a1, a2, 14)
assert_array_equal(resample([0, 0], 2, 1, n_jobs='cuda'), [0., 0., 0., 0.])
assert_array_equal(resample(np.zeros(2, np.float32), 2, 1, n_jobs='cuda'),
[0., 0., 0., 0.])
开发者ID:The3DWizard,项目名称:mne-python,代码行数:52,代码来源:test_filter.py
示例6: bandPassFilterConcurrent
def bandPassFilterConcurrent(observations):
"""
500Hz alpha 채널(8~13Hz)만 분리
:param observations:
:return:
"""
return band_pass_filter(np.float64(observations),500,8,13)
开发者ID:byeungchun,项目名称:minlab,代码行数:7,代码来源:preprocessing.py
示例7: test_cuda
def test_cuda():
"""Test CUDA-based filtering
"""
# NOTE: don't make test_cuda() the last test, or pycuda might spew
# some warnings about clean-up failing
Fs = 500
sig_len_secs = 20
a = np.random.randn(sig_len_secs * Fs)
set_log_file(log_file, overwrite=True)
for fl in ['10s', None, 2048]:
bp = band_pass_filter(a, Fs, 4, 8, n_jobs=1, filter_length=fl)
bs = band_stop_filter(a, Fs, 4 - 0.5, 8 + 0.5, n_jobs=1,
filter_length=fl)
lp = low_pass_filter(a, Fs, 8, n_jobs=1, filter_length=fl)
hp = high_pass_filter(lp, Fs, 4, n_jobs=1, filter_length=fl)
bp_c = band_pass_filter(a, Fs, 4, 8, n_jobs='cuda', filter_length=fl,
verbose='INFO')
bs_c = band_stop_filter(a, Fs, 4 - 0.5, 8 + 0.5, n_jobs='cuda',
filter_length=fl, verbose='INFO')
lp_c = low_pass_filter(a, Fs, 8, n_jobs='cuda', filter_length=fl,
verbose='INFO')
hp_c = high_pass_filter(lp, Fs, 4, n_jobs='cuda', filter_length=fl,
verbose='INFO')
assert_array_almost_equal(bp, bp_c, 12)
assert_array_almost_equal(bs, bs_c, 12)
assert_array_almost_equal(lp, lp_c, 12)
assert_array_almost_equal(hp, hp_c, 12)
# check to make sure we actually used CUDA
set_log_file()
with open(log_file) as fid:
out = fid.readlines()
assert_true(sum(['Using CUDA for FFT FIR filtering' in o
for o in out]) == 12)
# check resampling
a = np.random.RandomState(0).randn(3, sig_len_secs * Fs)
a1 = resample(a, 1, 2, n_jobs=2, npad=0)
a2 = resample(a, 1, 2, n_jobs='cuda', npad=0)
a3 = resample(a, 2, 1, n_jobs=2, npad=0)
a4 = resample(a, 2, 1, n_jobs='cuda', npad=0)
assert_array_almost_equal(a3, a4, 14)
assert_array_almost_equal(a1, a2, 14)
开发者ID:anywave,项目名称:aw-export-fif,代码行数:46,代码来源:test_filter.py
示例8: filter_and_make_analytic_signal
def filter_and_make_analytic_signal(data, sfreq, l_phase_freq, h_phase_freq,
l_amp_freq, h_amp_freq, method='fft',
n_jobs=1):
""" Filter data to required range and compute analytic signal from it.
Parameters
----------
data : ndarray
The signal to be analysed.
l_phase_freq, h_phase_freq : float
Low and high phase modulating frequencies.
l_amp_freq, h_amp_freq : float
Low and high amplitude modulated frequencies.
method : 'fft' or 'iir'
Filter method to be used. (mne.filter.band_pass_filter)
n_jobs : int
Number of parallel jobs to run.
Returns
-------
theta : ndarray
Low frequency filtered signal (modulating)
gamma : ndarray
High frequency filtered signal (modulated)
phase : ndarray
Phase of low frequency signal above.
amp : ndarray
Amplitude envelope of the high freq. signal above.
"""
# filter theta and gamma signals
n_jobs = 4
method = 'fft'
l_phase_freq, h_phase_freq, l_amp_freq, h_amp_freq = 6, 10, 60, 150
theta = band_pass_filter(data, sfreq, l_phase_freq,
h_phase_freq, method=method, n_jobs=n_jobs)
gamma = band_pass_filter(data, sfreq, l_amp_freq, h_amp_freq,
method=method, n_jobs=n_jobs)
# phase of the low freq modulating signal
phase = np.angle(hilbert(theta))
# amplitude envelope of the high freq modulated signal
amp = np.abs(hilbert(gamma))
return theta, gamma, phase, amp
开发者ID:d-van-de-velden,项目名称:jumeg,代码行数:45,代码来源:cross_frequency_coupling.py
示例9: modulation_index2d
def modulation_index2d(data, sfreq):
""" Compute the two dimensional modulation index.
Parameters
----------
data : ndarray
The signal data
sfreq: float
Sampling frequency
Returns
-------
mod2d : ndarray
2 dimensional modulation index
"""
from mne.filter import band_pass_filter
from scipy.signal import hilbert
flow = np.arange(2, 40, 1)
flow_step = 1.0
fhigh = np.arange(5, 205, 5)
fhigh_step = 5.0
mod2d = np.zeros((flow.size, fhigh.size))
method = 'fft'
n_jobs = 2
for i in range(0, flow.size):
theta = band_pass_filter(data, sfreq, flow[i], flow[i] + flow_step,
method=method, n_jobs=n_jobs)
theta = theta[sfreq: data.size - sfreq]
phase = np.angle(hilbert(theta))
for j in range(0, fhigh.size):
gamma = band_pass_filter(data, sfreq, fhigh[j], fhigh[j] + fhigh_step,
method=method, n_jobs=n_jobs)
gamma = gamma[sfreq: data.size - sfreq]
amp = np.abs(hilbert(gamma))
# compute the modulation index
m_norm_length = modulation_index1d(amp, phase, sfreq)
mod2d[i, j] = m_norm_length
return mod2d
开发者ID:d-van-de-velden,项目名称:jumeg,代码行数:45,代码来源:cross_frequency_coupling.py
示例10: process
def process(self, data):
if self.type == 'low-pass':
return low_pass_filter(data, **self.params)
elif self.type == 'high-pass':
return high_pass_filter(data, **self.params)
elif self.type == 'band-pass':
return band_pass_filter(data, **self.params)
elif self.type == 'band-stop':
return band_stop_filter(data, **self.params)
elif self.type == 'notch':
return notch_filter(data, **self.params)
else:
raise ValueError('Unsupported filter type: {}'.format(self.type))
开发者ID:mikimaus78,项目名称:deepthought,代码行数:13,代码来源:signal_filter.py
示例11: test_filters
def test_filters():
"""Test low-, band-, and high-pass filters"""
Fs = 500
sig_len_secs = 60
# Filtering of short signals (filter length = len(a))
a = np.random.randn(sig_len_secs * Fs)
bp = band_pass_filter(a, Fs, 4, 8)
lp = low_pass_filter(a, Fs, 8)
hp = high_pass_filter(lp, Fs, 4)
assert_array_almost_equal(hp, bp, 2)
# Overlap-add filtering with a fixed filter length
filter_length = 8192
bp_oa = band_pass_filter(a, Fs, 4, 8, filter_length)
lp_oa = low_pass_filter(a, Fs, 8, filter_length)
hp_oa = high_pass_filter(lp_oa, Fs, 4, filter_length)
assert_array_almost_equal(hp_oa, bp_oa, 2)
# The two methods should give the same result
# As filtering for short signals uses a circular convolution (FFT) and
# the overlap-add filter implements a linear convolution, the signal
# boundary will be slightly different and we ignore it
n_edge_ignore = 1000
assert_array_almost_equal(hp[n_edge_ignore:-n_edge_ignore],
hp_oa[n_edge_ignore:-n_edge_ignore], 2)
# and since these are low-passed, downsampling/upsampling should be close
n_resamp_ignore = 10
bp_up_dn = resample(resample(bp_oa, 2, 1), 1, 2)
assert_array_almost_equal(bp_oa[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# make sure we don't alias
t = np.array(range(Fs*sig_len_secs))/float(Fs)
# make sinusoid close to the Nyquist frequency
sig = np.sin(2*np.pi*Fs/2.2*t)
# signal should disappear with 2x downsampling
sig_gone = resample(sig,1,2)[n_resamp_ignore:-n_resamp_ignore]
assert_array_almost_equal(np.zeros_like(sig_gone), sig_gone, 2)
开发者ID:starzynski,项目名称:mne-python,代码行数:39,代码来源:test_filter.py
示例12: filterABDT
def filterABDT(arrExp):
frDelta = 1
frTheta = 4
frAlpha = 8
frBeta = 13
expnum = arrExp.shape[1]
arrFiltered = np.ndarray((4,30,expnum,750), dtype=np.float64)
for i in range(4): #alpha, beta, tetha, delta
if i == 0: frFreq = frDelta; toFreq = frTheta;
elif i == 1: frFreq = frTheta; toFreq = frAlpha;
elif i == 2: frFreq = frAlpha; toFreq = frBeta;
elif i == 3: frFreq = frBeta; toFreq = 20;
for j in range(expnum): # number of experiments
for k in range(arrExp.shape[0]): #channel
arrFiltered[i,k,j,:] = band_pass_filter(np.float64(arrExp[k,j,:]),500,frFreq, toFreq)
return arrFiltered
开发者ID:byeungchun,项目名称:minlab,代码行数:17,代码来源:test1.py
示例13: process
def process(self, data):
# fix for new MNE requirements
import numpy as np
data = np.asarray(data, dtype=np.float64)
if self.type == 'low-pass':
return low_pass_filter(data, **self.params)
elif self.type == 'high-pass':
return high_pass_filter(data, **self.params)
elif self.type == 'band-pass':
return band_pass_filter(data, **self.params)
elif self.type == 'band-stop':
return band_stop_filter(data, **self.params)
elif self.type == 'notch':
return notch_filter(data, **self.params)
else:
raise ValueError('Unsupported filter type: {}'.format(self.type))
开发者ID:Qi0116,项目名称:deepthought,代码行数:17,代码来源:signal_filter.py
示例14: filterByFrequency
def filterByFrequency(arrExperiment,freqs):
"""
실험단위별로 분리된 3차원 배열을 프리퀀시별로 분리하여 4차원 배열로 저장
:param arrExperiment: 실험단위 별로 분리된 3차원 배열
:return:
"""
frDelta = 1
frTheta = 4
frAlpha = 8
frBeta = 13
expnum = arrExperiment.shape[1]
obsnum = arrExperiment.shape[2]
arrExperimentFrequency = np.ndarray((len(freqs),30,expnum,obsnum), dtype=np.float64)
for i in range(len(freqs)): #alpha, beta, tetha, delta
freq_val = freqs[i]
if freq_val == 0: frFreq = frDelta; toFreq = frTheta;
elif freq_val == 1: frFreq = frTheta; toFreq = frAlpha;
elif freq_val == 2: frFreq = frAlpha; toFreq = frBeta;
elif freq_val == 3: frFreq = frBeta; toFreq = 20;
for j in range(expnum): # number of experiments
for k in range(arrExperiment.shape[0]): #channel
arrExperimentFrequency[i,k,j,:] = band_pass_filter(np.float64(arrExperiment[k,j,:]),500,frFreq, toFreq)
return arrExperimentFrequency
开发者ID:byeungchun,项目名称:minlab,代码行数:24,代码来源:preprocessing.py
示例15: test_filters
def test_filters():
"""Test low-, band-, high-pass, and band-stop filters plus resampling
"""
sfreq = 500
sig_len_secs = 30
a = np.random.randn(2, sig_len_secs * sfreq)
# let's test our catchers
for fl in ['blah', [0, 1], 1000.5, '10ss', '10']:
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8,
filter_length=fl)
for nj in ['blah', 0.5]:
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, n_jobs=nj)
# > Nyq/2
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, sfreq / 2.)
assert_raises(ValueError, low_pass_filter, a, sfreq, sfreq / 2.)
# check our short-filter warning:
with warnings.catch_warnings(record=True) as w:
# Warning for low attenuation
band_pass_filter(a, sfreq, 1, 8, filter_length=1024)
# Warning for too short a filter
band_pass_filter(a, sfreq, 1, 8, filter_length='0.5s')
assert_true(len(w) >= 2)
# try new default and old default
for fl in ['10s', '5000ms', None]:
bp = band_pass_filter(a, sfreq, 4, 8, filter_length=fl)
bs = band_stop_filter(a, sfreq, 4 - 0.5, 8 + 0.5, filter_length=fl)
lp = low_pass_filter(a, sfreq, 8, filter_length=fl, n_jobs=2)
hp = high_pass_filter(lp, sfreq, 4, filter_length=fl)
assert_array_almost_equal(hp, bp, 2)
assert_array_almost_equal(bp + bs, a, 1)
# Overlap-add filtering with a fixed filter length
filter_length = 8192
bp_oa = band_pass_filter(a, sfreq, 4, 8, filter_length)
bs_oa = band_stop_filter(a, sfreq, 4 - 0.5, 8 + 0.5, filter_length)
lp_oa = low_pass_filter(a, sfreq, 8, filter_length)
hp_oa = high_pass_filter(lp_oa, sfreq, 4, filter_length)
assert_array_almost_equal(hp_oa, bp_oa, 2)
# Our filters are no longer quite complementary with linear rolloffs :(
# this is the tradeoff for stability of the filtering
# obtained by directly using the result of firwin2 instead of
# modifying it...
assert_array_almost_equal(bp_oa + bs_oa, a, 1)
# The two methods should give the same result
# As filtering for short signals uses a circular convolution (FFT) and
# the overlap-add filter implements a linear convolution, the signal
# boundary will be slightly different and we ignore it
n_edge_ignore = 0
assert_array_almost_equal(hp[n_edge_ignore:-n_edge_ignore],
hp_oa[n_edge_ignore:-n_edge_ignore], 2)
# and since these are low-passed, downsampling/upsampling should be close
n_resamp_ignore = 10
bp_up_dn = resample(resample(bp_oa, 2, 1, n_jobs=2), 1, 2, n_jobs=2)
assert_array_almost_equal(bp_oa[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# note that on systems without CUDA, this line serves as a test for a
# graceful fallback to n_jobs=1
bp_up_dn = resample(resample(bp_oa, 2, 1, n_jobs='cuda'), 1, 2,
n_jobs='cuda')
assert_array_almost_equal(bp_oa[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# test to make sure our resamling matches scipy's
bp_up_dn = sp_resample(sp_resample(bp_oa, 2 * bp_oa.shape[-1], axis=-1,
window='boxcar'),
bp_oa.shape[-1], window='boxcar', axis=-1)
assert_array_almost_equal(bp_oa[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# make sure we don't alias
t = np.array(list(range(sfreq * sig_len_secs))) / float(sfreq)
# make sinusoid close to the Nyquist frequency
sig = np.sin(2 * np.pi * sfreq / 2.2 * t)
# signal should disappear with 2x downsampling
sig_gone = resample(sig, 1, 2)[n_resamp_ignore:-n_resamp_ignore]
assert_array_almost_equal(np.zeros_like(sig_gone), sig_gone, 2)
# let's construct some filters
iir_params = dict(ftype='cheby1', gpass=1, gstop=20)
iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low')
# this should be a third order filter
assert_true(iir_params['a'].size - 1 == 3)
assert_true(iir_params['b'].size - 1 == 3)
iir_params = dict(ftype='butter', order=4)
iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low')
assert_true(iir_params['a'].size - 1 == 4)
assert_true(iir_params['b'].size - 1 == 4)
# check that picks work for 3d array with one channel and picks=[0]
a = np.random.randn(5 * sfreq, 5 * sfreq)
b = a[:, None, :]
with warnings.catch_warnings(record=True) as w:
a_filt = band_pass_filter(a, sfreq, 4, 8)
b_filt = band_pass_filter(b, sfreq, 4, 8, picks=[0])
#.........这里部分代码省略.........
开发者ID:YoheiOseki,项目名称:mne-python,代码行数:101,代码来源:test_filter.py
示例16: filterAlphaPhase
def filterAlphaPhase(_chnnDsetLst):
return band_pass_filter(np.float64(_chnnDsetLst),500,8,13)
开发者ID:byeungchun,项目名称:minlab,代码行数:2,代码来源:expr_01.py
示例17: mne_bandpass_filter
def mne_bandpass_filter(self):
filter.band_pass_filter(self.data, self.fs, self.lowcut, self.highcut)
return mne_filter
开发者ID:jnaulty,项目名称:Python_OpenBCI,代码行数:3,代码来源:fft.py
示例18: __init__
# def __init__(self, a, b, signal):
# self.a = []
# self.b = []
# self.signal = signal
# def apply(self, signal):
# return lfilter(self.b, self.a, signal)
# from scipy.io import loadmat
# mat = loadmat('bp_filter_coeff.mat')
# filters = [TimeDomainFilter(b=mat['bp_filter_coeff']['b'][0, 0].squeeze(),
# a=mat['bp_filter_coeff']['a'][0, 0].squeeze()),
# TimeDomainFilter(b=mat['bp_filter_coeff']['b_notch'][0, 0].squeeze(),
# a=mat['bp_filter_coeff']['a_notch'][0, 0].squeeze()), ]
# for filter in filters:
# y = TimeDomainFilter.apply(y)
hz_per_bin = float(250) / 256
data = np.genfromtxt('dan_pythondata.csv', delimiter=' ')
filt_data = filter.band_pass_filter(data[:, 1], 250, 1, 60)
psd, fft_data = windowed_fft(filt_data, 250)
psd_per_bin = psd / hz_per_bin
plt.figure(1)
plt.plot(fft_data, np.sqrt(psd_per_bin))
plt.figure(2)
plt.plot(filt_data)
plt.show()
开发者ID:jnaulty,项目名称:Python_OpenBCI,代码行数:31,代码来源:fft.py
示例19: test_filters
def test_filters():
"""Test low-, band-, high-pass, and band-stop filters plus resampling
"""
Fs = 500
sig_len_secs = 30
a = np.random.randn(2, sig_len_secs * Fs)
# let's test our catchers
for fl in ['blah', [0, 1], 1000.5, '10ss', '10']:
assert_raises(ValueError, band_pass_filter, a, Fs, 4, 8,
filter_length=fl)
for nj in ['blah', 0.5, 0]:
assert_raises(ValueError, band_pass_filter, a, Fs, 4, 8, n_jobs=nj)
assert_raises(ValueError, band_pass_filter, a, Fs, 4, Fs / 2.) # > Nyq/2
assert_raises(ValueError, low_pass_filter, a, Fs, Fs / 2.) # > Nyq/2
# check our short-filter warning:
with warnings.catch_warnings(record=True) as w:
# Warning for low attenuation
band_pass_filter(a, Fs, 1, 8, filter_length=1024)
# Warning for too short a filter
band_pass_filter(a, Fs, 1, 8, filter_length='0.5s')
assert_true(len(w) >= 2)
# try new default and old default
for fl in ['10s', '5000ms', None]:
bp = band_pass_filter(a, Fs, 4, 8, filter_length=fl)
bs = band_stop_filter(a, Fs, 4 - 0.5, 8 + 0.5, filter_length=fl)
lp = low_pass_filter(a, Fs, 8, filter_length=fl, n_jobs=2)
hp = high_pass_filter(lp, Fs, 4, filter_length=fl)
assert_array_almost_equal(hp, bp, 2)
assert_array_almost_equal(bp + bs, a, 1)
# Overlap-add filtering with a fixed filter length
filter_length = 8192
bp_oa = band_pass_filter(a, Fs, 4, 8, filter_length)
bs_oa = band_stop_filter(a, Fs, 4 - 0.5, 8 + 0.5, filter_length)
lp_oa = low_pass_filter(a, Fs, 8, filter_length)
hp_oa = high_pass_filter(lp_oa, Fs, 4, filter_length)
assert_array_almost_equal(hp_oa, bp_oa, 2)
assert_array_almost_equal(bp_oa + bs_oa, a, 2)
# The two methods should give the same result
# As filtering for short signals uses a circular convolution (FFT) and
# the overlap-add filter implements a linear convolution, the signal
# boundary will be slightly different and we ignore it
n_edge_ignore = 0
assert_array_almost_equal(hp[n_edge_ignore:-n_edge_ignore],
hp_oa[n_edge_ignore:-n_edge_ignore], 2)
# and since these are low-passed, downsampling/upsampling should be close
n_resamp_ignore = 10
bp_up_dn = resample(resample(bp_oa, 2, 1, n_jobs=2), 1, 2, n_jobs=2)
assert_array_almost_equal(bp_oa[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# note that on systems without CUDA, this line serves as a test for a
# graceful fallback to n_jobs=1
bp_up_dn = resample(resample(bp_oa, 2, 1, n_jobs='cuda'), 1, 2,
n_jobs='cuda')
assert_array_almost_equal(bp_oa[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# test to make sure our resamling matches scipy's
bp_up_dn = sp_resample(sp_resample(bp_oa, 2 * bp_oa.shape[-1], axis=-1,
window='boxcar'),
bp_oa.shape[-1], window='boxcar', axis=-1)
assert_array_almost_equal(bp_oa[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# make sure we don't alias
t = np.array(list(range(Fs * sig_len_secs))) / float(Fs)
# make sinusoid close to the Nyquist frequency
sig = np.sin(2 * np.pi * Fs / 2.2 * t)
# signal should disappear with 2x downsampling
sig_gone = resample(sig, 1, 2)[n_resamp_ignore:-n_resamp_ignore]
assert_array_almost_equal(np.zeros_like(sig_gone), sig_gone, 2)
# let's construct some filters
iir_params = dict(ftype='cheby1', gpass=1, gstop=20)
iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low')
# this should be a third order filter
assert_true(iir_params['a'].size - 1 == 3)
assert_true(iir_params['b'].size - 1 == 3)
iir_params = dict(ftype='butter', order=4)
iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low')
assert_true(iir_params['a'].size - 1 == 4)
assert_true(iir_params['b'].size - 1 == 4)
开发者ID:MaelGarnotel,项目名称:mne-python,代码行数:86,代码来源:test_filter.py
示例20: test_filters
def test_filters():
"""Test low-, band-, high-pass, and band-stop filters plus resampling."""
sfreq = 100
sig_len_secs = 15
a = rng.randn(2, sig_len_secs * sfreq)
# let's test our catchers
for fl in ['blah', [0, 1], 1000.5, '10ss', '10']:
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, fl, 1., 1.)
for nj in ['blah', 0.5]:
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, 100,
1., 1., n_jobs=nj)
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, 100,
1., 1., fir_window='foo')
# > Nyq/2
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, sfreq / 2.,
100, 1.0, 1.0)
assert_raises(ValueError, low_pass_filter, a, sfreq, sfreq / 2.,
100, 1.0)
# check our short-filter warning:
with warnings.catch_warnings(record=True) as w:
# Warning for low attenuation
band_pass_filter(a, sfreq, 1, 8, filter_length=256)
assert_true(any('attenuation' in str(ww.message) for ww in w))
with warnings.catch_warnings(record=True) as w:
# Warning for too short a filter
band_pass_filter(a, sfreq, 1, 8, filter_length='0.5s')
assert_true(any('Increase filter_length' in str(ww.message) for ww in w))
# try new default and old default
for fl in ['auto', '10s', '5000ms', 1024]:
bp = band_pass_filter(a, sfreq, 4, 8, fl, 1.0, 1.0)
bs = band_stop_filter(a, sfreq, 4 - 1.0, 8 + 1.0, fl, 1.0, 1.0)
lp = low_pass_filter(a, sfreq, 8, fl, 1.0, n_jobs=2)
hp = high_pass_filter(lp, sfreq, 4, fl, 1.0)
assert_array_almost_equal(hp, bp, 4)
assert_array_almost_equal(bp + bs, a, 4)
# and since these are low-passed, downsampling/upsampling should be close
n_resamp_ignore = 10
bp_up_dn = resample(resample(bp, 2, 1, n_jobs=2), 1, 2, n_jobs=2)
assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# note that on systems without CUDA, this line serves as a test for a
# graceful fallback to n_jobs=1
bp_up_dn = resample(resample(bp, 2, 1, n_jobs='cuda'), 1, 2, n_jobs='cuda')
assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# test to make sure our resamling matches scipy's
bp_up_dn = sp_resample(sp_resample(bp, 2 * bp.shape[-1], axis=-1,
window='boxcar'),
bp.shape[-1], window='boxcar', axis=-1)
assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# make sure we don't alias
t = np.array(list(range(sfreq * sig_len_secs))) / float(sfreq)
# make sinusoid close to the Nyquist frequency
sig = np.sin(2 * np.pi * sfreq / 2.2 * t)
# signal should disappear with 2x downsampling
sig_gone = resample(sig, 1, 2)[n_resamp_ignore:-n_resamp_ignore]
assert_array_almost_equal(np.zeros_like(sig_gone), sig_gone, 2)
# let's construct some filters
iir_params = dict(ftype='cheby1', gpass=1, gstop=20, output='ba')
iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low')
# this should be a third order filter
assert_equal(iir_params['a'].size - 1, 3)
assert_equal(iir_params['b'].size - 1, 3)
iir_params = dict(ftype='butter', order=4, output='ba')
iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low')
assert_equal(iir_params['a'].size - 1, 4)
assert_equal(iir_params['b'].size - 1, 4)
iir_params = dict(ftype='cheby1', gpass=1, gstop=20, output='sos')
iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low')
# this should be a third order filter, which requires 2 SOS ((2, 6))
assert_equal(iir_params['sos'].shape, (2, 6))
iir_params = dict(ftype='butter', order=4, output='sos')
iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low')
assert_equal(iir_params['sos'].shape, (2, 6))
# check that picks work for 3d array with one channel and picks=[0]
a = rng.randn(5 * sfreq, 5 * sfreq)
b = a[:, None, :]
a_filt = band_pass_filter(a, sfreq, 4, 8, 400, 2.0, 2.0)
b_filt = band_pass_filter(b, sfreq, 4, 8, 400, 2.0, 2.0, picks=[0])
assert_array_equal(a_filt[:, None, :], b_filt)
# check for n-dimensional case
a = rng.randn(2, 2, 2, 2)
with warnings.catch_warnings(record=True): # filter too long
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, 100,
1.0, 1.0, picks=np.array([0, 1]))
开发者ID:annapasca,项目名称:mne-python,代码行数:96,代码来源:test_filter.py
注:本文中的mne.filter.band_pass_filter函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论