• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python mne.write_evokeds函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.write_evokeds函数的典型用法代码示例。如果您正苦于以下问题:Python write_evokeds函数的具体用法?Python write_evokeds怎么用?Python write_evokeds使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了write_evokeds函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: events_save_events

 def events_save_events(self,evt=None,condition=None,postfix="evt",
                             picks=None,reject=None,proj=False,
                             save_condition={"events":True,"epochs":True,"evoked":True}):
     
     from jumeg.jumeg_4raw_data_plot import jumeg_4raw_data_plot as jplt
     jplt.verbose = self.verbose
   
     ep,bc = self.events_apply_epochs_and_baseline(self.raw,evt=evt,reject=reject,proj=proj,picks=picks)      
   
     postfix += '_' + condition
     if bc:
        postfix += '_bc'
            
   #--- save events to txt file    
     if save_condition["events"]:
        fname = jumeg_base.get_fif_name(raw=self.raw,postfix=postfix,extention=".eve",update_raw_fname=False)
        mne.event.write_events( fname,evt['events'] )
        print" ---> done jumeg epocher save events as => EVENTS :" +fname
       
   #--- save epoch data
     if save_condition["epochs"]:
        fname = jumeg_base.get_fif_name(raw=self.raw,postfix=postfix,extention="-epo.fif",update_raw_fname=False)
        ep.save( fname )
        print" ---> done jumeg epocher save events as => EPOCHS :" +fname
       
   #--- save averaged data
        if save_condition["evoked"]:
           fname = jumeg_base.get_fif_name(raw=self.raw,postfix=postfix,extention="-ave.fif",update_raw_fname=False)
           mne.write_evokeds( fname,ep.average() )              
           print" ---> done jumeg epocher save events as => EVOKED (averaged) :" +fname 
           fname = jumeg_base.get_fif_name(raw=self.raw,postfix=postfix,extention="-ave",update_raw_fname=False)  
         #--- plot evoked
           fname = jplt.plot_evoked(ep,fname=fname,condition=condition,show_plot=False,save_plot=True,plot_dir='plots')
           print" ---> done jumeg epocher plot evoked (averaged) :" +fname 
开发者ID:fboers,项目名称:jumeg,代码行数:34,代码来源:jumeg_epocher_events.py


示例2: test_evoked_resample

def test_evoked_resample():
    """Test for resampling of evoked data
    """
    tempdir = _TempDir()
    # upsample, write it out, read it in
    ave = read_evokeds(fname, 0)
    sfreq_normal = ave.info['sfreq']
    ave.resample(2 * sfreq_normal)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)
    ave_up = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)

    # compare it to the original
    ave_normal = read_evokeds(fname, 0)

    # and compare the original to the downsampled upsampled version
    ave_new = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)
    ave_new.resample(sfreq_normal)

    assert_array_almost_equal(ave_normal.data, ave_new.data, 2)
    assert_array_almost_equal(ave_normal.times, ave_new.times)
    assert_equal(ave_normal.nave, ave_new.nave)
    assert_equal(ave_normal._aspect_kind, ave_new._aspect_kind)
    assert_equal(ave_normal.kind, ave_new.kind)
    assert_equal(ave_normal.last, ave_new.last)
    assert_equal(ave_normal.first, ave_new.first)

    # for the above to work, the upsampling just about had to, but
    # we'll add a couple extra checks anyway
    assert_true(len(ave_up.times) == 2 * len(ave_normal.times))
    assert_true(ave_up.data.shape[1] == 2 * ave_normal.data.shape[1])
开发者ID:The3DWizard,项目名称:mne-python,代码行数:30,代码来源:test_evoked.py


示例3: test_evoked_standard_error

def test_evoked_standard_error():
    """Test calculation and read/write of standard error
    """
    raw, events, picks = _get_data()
    tempdir = _TempDir()
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0))
    evoked = [epochs.average(), epochs.standard_error()]
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), evoked)
    evoked2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), [0, 1])
    evoked3 = [read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 'Unknown'),
               read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 'Unknown',
                            kind='standard_error')]
    for evoked_new in [evoked2, evoked3]:
        assert_true(evoked_new[0]._aspect_kind ==
                    FIFF.FIFFV_ASPECT_AVERAGE)
        assert_true(evoked_new[0].kind == 'average')
        assert_true(evoked_new[1]._aspect_kind ==
                    FIFF.FIFFV_ASPECT_STD_ERR)
        assert_true(evoked_new[1].kind == 'standard_error')
        for ave, ave2 in zip(evoked, evoked_new):
            assert_array_almost_equal(ave.data, ave2.data)
            assert_array_almost_equal(ave.times, ave2.times)
            assert_equal(ave.nave, ave2.nave)
            assert_equal(ave._aspect_kind, ave2._aspect_kind)
            assert_equal(ave.kind, ave2.kind)
            assert_equal(ave.last, ave2.last)
            assert_equal(ave.first, ave2.first)
开发者ID:MadsJensen,项目名称:mne-python,代码行数:28,代码来源:test_epochs.py


示例4: _calc_evoked

def _calc_evoked(params):
    subject, events_id, epochs = params
    evoked = {}
    for cond_name in events_id.keys():
        evoked[cond_name] = epochs[cond_name].average()
        evo = op.join(LOCAL_ROOT_DIR, 'evo', '{}_ecr_{}-ave.fif'.format(subject, cond_name))
        mne.write_evokeds(evo, evoked[cond_name])
    return evoked
开发者ID:ofek-schechner,项目名称:mmvt,代码行数:8,代码来源:meg_statistics.py


示例5: compute_epochs_cov_evokeds

def compute_epochs_cov_evokeds(subject):
    """Epoch, compute noise covariance and average.

    params:
    subject : str
        the subject id to be loaded
    """
    raw = Raw(save_folder + "%s_filtered_ica_mc_raw_tsss.fif" % subject,
              preload=True)
    # Select events to extract epochs from.
    event_id = {'ent_left': 1,
                'ent_right': 2,
                'ctl_left': 4,
                'ctl_right': 8}

    #   Setup for reading the raw data
    events = mne.find_events(raw, min_duration=0.01)

    picks = mne.pick_types(raw.info, meg=True, eeg=True, stim=False, eog=False,
                           include=include, exclude='bads')
    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), reject=reject,
                        preload=True)

    epochs.save(epochs_folder + "%s_filtered_ica_mc_tsss-epo.fif" % subject)

    # Plot epochs.
    # epochs.plot(trellis=False)

    # Look at channels that caused dropped events, showing that the subject's
    # blinks were likely to blame for most epochs being dropped
    epochs.drop_bad_epochs()
    fig = epochs.plot_drop_log(subject=subject, show=False)
    fig.savefig(epochs_folder + "pics/%s_drop_log.png" % subject)

    # Make noise cov
    cov = compute_covariance(epochs, tmin=None, tmax=0, method="auto")
    mne.write_cov(epochs_folder + "%s-cov.fif" % subject, cov)

    # Average epochs and get evoked data corresponding to the left stimulation
    ###########################################################################
    # Save evoked responses for different conditions to disk

    # average epochs and get Evoked datasets
    evokeds = [epochs[cond].average() for cond in ['ent_left', 'ent_right',
                                                   'ctl_left', 'ctl_right']]

    evokeds = [epochs[cond].average() for cond in epochs.event_id.keys()]

    # save evoked data to disk
    mne.write_evokeds(epochs_folder +
                      '%s_filtered_ica_mc_raw_tsss-ave.fif' % subject, evokeds)

    plt.close("all")
开发者ID:MadsJensen,项目名称:malthe_alpha_project,代码行数:55,代码来源:epochs_cov_evoked.py


示例6: calc_evoked

def calc_evoked(indices, epochs_fname, overwrite_epochs=False, overwrite_evoked=False):
    epochs = mne.read_epochs(epochs_fname, preload=False)
    print(epochs.events.shape)
    for event_name, event_indices in indices.items():
        evoked_event_fname = meg.get_cond_fname(meg.EVO, event_name)
        epochs_event_fname = meg.get_cond_fname(meg.EPO, event_name)
        if not op.isfile(epochs_event_fname) or overwrite_epochs:
            print('Saving {} epochs to {}, events num: {}'.format(event_name, epochs_event_fname, len(event_indices)))
            event_epochs = epochs[event_indices]
            event_epochs.save(epochs_event_fname)
        if not op.isfile(evoked_event_fname) or overwrite_evoked:
            print('Saving {} evoked to {}'.format(event_name, evoked_event_fname))
            mne.write_evokeds(evoked_event_fname, event_epochs.average())
开发者ID:pelednoam,项目名称:mmvt,代码行数:13,代码来源:calc_arc_evoked.py


示例7: test_io_evoked

def test_io_evoked():
    """Test IO for evoked data (fif + gz) with integer and str args
    """
    tempdir = _TempDir()
    ave = read_evokeds(fname, 0)

    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)
    ave2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0]

    # This not being assert_array_equal due to windows rounding
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave._aspect_kind, ave2._aspect_kind)
    assert_equal(ave.kind, ave2.kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)
    assert_true(repr(ave))

    # test compressed i/o
    ave2 = read_evokeds(fname_gz, 0)
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))

    # test str access
    condition = 'Left Auditory'
    assert_raises(ValueError, read_evokeds, fname, condition, kind='stderr')
    assert_raises(ValueError, read_evokeds, fname, condition,
                  kind='standard_error')
    ave3 = read_evokeds(fname, condition)
    assert_array_almost_equal(ave.data, ave3.data, 19)

    # test read_evokeds and write_evokeds
    aves1 = read_evokeds(fname)[1::2]
    aves2 = read_evokeds(fname, [1, 3])
    aves3 = read_evokeds(fname, ['Right Auditory', 'Right visual'])
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), aves1)
    aves4 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))
    for aves in [aves2, aves3, aves4]:
        for [av1, av2] in zip(aves1, aves):
            assert_array_almost_equal(av1.data, av2.data)
            assert_array_almost_equal(av1.times, av2.times)
            assert_equal(av1.nave, av2.nave)
            assert_equal(av1.kind, av2.kind)
            assert_equal(av1._aspect_kind, av2._aspect_kind)
            assert_equal(av1.last, av2.last)
            assert_equal(av1.first, av2.first)
            assert_equal(av1.comment, av2.comment)

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        fname2 = op.join(tempdir, 'test-bad-name.fif')
        write_evokeds(fname2, ave)
        read_evokeds(fname2)
    assert_naming(w, 'test_evoked.py', 2)

    # constructor
    assert_raises(TypeError, Evoked, fname)
开发者ID:The3DWizard,项目名称:mne-python,代码行数:58,代码来源:test_evoked.py


示例8: test_shift_time_evoked

def test_shift_time_evoked():
    """ Test for shifting of time scale
    """
    tempdir = _TempDir()
    # Shift backward
    ave = read_evokeds(fname, 0)
    ave.shift_time(-0.1, relative=True)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)

    # Shift forward twice the amount
    ave_bshift = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)
    ave_bshift.shift_time(0.2, relative=True)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave_bshift)

    # Shift backward again
    ave_fshift = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)
    ave_fshift.shift_time(-0.1, relative=True)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave_fshift)

    ave_normal = read_evokeds(fname, 0)
    ave_relative = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)

    assert_true(np.allclose(ave_normal.data, ave_relative.data,
                            atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave_normal.times, ave_relative.times, 10)

    assert_equal(ave_normal.last, ave_relative.last)
    assert_equal(ave_normal.first, ave_relative.first)

    # Absolute time shift
    ave = read_evokeds(fname, 0)
    ave.shift_time(-0.3, relative=False)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)

    ave_absolute = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)

    assert_true(np.allclose(ave_normal.data, ave_absolute.data,
                            atol=1e-16, rtol=1e-3))
    assert_equal(ave_absolute.first, int(-0.3 * ave.info['sfreq']))
开发者ID:The3DWizard,项目名称:mne-python,代码行数:39,代码来源:test_evoked.py


示例9: combine_event_ids

picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=True,
                       include=include, exclude='bads')
# Read epochs
epochs = mne.Epochs(raw, events, event_ids, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(eeg=80e-6, eog=150e-6))
# Let's equalize the trial counts in each condition
epochs.equalize_event_counts(['AudL', 'AudR', 'VisL', 'VisR'], copy=False)
# Now let's combine some conditions
combine_event_ids(epochs, ['AudL', 'AudR'], {'Auditory': 12}, copy=False)
combine_event_ids(epochs, ['VisL', 'VisR'], {'Visual': 34}, copy=False)

# average epochs and get Evoked datasets
evokeds = [epochs[cond].average() for cond in ['Auditory', 'Visual']]

# save evoked data to disk
mne.write_evokeds('sample_auditory_and_visual_eeg-ave.fif', evokeds)

###############################################################################
# View evoked response
import matplotlib.pyplot as plt
plt.clf()
ax = plt.subplot(2, 1, 1)
evokeds[0].plot(axes=ax)
plt.title('EEG evoked potential, auditory trials')
plt.ylabel('Potential (uV)')
ax = plt.subplot(2, 1, 2)
evokeds[1].plot(axes=ax)
plt.title('EEG evoked potential, visual trials')
plt.ylabel('Potential (uV)')
plt.show()
开发者ID:BushraR,项目名称:mne-python,代码行数:30,代码来源:plot_from_raw_to_multiple_epochs_to_evoked.py


示例10: enumerate

old_data = epochs_tmp.get_data()
data = np.empty_like(old_data)
for ii, e in enumerate(old_data):
    data[ii] = np.dot(projector, e)
# got the threshold from Brainstorm (http://neuroimage.usc.edu/brainstorm/Tutorials/TutRawAvg, 2000 fT)
epochs_clean = mne.epochs.EpochsArray(data, info, epochs_tmp.events, reject=dict(mag=2e-12), event_id=epochs_tmp.event_id, tmin=np.min(epochs_tmp.times))

# and check how different the averages get
evokeds_clean = [epochs_clean[name].average() for name in conds[:3]]
title = 'Averaged data after EOG and bad trials removal'
mne.viz.plot_topo(evokeds_clean, color=colors, title=title)

# save evoked responses for all 5 conditions
print 'Saving evoked data...'
evokeds_clean = [epochs_clean[name].average() for name in conds]
mne.write_evokeds(evoked_dir + subj + '_stop_BP1-35_DS120-ave.fif', evokeds_clean)

# output number of averages
for ev in evokeds_clean:
    print ev.comment, ': %d averages'%ev.nave

# For the data tracker
print '=== Add to data tracker ==='
print 'Y\t%s\t%d\t%d\t%d'%(comps2use,evokeds_clean[1].nave,evokeds_clean[4].nave,evokeds_clean[0].nave) 
print '==============='

# now that we know which epochs to drop, copy the log to the actual epochs structure and drop them
bad_epochs = [i for i,j in enumerate(epochs_clean.drop_log) if len(j)>0]
epochs.drop_epochs(bad_epochs)
# save epochs with (optional) EOG projection
print 'Saving epochs with optional SSP operators...'
开发者ID:gsudre,项目名称:research_code,代码行数:31,代码来源:clean_task_data.py


示例11: test_dipole_fitting

def test_dipole_fitting():
    """Test dipole fitting"""
    amp = 10e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False, force_fixed=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
                for s in fwd['src']]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    with warnings.catch_warnings(record=True):  # semi-def cov
        evoked = generate_evoked(fwd, stc, evoked, cov, snr=20,
                                 random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(np.concatenate([
        pick_types(evoked.info, meg=True, eeg=False)[::2],
        pick_types(evoked.info, meg=False, eeg=True)[::2]]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
        '--noise', fname_cov, '--dip', fname_dtemp,
        '--mri', fname_fwd, '--reg', '0', '--tmin', '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals ** 2, axis=0))
    assert_true((data_rms > resi_rms).all())

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    dip.crop(dip_c.times[0], dip_c.times[-1])
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did at least as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
                                                     axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    assert_true(dists[0] >= dists[1], 'dists: %s' % dists)
    assert_true(corrs[0] <= corrs[1], 'corrs: %s' % corrs)
    assert_true(gc_dists[0] >= gc_dists[1], 'gc-dists (ori): %s' % gc_dists)
    assert_true(amp_errs[0] >= amp_errs[1], 'amplitude errors: %s' % amp_errs)
开发者ID:ImmanuelSamuel,项目名称:mne-python,代码行数:71,代码来源:test_dipole.py


示例12: test_io_evoked

def test_io_evoked():
    """Test IO for evoked data (fif + gz) with integer and str args
    """
    ave = read_evokeds(fname, 0)

    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)
    ave2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0]

    # This not being assert_array_equal due to windows rounding
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave._aspect_kind, ave2._aspect_kind)
    assert_equal(ave.kind, ave2.kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)

    # test compressed i/o
    ave2 = read_evokeds(fname_gz, 0)
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))

    # test str access
    condition = 'Left Auditory'
    assert_raises(ValueError, read_evokeds, fname, condition, kind='stderr')
    assert_raises(ValueError, read_evokeds, fname, condition,
                  kind='standard_error')
    ave3 = read_evokeds(fname, condition)
    assert_array_almost_equal(ave.data, ave3.data, 19)

    # test deprecation warning for read_evoked and write_evoked
    # XXX should be deleted for 0.9 release
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        ave = read_evoked(fname, setno=0)
        assert_true(w[0].category == DeprecationWarning)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        write_evoked(op.join(tempdir, 'evoked-ave.fif'), ave)
        assert_true(w[0].category == DeprecationWarning)

    # test read_evokeds and write_evokeds
    types = ['Left Auditory', 'Right Auditory', 'Left visual', 'Right visual']
    aves1 = read_evokeds(fname)
    aves2 = read_evokeds(fname, [0, 1, 2, 3])
    aves3 = read_evokeds(fname, types)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), aves1)
    aves4 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))
    for aves in [aves2, aves3, aves4]:
        for [av1, av2] in zip(aves1, aves):
            assert_array_almost_equal(av1.data, av2.data)
            assert_array_almost_equal(av1.times, av2.times)
            assert_equal(av1.nave, av2.nave)
            assert_equal(av1.kind, av2.kind)
            assert_equal(av1._aspect_kind, av2._aspect_kind)
            assert_equal(av1.last, av2.last)
            assert_equal(av1.first, av2.first)
            assert_equal(av1.comment, av2.comment)

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        fname2 = op.join(tempdir, 'test-bad-name.fif')
        write_evokeds(fname2, ave)
        read_evokeds(fname2)
    assert_true(len(w) == 2)
开发者ID:rgoj,项目名称:mne-python,代码行数:65,代码来源:test_evoked.py


示例13: test_io_evoked

def test_io_evoked():
    """Test IO for evoked data (fif + gz) with integer and str args."""
    tempdir = _TempDir()
    ave = read_evokeds(fname, 0)

    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)
    ave2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0]

    # This not being assert_array_equal due to windows rounding
    assert (np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave._aspect_kind, ave2._aspect_kind)
    assert_equal(ave.kind, ave2.kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)
    assert (repr(ave))

    # test compressed i/o
    ave2 = read_evokeds(fname_gz, 0)
    assert (np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))

    # test str access
    condition = 'Left Auditory'
    pytest.raises(ValueError, read_evokeds, fname, condition, kind='stderr')
    pytest.raises(ValueError, read_evokeds, fname, condition,
                  kind='standard_error')
    ave3 = read_evokeds(fname, condition)
    assert_array_almost_equal(ave.data, ave3.data, 19)

    # test read_evokeds and write_evokeds
    aves1 = read_evokeds(fname)[1::2]
    aves2 = read_evokeds(fname, [1, 3])
    aves3 = read_evokeds(fname, ['Right Auditory', 'Right visual'])
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), aves1)
    aves4 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))
    for aves in [aves2, aves3, aves4]:
        for [av1, av2] in zip(aves1, aves):
            assert_array_almost_equal(av1.data, av2.data)
            assert_array_almost_equal(av1.times, av2.times)
            assert_equal(av1.nave, av2.nave)
            assert_equal(av1.kind, av2.kind)
            assert_equal(av1._aspect_kind, av2._aspect_kind)
            assert_equal(av1.last, av2.last)
            assert_equal(av1.first, av2.first)
            assert_equal(av1.comment, av2.comment)

    # test warnings on bad filenames
    fname2 = op.join(tempdir, 'test-bad-name.fif')
    with pytest.warns(RuntimeWarning, match='-ave.fif'):
        write_evokeds(fname2, ave)
    with pytest.warns(RuntimeWarning, match='-ave.fif'):
        read_evokeds(fname2)

    # constructor
    pytest.raises(TypeError, Evoked, fname)

    # MaxShield
    fname_ms = op.join(tempdir, 'test-ave.fif')
    assert (ave.info['maxshield'] is False)
    ave.info['maxshield'] = True
    ave.save(fname_ms)
    pytest.raises(ValueError, read_evokeds, fname_ms)
    with pytest.warns(RuntimeWarning, match='Elekta'):
        aves = read_evokeds(fname_ms, allow_maxshield=True)
    assert all(ave.info['maxshield'] is True for ave in aves)
    aves = read_evokeds(fname_ms, allow_maxshield='yes')
    assert (all(ave.info['maxshield'] is True for ave in aves))
开发者ID:jhouck,项目名称:mne-python,代码行数:68,代码来源:test_evoked.py


示例14: load_subject

    if num in {88, 89, 92, 100}:
        continue
    for run in runs:
        raw = load_subject(num, run)
        fix_channels(raw)
        add_montage(raw)
        raw.pick_channels(ch_names)

        # Band-pass filter to capture the relevant signal (alpha, beta,
        # and mu ranges). Butterworth filter is implied by method='iir'
        # with iir_params=None or left out.

        raw.filter(7.0, 30.0, method='iir', n_jobs=n_cores)
        ica = ICA(n_components=0.95, random_state=random_state)
        ica.fit(raw, decim=3)
        ica.apply(raw)
        events = find_events(raw, consecutive=False)
        epochs = Epochs(raw,
                        events,
                        event_id,
                        tmin,
                        tmax,
                        baseline=baseline,
                        preload=True,
                        proj=False)
        evoked_avg = [epochs[cond].average() for cond in ['left_fist',
                                                          'right_fist']]
        filename = splitext(raw.info['filename'])[0]
        epochs.save(filename + '-epo.fif')
        write_evokeds(filename + '-ave.fif', evoked_avg)
开发者ID:omega-thirteen,项目名称:scanners,代码行数:30,代码来源:filter-epoch-evoked.py


示例15: test_dipole_fitting

def test_dipole_fitting():
    """Test dipole fitting."""
    amp = 100e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False, force_fixed=True,
                                   use_cps=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
                for s in fwd['src']]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd, stc, evoked.info, cov, nave=evoked.nave,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(np.concatenate([
        pick_types(evoked.info, meg=True, eeg=False)[::2],
        pick_types(evoked.info, meg=False, eeg=True)[::2]]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
        '--noise', fname_cov, '--dip', fname_dtemp,
        '--mri', fname_fwd, '--reg', '0', '--tmin', '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    with pytest.warns(RuntimeWarning, match='projection'):
        dip, residual = fit_dipole(evoked, cov, sphere, fname_fwd)
    assert isinstance(residual, Evoked)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residual.data ** 2, axis=0))
    assert (data_rms > resi_rms * 0.95).all(), \
        '%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    assert_equal(fwd['src'][0]['coord_frame'], FIFF.FIFFV_COORD_HEAD)
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    out = dip.crop(dip_c.times[0], dip_c.times[-1])
    assert (dip is out)
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did about as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
                                                     axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    # XXX possibly some OpenBLAS numerical differences make
    # things slightly worse for us
    factor = 0.7
    assert dists[0] / factor >= dists[1], 'dists: %s' % dists
    assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
    assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
        'gc-dists (ori): %s' % gc_dists
    assert amp_errs[0] / factor >= amp_errs[1],\
        'amplitude errors: %s' % amp_errs
    # This one is weird because our cov/sim/picking is weird
    assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs
开发者ID:SherazKhan,项目名称:mne-python,代码行数:83,代码来源:test_dipole.py


示例16: len

else:
    subj = 'ABUTRIKQ'

# open the matched BP1-35Hz file and borrow its event labels
epochs_fname = epochs_dir + subj + '_stop_parsed_matched_BP1-35_DS120-epo.fif.gz'
epochs35 = mne.read_epochs(epochs_fname, proj=True)
epochs_fname = epochs_dir + subj + '_stop_parsed_BP1-100_DS300-epo.fif.gz'
epochs = mne.read_epochs(epochs_fname, proj=True)
# we need to drop events that were not matched
if len(epochs35.events) < len(epochs.events):
    drop_me = np.arange(len(epochs.events))
    drop_me[drop_me < len(epochs35.events)] = 0
    drop_me = np.nonzero(drop_me)[0]
    epochs.drop_epochs(drop_me)
epochs.event_id = epochs35.event_id
epochs.events = epochs35.events

# open the cleaned epochs file and grab its SSP operators and clean log
epochs_fname = epochs_dir + subj + '_stop_parsed_matched_clean_BP1-35_DS120-epo.fif.gz'
epochs35 = mne.read_epochs(epochs_fname, proj=True)
bad_epochs = [i for i, j in enumerate(epochs35.drop_log) if len(j) > 0]
epochs.drop_epochs(bad_epochs)
epochs.info['projs'] = epochs35.info['projs']

# make averaged file and save final result
print 'Saving epochs and evoked data with optional SSP operators...'
evokeds = [epochs[name].average() for name in conds]
mne.write_evokeds(evoked_dir + subj + '_stop_parsed_matched_BP1-100_DS300-ave.fif', evokeds)
new_fname = epochs_dir + subj + '_stop_parsed_matched_clean_BP1-100_DS300-epo.fif.gz'
epochs.save(new_fname)
开发者ID:gsudre,项目名称:research_code,代码行数:30,代码来源:match_and_clean_task.py


示例17: print

all_evokeds = [aud_l, aud_r, vis_l, vis_r]
print(all_evokeds)

###############################################################################
# This can be simplified with a Python list comprehension:
all_evokeds = [epochs[cond].average() for cond in sorted(event_id.keys())]
print(all_evokeds)

# Then, we construct and plot an unweighted average of left vs. right trials
# this way, too:
mne.combine_evoked(
    all_evokeds, weights=(0.25, -0.25, 0.25, -0.25)).plot_joint(**joint_kwargs)

###############################################################################
# Often, it makes sense to store Evoked objects in a dictionary or a list -
# either different conditions, or different subjects.

# If they are stored in a list, they can be easily averaged, for example,
# for a grand average across subjects (or conditions).
grand_average = mne.grand_average(all_evokeds)
mne.write_evokeds('/tmp/tmp-ave.fif', all_evokeds)

# If Evokeds objects are stored in a dictionary, they can be retrieved by name.
all_evokeds = dict((cond, epochs[cond].average()) for cond in event_id)
print(all_evokeds['left/auditory'])

# Besides for explicit access, this can be used for example to set titles.
for cond in all_evokeds:
    all_evokeds[cond].plot_joint(title=cond, **joint_kwargs)
开发者ID:SherazKhan,项目名称:mne-python,代码行数:29,代码来源:plot_eeg_erp.py


示例18: test_dipole_fitting

def test_dipole_fitting():
    """Test dipole fitting"""
    amp = 10e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, "test.dip")
    fname_sim = op.join(tempdir, "test-ave.fif")
    fwd = convert_forward_solution(read_forward_solution(fname_fwd), surf_ori=False, force_fixed=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s["vertno"])[:n_per_hemi]) for s in fwd["src"]]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd, stc, evoked.info, cov, snr=20, random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(
        np.concatenate(
            [pick_types(evoked.info, meg=True, eeg=False)[::2], pick_types(evoked.info, meg=False, eeg=True)[::2]]
        )
    )
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess(
        [
            "mne_dipole_fit",
            "--meas",
            fname_sim,
            "--meg",
            "--eeg",
            "--noise",
            fname_cov,
            "--dip",
            fname_dtemp,
            "--mri",
            fname_fwd,
            "--reg",
            "0",
            "--tmin",
            "0",
        ]
    )
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals ** 2, axis=0))
    factor = 1.0
    # XXX weird, inexplicable differenc for 3.5 build we'll assume is due to
    # Anaconda bug for now...
    if os.getenv("TRAVIS", "false") == "true" and sys.version[:3] in ("3.5", "2.7"):
        factor = 0.8
    assert_true((data_rms > factor * resi_rms).all(), msg="%s (factor: %s)" % ((data_rms / resi_rms).min(), factor))

    # Compare to original points
    transform_surface_to(fwd["src"][0], "head", fwd["mri_head_t"])
    transform_surface_to(fwd["src"][1], "head", fwd["mri_head_t"])
    src_rr = np.concatenate([s["rr"][v] for s, v in zip(fwd["src"], vertices)], axis=0)
    src_nn = np.concatenate([s["nn"][v] for s, v in zip(fwd["src"], vertices)], axis=0)

    # MNE-C skips the last "time" point :(
    dip.crop(dip_c.times[0], dip_c.times[-1])
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did at least as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    assert_true(dists[0] >= dists[1] * factor, "dists: %s" % dists)
    assert_true(corrs[0] <= corrs[1] / factor, "corrs: %s" % corrs)
    assert_true(gc_dists[0] >= gc_dists[1] * factor, "gc-dists (ori): %s" % gc_dists)
    assert_true(amp_errs[0] >= amp_errs[1] * factor, "amplitude errors: %s" % amp_errs)
    assert_true(gofs[0] <= gofs[1] / factor, "gof: %s" % gofs)
开发者ID:demianw,项目名称:mne-python,代码行数:86,代码来源:test_dipole.py


示例19: print

vis_r = epochs["visual", "right"].average()

all_evokeds = [aud_l, aud_r, vis_l, vis_r]
print(all_evokeds)

###############################################################################
# This can be simplified with a Python list comprehension:
all_evokeds = [epochs[cond].average() for cond in sorted(event_id.keys())]
print(all_evokeds)

# Then, we construct and plot an unweighted average of left vs. right trials
# this way, too:
mne.combine_evoked(all_evokeds, weights=(0.25, -0.25, 0.25, -0.25)).plot_joint()

###############################################################################
# Often, it makes sense to store Evoked objects in a dictionary or a list -
# either different conditions, or different subjects.

# If they are stored in a list, they can be easily averaged, for example,
# for a grand average across subjects (or conditions).
grand_average = mne.grand_average(all_evokeds)
mne.write_evokeds("/tmp/tmp-ave.fif", all_evokeds)

# If Evokeds objects are stored in a dictionary, they can be retrieved by name.
all_evokeds = dict((cond, epochs[cond].average()) for cond in event_id)
print(all_evokeds["left/auditory"])

# Besides for explicit access, this can be used for example to set titles.
for cond in all_evokeds:
    all_evokeds[cond].plot_joint(title=cond)
开发者ID:nwilming,项目名称:mne-python,代码行数:30,代码来源:plot_eeg_erp.py


示例20: len

        n_ok = len(eps_ok)
     

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mne.write_source_spaces函数代码示例发布时间:2022-05-27
下一篇:
Python mne.write_events函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap