• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python mne.EpochsArray类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.EpochsArray的典型用法代码示例。如果您正苦于以下问题:Python EpochsArray类的具体用法?Python EpochsArray怎么用?Python EpochsArray使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了EpochsArray类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _read_epochs

def _read_epochs(epochs_mat_fname, info, return_fixations_motor):
    """read the epochs from matfile"""
    data = scio.loadmat(epochs_mat_fname,
                        squeeze_me=True)['data']
    ch_names = [ch for ch in data['label'].tolist()]
    info['sfreq'] = data['fsample'].tolist()
    times = data['time'].tolist()[0]
    # deal with different event lengths
    if return_fixations_motor is not None:
        fixation_mask = data['trialinfo'].tolist()[:, 1] == 6
        if return_fixations_motor is False:
            fixation_mask = ~fixation_mask
        data = np.array(data['trial'].tolist()[fixation_mask].tolist())
    else:
        data = np.array(data['trial'].tolist().tolist())

    # warning: data are not chronologically ordered but
    # match the trial info
    events = np.zeros((len(data), 3), dtype=np.int)
    events[:, 0] = np.arange(len(data))
    events[:, 2] = 99  # all events
    # we leave it to the user to construct his events
    # as from the data['trialinfo'] arbitrary events can be constructed.
    # and it is task specific.
    this_info = _hcp_pick_info(info, ch_names)
    epochs = EpochsArray(data=data, info=this_info, events=events,
                         tmin=times.min())
    # XXX hack for now due to issue with EpochsArray constructor
    # cf https://github.com/mne-tools/mne-hcp/issues/9
    epochs.times = times
    return epochs
开发者ID:mne-tools,项目名称:mne-hcp,代码行数:31,代码来源:read.py


示例2: cli

def cli(matfiles, savename, rec_type, infosrc):
    """
    Convert brainstorm epochs to mne.Epochs object
    """
    if infosrc:
        if rec_type is 'ds':
            from mne.io import read_raw_ctf as read_raw
        elif rec_type is 'fif':
            from mne.io import Raw as read_raw
        with nostdout():
            raw_with_info = read_raw(infosrc)

    isFirst = True
    for fname in matfiles:
        with nostdout():
            mat_epoch = sio.loadmat(fname)
            # click.echo(mat_epoch)
        if isFirst:
            data = mat_epoch['F']
            times = mat_epoch['Time']
            # print times[0,-1]
            isFirst = False
        else:
            data = np.dstack((data, mat_epoch['F']))
        # click.echo(data.shape)
    data = data.transpose((2,0,1))


    n_channels = data.shape[1]
    sfreq = times.shape[1] / (times[0,-1] + times[0,1])
    
    
    if infosrc:
        if rec_type is 'ds':
            from mne.io import read_raw_ctf as read_raw
        elif rec_type is 'fif':
            from mne.io import Raw as read_raw

        with nostdout():
            raw_with_info = read_raw(infosrc)
        good_info = raw_with_info.info
        # click.echo(len(good_info['ch_names']))

        ch_types = [channel_type(good_info, idx) for idx in range(n_channels)]

        # click.echo(len(ch_types))

        info = create_info(ch_names=good_info['ch_names'], sfreq=sfreq, ch_types=ch_types)
    else:
        ch_types='mag'
        info = create_info(n_channels, sfreq, ch_types)

    with nostdout():
        epochs = EpochsArray(data, info)
    epochs.save(savename)
开发者ID:dmalt,项目名称:get_some_rest,代码行数:55,代码来源:bst2mne.py


示例3: test_tfr_multitaper

def test_tfr_multitaper():
    """Test tfr_multitaper"""
    sfreq = 200.0
    ch_names = ['SIM0001', 'SIM0002', 'SIM0003']
    ch_types = ['grad', 'grad', 'grad']
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)

    n_times = int(sfreq)  # Second long epochs
    n_epochs = 3
    seed = 42
    rng = np.random.RandomState(seed)
    noise = 0.1 * rng.randn(n_epochs, len(ch_names), n_times)
    t = np.arange(n_times, dtype=np.float) / sfreq
    signal = np.sin(np.pi * 2. * 50. * t)  # 50 Hz sinusoid signal
    signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
    on_time = np.logical_and(t >= 0.45, t <= 0.55)
    signal[on_time] *= np.hanning(on_time.sum())  # Ramping
    dat = noise + signal

    reject = dict(grad=4000.)
    events = np.empty((n_epochs, 3), int)
    first_event_sample = 100
    event_id = dict(sin50hz=1)
    for k in range(n_epochs):
        events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

    epochs = EpochsArray(data=dat, info=info, events=events, event_id=event_id,
                         reject=reject)

    freqs = np.arange(5, 100, 3, dtype=np.float)
    power, itc = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2.,
                                time_bandwidth=4.0)
    picks = np.arange(len(ch_names))
    power_picks, itc_picks = tfr_multitaper(epochs, freqs=freqs,
                                            n_cycles=freqs / 2.,
                                            time_bandwidth=4.0, picks=picks)
    power_evoked = tfr_multitaper(epochs.average(), freqs=freqs,
                                  n_cycles=freqs / 2., time_bandwidth=4.0,
                                  return_itc=False)
    # test picks argument
    assert_array_almost_equal(power.data, power_picks.data)
    assert_array_almost_equal(itc.data, itc_picks.data)
    # one is squared magnitude of the average (evoked) and
    # the other is average of the squared magnitudes (epochs PSD)
    # so values shouldn't match, but shapes should
    assert_array_equal(power.data.shape, power_evoked.data.shape)
    assert_raises(AssertionError, assert_array_almost_equal,
                  power.data, power_evoked.data)

    tmax = t[np.argmax(itc.data[0, freqs == 50, :])]
    fmax = freqs[np.argmax(power.data[1, :, t == 0.5])]
    assert_true(tmax > 0.3 and tmax < 0.7)
    assert_false(np.any(itc.data < 0.))
    assert_true(fmax > 40 and fmax < 60)
开发者ID:kvlung,项目名称:mne-python,代码行数:54,代码来源:test_tfr.py


示例4: test_add_noise

def test_add_noise():
    """Test noise addition."""
    rng = np.random.RandomState(0)
    data_path = testing.data_path()
    raw = read_raw_fif(data_path + '/MEG/sample/sample_audvis_trunc_raw.fif')
    raw.del_proj()
    picks = pick_types(raw.info, eeg=True, exclude=())
    cov = compute_raw_covariance(raw, picks=picks)
    with pytest.raises(RuntimeError, match='to be loaded'):
        add_noise(raw, cov)
    raw.crop(0, 1).load_data()
    with pytest.raises(TypeError, match='Raw, Epochs, or Evoked'):
        add_noise(0., cov)
    with pytest.raises(TypeError, match='Covariance'):
        add_noise(raw, 0.)
    # test a no-op (data preserved)
    orig_data = raw[:][0]
    zero_cov = cov.copy()
    zero_cov['data'].fill(0)
    add_noise(raw, zero_cov)
    new_data = raw[:][0]
    assert_allclose(orig_data, new_data, atol=1e-30)
    # set to zero to make comparisons easier
    raw._data[:] = 0.
    epochs = EpochsArray(np.zeros((1, len(raw.ch_names), 100)),
                         raw.info.copy())
    epochs.info['bads'] = []
    evoked = epochs.average(picks=np.arange(len(raw.ch_names)))
    for inst in (raw, epochs, evoked):
        with catch_logging() as log:
            add_noise(inst, cov, random_state=rng, verbose=True)
        log = log.getvalue()
        want = ('to {0}/{1} channels ({0}'
                .format(len(cov['names']), len(raw.ch_names)))
        assert want in log
        if inst is evoked:
            inst = EpochsArray(inst.data[np.newaxis], inst.info)
        if inst is raw:
            cov_new = compute_raw_covariance(inst, picks=picks,
                                             verbose='error')  # samples
        else:
            cov_new = compute_covariance(inst, verbose='error')  # avg ref
        assert cov['names'] == cov_new['names']
        r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
        assert r > 0.99
开发者ID:kambysese,项目名称:mne-python,代码行数:45,代码来源:test_evoked.py


示例5: test_plot_butterfly

def test_plot_butterfly():
    """Test butterfly view in epochs browse window."""
    rng = np.random.RandomState(0)
    n_epochs, n_channels, n_times = 50, 30, 20
    sfreq = 1000.
    data = np.sin(rng.randn(n_epochs, n_channels, n_times))
    events = np.array([np.arange(n_epochs), [0] * n_epochs, np.ones([n_epochs],
                       dtype=np.int)]).T
    chanlist = ['eeg' if chan < n_channels // 3 else 'ecog'
                if chan < n_channels // 2 else 'seeg'
                for chan in range(n_channels)]
    info = create_info(n_channels, sfreq, chanlist)
    epochs = EpochsArray(data, info, events)
    fig = epochs.plot(butterfly=True)
    keystotest = ['b', 'b', 'left', 'right', 'up', 'down',
                  'pageup', 'pagedown', '-', '+', '=',
                  'f11', 'home', '?', 'h', 'o', 'end']
    for key in keystotest:
        fig.canvas.key_press_event(key)
    fig.canvas.scroll_event(0.5, 0.5, -0.5)  # scroll down
    fig.canvas.scroll_event(0.5, 0.5, 0.5)  # scroll up
    fig.canvas.resize_event()
    fig.canvas.close_event()  # closing and epoch dropping
    plt.close('all')
开发者ID:adykstra,项目名称:mne-python,代码行数:24,代码来源:test_epochs.py


示例6: test_decim

def test_decim():
    """Test evoked decimation."""
    rng = np.random.RandomState(0)
    n_epochs, n_channels, n_times = 5, 10, 20
    dec_1, dec_2 = 2, 3
    decim = dec_1 * dec_2
    sfreq = 1000.
    sfreq_new = sfreq / decim
    data = rng.randn(n_epochs, n_channels, n_times)
    events = np.array([np.arange(n_epochs), [0] * n_epochs, [1] * n_epochs]).T
    info = create_info(n_channels, sfreq, 'eeg')
    info['lowpass'] = sfreq_new / float(decim)
    epochs = EpochsArray(data, info, events)
    data_epochs = epochs.copy().decimate(decim).get_data()
    data_epochs_2 = epochs.copy().decimate(decim, offset=1).get_data()
    data_epochs_3 = epochs.decimate(dec_1).decimate(dec_2).get_data()
    assert_array_equal(data_epochs, data[:, :, ::decim])
    assert_array_equal(data_epochs_2, data[:, :, 1::decim])
    assert_array_equal(data_epochs, data_epochs_3)

    # Now let's do it with some real data
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    events = read_events(event_name)
    sfreq_new = raw.info['sfreq'] / decim
    raw.info['lowpass'] = sfreq_new / 4.  # suppress aliasing warnings
    picks = pick_types(raw.info, meg=True, eeg=True, exclude=())
    epochs = Epochs(raw, events, 1, -0.2, 0.5, picks=picks, preload=True,
                    add_eeg_ref=False)
    for offset in (0, 1):
        ev_ep_decim = epochs.copy().decimate(decim, offset).average()
        ev_decim = epochs.average().decimate(decim, offset)
        expected_times = epochs.times[offset::decim]
        assert_allclose(ev_decim.times, expected_times)
        assert_allclose(ev_ep_decim.times, expected_times)
        expected_data = epochs.get_data()[:, :, offset::decim].mean(axis=0)
        assert_allclose(ev_decim.data, expected_data)
        assert_allclose(ev_ep_decim.data, expected_data)
        assert_equal(ev_decim.info['sfreq'], sfreq_new)
        assert_array_equal(ev_decim.times, expected_times)
开发者ID:jmontoyam,项目名称:mne-python,代码行数:39,代码来源:test_evoked.py


示例7: test_tfr_multitaper

def test_tfr_multitaper():
    """Test tfr_multitaper."""
    sfreq = 200.0
    ch_names = ['SIM0001', 'SIM0002']
    ch_types = ['grad', 'grad']
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)

    n_times = int(sfreq)  # Second long epochs
    n_epochs = 3
    seed = 42
    rng = np.random.RandomState(seed)
    noise = 0.1 * rng.randn(n_epochs, len(ch_names), n_times)
    t = np.arange(n_times, dtype=np.float) / sfreq
    signal = np.sin(np.pi * 2. * 50. * t)  # 50 Hz sinusoid signal
    signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
    on_time = np.logical_and(t >= 0.45, t <= 0.55)
    signal[on_time] *= np.hanning(on_time.sum())  # Ramping
    dat = noise + signal

    reject = dict(grad=4000.)
    events = np.empty((n_epochs, 3), int)
    first_event_sample = 100
    event_id = dict(sin50hz=1)
    for k in range(n_epochs):
        events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

    epochs = EpochsArray(data=dat, info=info, events=events, event_id=event_id,
                         reject=reject)

    freqs = np.arange(35, 70, 5, dtype=np.float)

    power, itc = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2.,
                                time_bandwidth=4.0)
    power2, itc2 = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2.,
                                  time_bandwidth=4.0, decim=slice(0, 2))
    picks = np.arange(len(ch_names))
    power_picks, itc_picks = tfr_multitaper(epochs, freqs=freqs,
                                            n_cycles=freqs / 2.,
                                            time_bandwidth=4.0, picks=picks)
    power_epochs = tfr_multitaper(epochs, freqs=freqs,
                                  n_cycles=freqs / 2., time_bandwidth=4.0,
                                  return_itc=False, average=False)
    power_averaged = power_epochs.average()
    power_evoked = tfr_multitaper(epochs.average(), freqs=freqs,
                                  n_cycles=freqs / 2., time_bandwidth=4.0,
                                  return_itc=False, average=False).average()

    print(power_evoked)  # test repr for EpochsTFR

    # Test channel picking
    power_epochs_picked = power_epochs.copy().drop_channels(['SIM0002'])
    assert_equal(power_epochs_picked.data.shape, (3, 1, 7, 200))
    assert_equal(power_epochs_picked.ch_names, ['SIM0001'])

    pytest.raises(ValueError, tfr_multitaper, epochs,
                  freqs=freqs, n_cycles=freqs / 2.,
                  return_itc=True, average=False)

    # test picks argument
    assert_array_almost_equal(power.data, power_picks.data)
    assert_array_almost_equal(power.data, power_averaged.data)
    assert_array_almost_equal(power.times, power_epochs.times)
    assert_array_almost_equal(power.times, power_averaged.times)
    assert_equal(power.nave, power_averaged.nave)
    assert_equal(power_epochs.data.shape, (3, 2, 7, 200))
    assert_array_almost_equal(itc.data, itc_picks.data)
    # one is squared magnitude of the average (evoked) and
    # the other is average of the squared magnitudes (epochs PSD)
    # so values shouldn't match, but shapes should
    assert_array_equal(power.data.shape, power_evoked.data.shape)
    pytest.raises(AssertionError, assert_array_almost_equal,
                  power.data, power_evoked.data)

    tmax = t[np.argmax(itc.data[0, freqs == 50, :])]
    fmax = freqs[np.argmax(power.data[1, :, t == 0.5])]
    assert (tmax > 0.3 and tmax < 0.7)
    assert not np.any(itc.data < 0.)
    assert (fmax > 40 and fmax < 60)
    assert (power2.data.shape == (len(picks), len(freqs), 2))
    assert (power2.data.shape == itc2.data.shape)

    # Test decim parameter checks and compatibility between wavelets length
    # and instance length in the time dimension.
    pytest.raises(TypeError, tfr_multitaper, epochs, freqs=freqs,
                  n_cycles=freqs / 2., time_bandwidth=4.0, decim=(1,))
    pytest.raises(ValueError, tfr_multitaper, epochs, freqs=freqs,
                  n_cycles=1000, time_bandwidth=4.0)
开发者ID:kambysese,项目名称:mne-python,代码行数:87,代码来源:test_tfr.py


示例8: dict

# Add a 50 Hz sinusoidal burst to the noise and ramp it.
t = np.arange(n_times, dtype=np.float) / sfreq
signal = np.sin(np.pi * 2. * 50. * t)  # 50 Hz sinusoid signal
signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
on_time = np.logical_and(t >= 0.45, t <= 0.55)
signal[on_time] *= np.hanning(on_time.sum())  # Ramping
data = noise + signal

reject = dict(grad=4000)
events = np.empty((n_epochs, 3), dtype=int)
first_event_sample = 100
event_id = dict(sin50hz=1)
for k in range(n_epochs):
    events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

epochs = EpochsArray(data=data, info=info, events=events, event_id=event_id,
                     reject=reject)

###############################################################################
# Calculate a time-frequency representation (TFR)
# -----------------------------------------------
#
# Below we'll demonstrate the output of several TFR functions in MNE:
#
# * :func:`mne.time_frequency.tfr_multitaper`
# * :func:`mne.time_frequency.tfr_stockwell`
# * :func:`mne.time_frequency.tfr_morlet`
#
# Multitaper transform
# ====================
# First we'll use the multitaper method for calculating the TFR.
# This creates several orthogonal tapering windows in the TFR estimation,
开发者ID:Hugo-W,项目名称:mne-python,代码行数:32,代码来源:plot_time_frequency_simulated.py


示例9: StratifiedKFold

data_cls = np.asarray(cls_all)
data_pln = np.asarray(pln_all)

# Setup data for epochs and cross validation
X = np.vstack([data_cls, data_pln])
y = np.concatenate([np.zeros(len(data_cls)), np.ones(len(data_pln))])
cv = StratifiedKFold(n_splits=7, shuffle=True)

# Create epochs to use for classification
n_trial, n_chan, n_time = X.shape
events = np.vstack((range(n_trial), np.zeros(n_trial, int), y.astype(int))).T
chan_names = ['MEG %i' % chan for chan in range(n_chan)]
chan_types = ['mag'] * n_chan
sfreq = 250
info = create_info(chan_names, sfreq, chan_types)
epochs = EpochsArray(data=X, info=info, events=events, verbose=False)
epochs.times = selected_times[:n_time]

# make classifier
clf = LogisticRegression(C=0.0001)

# fit model and score
gat = GeneralizationAcrossTime(
    clf=clf, scorer="roc_auc", cv=cv, predict_method="predict")
gat.fit(epochs, y=y)
gat.score(epochs, y=y)

# Save model
joblib.dump(gat, data_path + "decode_time_gen/gat_ge.jl")

# make matrix plot and save it
开发者ID:MadsJensen,项目名称:RP_scripts,代码行数:31,代码来源:sk_sliding_trans_bin.py


示例10: dict

# Add a 50 Hz sinusoidal burst to the noise and ramp it.
t = np.arange(n_times, dtype=np.float) / sfreq
signal = np.sin(np.pi * 2. * 50. * t)  # 50 Hz sinusoid signal
signal[np.logical_or(t < 0.45, t > 0.55)] = 0.  # Hard windowing
on_time = np.logical_and(t >= 0.45, t <= 0.55)
signal[on_time] *= np.hanning(on_time.sum())  # Ramping
data = noise + signal

reject = dict(grad=4000)
events = np.empty((n_epochs, 3), dtype=int)
first_event_sample = 100
event_id = dict(sin50hz=1)
for k in range(n_epochs):
    events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']

epochs = EpochsArray(data=data, info=info, events=events, event_id=event_id,
                     reject=reject)

epochs.average().plot()

###############################################################################
# Calculate a time-frequency representation (TFR)
# -----------------------------------------------
#
# Below we'll demonstrate the output of several TFR functions in MNE:
#
# * :func:`mne.time_frequency.tfr_multitaper`
# * :func:`mne.time_frequency.tfr_stockwell`
# * :func:`mne.time_frequency.tfr_morlet`
#
# Multitaper transform
# ====================
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:32,代码来源:plot_time_frequency_simulated.py


示例11: StratifiedKFold

data_pln = data_pln.swapaxes(2, 0)
data_pln = data_pln.swapaxes(2, 1)

# Setup data for epochs and cross validation
X = np.vstack([data_cls, data_pln])
y = np.concatenate([np.zeros(len(data_cls)), np.ones(len(data_pln))])
cv = StratifiedKFold(n_splits=10, shuffle=True)

# Create epochs to use for classification
n_trial, n_chan, n_time = X.shape
events = np.vstack((range(n_trial), np.zeros(n_trial, int), y.astype(int))).T
chan_names = ['MEG %i' % chan for chan in range(n_chan)]
chan_types = ['mag'] * n_chan
sfreq = 250
info = create_info(chan_names, sfreq, chan_types)
epochs = EpochsArray(data=X, info=info, events=events, verbose=False)
epochs.times = selected_times[:n_time]

epochs.crop(-3.8, None)

# fit model and score
gat = GeneralizationAcrossTime(
    scorer="accuracy", cv=cv, predict_method="predict")
gat.fit(epochs, y=y)
gat.score(epochs, y=y)

# Save model
joblib.dump(gat, data_path + "decode_time_gen/%s_gat_tr.jl" % subject)

# make matrix plot and save it
fig = gat.plot(
开发者ID:MadsJensen,项目名称:RP_scripts,代码行数:31,代码来源:sk_sliding_trans_bin_epo.py



注:本文中的mne.EpochsArray类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mne.SourceEstimate类代码示例发布时间:2022-05-27
下一篇:
Python mne.Epochs类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap