• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python mne.stc_to_label函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.stc_to_label函数的典型用法代码示例。如果您正苦于以下问题:Python stc_to_label函数的具体用法?Python stc_to_label怎么用?Python stc_to_label使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了stc_to_label函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_stc_to_label

def test_stc_to_label():
    """Test stc_to_label
    """
    src = read_source_spaces(src_fname)
    src_bad = read_source_spaces(src_bad_fname)
    stc = read_source_estimate(stc_fname, 'sample')
    os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
    labels1 = stc_to_label(stc, src='sample', smooth=3)
    with warnings.catch_warnings(record=True) as w:  # connectedness warning
        warnings.simplefilter('always')
        labels2 = stc_to_label(stc, src=src, smooth=3)
    assert_true(len(w) == 1)
    assert_true(len(labels1) == len(labels2))
    for l1, l2 in zip(labels1, labels2):
        assert_labels_equal(l1, l2, decimal=4)

    with warnings.catch_warnings(record=True) as w:  # connectedness warning
        warnings.simplefilter('always')
        labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=3,
                                            connected=True)
    assert_true(len(w) == 1)
    assert_raises(ValueError, stc_to_label, stc, 'sample', smooth=3,
                  connected=True)
    assert_raises(RuntimeError, stc_to_label, stc, src=src_bad, connected=True)
    assert_true(len(labels_lh) == 1)
    assert_true(len(labels_rh) == 1)
开发者ID:anywave,项目名称:aw-export-fif,代码行数:26,代码来源:test_label.py


示例2: test_stc_to_label

def test_stc_to_label():
    """Test stc_to_label
    """
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        src = read_source_spaces(fwd_fname)
    src_bad = read_source_spaces(src_bad_fname)
    stc = read_source_estimate(stc_fname, 'sample')
    os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
    labels1 = _stc_to_label(stc, src='sample', smooth=3)
    labels2 = _stc_to_label(stc, src=src, smooth=3)
    assert_equal(len(labels1), len(labels2))
    for l1, l2 in zip(labels1, labels2):
        assert_labels_equal(l1, l2, decimal=4)

    with warnings.catch_warnings(record=True) as w:  # connectedness warning
        warnings.simplefilter('always')
        labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True,
                                            connected=True)

    assert_true(len(w) > 0)
    assert_raises(ValueError, stc_to_label, stc, 'sample', smooth=True,
                  connected=True)
    assert_raises(RuntimeError, stc_to_label, stc, smooth=True, src=src_bad,
                  connected=True)
    assert_equal(len(labels_lh), 1)
    assert_equal(len(labels_rh), 1)

    # test getting tris
    tris = labels_lh[0].get_tris(src[0]['use_tris'], vertices=stc.vertices[0])
    assert_raises(ValueError, spatial_tris_connectivity, tris,
                  remap_vertices=False)
    connectivity = spatial_tris_connectivity(tris, remap_vertices=True)
    assert_true(connectivity.shape[0] == len(stc.vertices[0]))

    # "src" as a subject name
    assert_raises(TypeError, stc_to_label, stc, src=1, smooth=False,
                  connected=False, subjects_dir=subjects_dir)
    assert_raises(ValueError, stc_to_label, stc, src=SourceSpaces([src[0]]),
                  smooth=False, connected=False, subjects_dir=subjects_dir)
    assert_raises(ValueError, stc_to_label, stc, src='sample', smooth=False,
                  connected=True, subjects_dir=subjects_dir)
    assert_raises(ValueError, stc_to_label, stc, src='sample', smooth=True,
                  connected=False, subjects_dir=subjects_dir)
    labels_lh, labels_rh = stc_to_label(stc, src='sample', smooth=False,
                                        connected=False,
                                        subjects_dir=subjects_dir)
    assert_true(len(labels_lh) > 1)
    assert_true(len(labels_rh) > 1)

    # with smooth='patch'
    with warnings.catch_warnings(record=True) as w:  # connectedness warning
        warnings.simplefilter('always')
        labels_patch = stc_to_label(stc, src=src, smooth=True)
    assert_equal(len(w), 1)
    assert_equal(len(labels_patch), len(labels1))
    for l1, l2 in zip(labels1, labels2):
        assert_labels_equal(l1, l2, decimal=4)
开发者ID:wronk,项目名称:mne-python,代码行数:58,代码来源:test_label.py


示例3: test_stc_to_label

def test_stc_to_label():
    """Test stc_to_label
    """
    src = read_source_spaces(src_fname)
    stc = read_source_estimate(stc_fname)
    os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
    labels1 = stc_to_label(stc, src='sample', smooth=3)
    labels2 = stc_to_label(stc, src=src, smooth=3)
    assert_true(len(labels1) == len(labels2))
    for l1, l2 in zip(labels1, labels2):
        assert_labels_equal(l1, l2, decimal=4)
开发者ID:mshamalainen,项目名称:mne-python,代码行数:11,代码来源:test_label.py


示例4: test_stc_to_label

def test_stc_to_label():
    """Test stc_to_label."""
    src = read_source_spaces(fwd_fname)
    src_bad = read_source_spaces(src_bad_fname)
    stc = read_source_estimate(stc_fname, 'sample')
    os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
    labels1 = _stc_to_label(stc, src='sample', smooth=3)
    labels2 = _stc_to_label(stc, src=src, smooth=3)
    assert_equal(len(labels1), len(labels2))
    for l1, l2 in zip(labels1, labels2):
        assert_labels_equal(l1, l2, decimal=4)

    with pytest.warns(RuntimeWarning, match='have holes'):
        labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True,
                                            connected=True)

    pytest.raises(ValueError, stc_to_label, stc, 'sample', smooth=True,
                  connected=True)
    pytest.raises(RuntimeError, stc_to_label, stc, smooth=True, src=src_bad,
                  connected=True)
    assert_equal(len(labels_lh), 1)
    assert_equal(len(labels_rh), 1)

    # test getting tris
    tris = labels_lh[0].get_tris(src[0]['use_tris'], vertices=stc.vertices[0])
    pytest.raises(ValueError, spatial_tris_connectivity, tris,
                  remap_vertices=False)
    connectivity = spatial_tris_connectivity(tris, remap_vertices=True)
    assert (connectivity.shape[0] == len(stc.vertices[0]))

    # "src" as a subject name
    pytest.raises(TypeError, stc_to_label, stc, src=1, smooth=False,
                  connected=False, subjects_dir=subjects_dir)
    pytest.raises(ValueError, stc_to_label, stc, src=SourceSpaces([src[0]]),
                  smooth=False, connected=False, subjects_dir=subjects_dir)
    pytest.raises(ValueError, stc_to_label, stc, src='sample', smooth=False,
                  connected=True, subjects_dir=subjects_dir)
    pytest.raises(ValueError, stc_to_label, stc, src='sample', smooth=True,
                  connected=False, subjects_dir=subjects_dir)
    labels_lh, labels_rh = stc_to_label(stc, src='sample', smooth=False,
                                        connected=False,
                                        subjects_dir=subjects_dir)
    assert (len(labels_lh) > 1)
    assert (len(labels_rh) > 1)

    # with smooth='patch'
    with pytest.warns(RuntimeWarning, match='have holes'):
        labels_patch = stc_to_label(stc, src=src, smooth=True)
    assert len(labels_patch) == len(labels1)
    for l1, l2 in zip(labels1, labels2):
        assert_labels_equal(l1, l2, decimal=4)
开发者ID:kambysese,项目名称:mne-python,代码行数:51,代码来源:test_label.py


示例5: test_stc_to_label

def test_stc_to_label():
    """Test stc_to_label
    """
    src = read_source_spaces(src_fname)
    stc = SourceEstimate(stc_fname)
    os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
    labels1 = stc_to_label(stc, src='sample', smooth=3)
    labels2 = stc_to_label(stc, src=src, smooth=3)
    assert_true(len(labels1) == len(labels2))
    for l1, l2 in zip(labels1, labels2):
        for key in l1.keys():
            if key in ['comment', 'hemi']:
                assert_true(l1[key] == l1[key])
            else:
                assert_array_almost_equal(l1[key], l2[key], 4)
开发者ID:sudo-nim,项目名称:mne-python,代码行数:15,代码来源:test_label.py


示例6: apply_rois

def apply_rois(fn_stc, tmin, tmax, thr, min_subject='fsaverage'):
    #fn_avg = subjects_dir+'/fsaverage/%s_ROIs/%s-lh.stc' %(method,evt_st)
    stc_avg = mne.read_source_estimate(fn_stc)
    stc_avg = stc_avg.crop(tmin, tmax)
    src_pow = np.sum(stc_avg.data ** 2, axis=1)
    stc_avg.data[src_pow < np.percentile(src_pow, thr)] = 0.
    fn_src = subjects_dir+'/%s/bem/fsaverage-ico-5-src.fif' %min_subject
    src_inv = mne.read_source_spaces(fn_src)
    func_labels_lh, func_labels_rh = mne.stc_to_label(
                    stc_avg, src=src_inv, smooth=True,
                    subjects_dir=subjects_dir,
                    connected=True)
    # Left hemisphere definition
    i = 0
    labels_path = fn_stc[:fn_stc.rfind('-')] + '/ini'
    reset_directory(labels_path)
    while i < len(func_labels_lh):
        func_label = func_labels_lh[i]
        func_label.save(labels_path + '/ROI_%d' %(i))
        i = i + 1
    # right hemisphere definition
    j = 0
    while j < len(func_labels_rh):
        func_label = func_labels_rh[j]
        func_label.save(labels_path + '/ROI_%d' %(j))
        j = j + 1
开发者ID:dongqunxi,项目名称:ChronoProc,代码行数:26,代码来源:avg_ROIs_definition02.py


示例7: apply_rois

def apply_rois(fn_stc_list, event, min_subject='fsaverage', thr=0.85):
    """
    Compute regions of interest (ROI) based on events
    ----------
    fn_stc : string
        evoked and morphed STC.
    event: string
        event of the related STC.
    tmin, tmax: float
        segment for ROIs definition.
    min_subject: string
        the subject as the common brain space.
    thr: float or int
        threshold of STC used for ROI identification.
    """
    #from scipy.signal import detrend
    #from scipy.stats.mstats import zscore 
    fnlist = get_files_from_list(fn_stc_list)
    # loop across all filenames
    for fn_stc in fnlist:
        # extract the subject infromation from the file name
        stc_path = os.path.split(fn_stc)[0]
        min_path = subjects_dir + '/%s' % min_subject
        fn_src = min_path + '/bem/fsaverage-ico-5-src.fif'
        # Make sure the target path is exist
        labels_path = stc_path + '/%s/ini' %event
        reset_directory(labels_path)
      
        # Read the MNI source space
        stc = mne.read_source_estimate(fn_stc)
        src_inv = mne.read_source_spaces(fn_src)
        stc.lh_data[stc.lh_data < 0.85 * np.max(stc.lh_data)] = 0
        stc.rh_data[stc.rh_data < 0.8 * np.max(stc.rh_data)] = 0
        #data_lh=np.squeeze(stc.lh_data)
        #index_lh = np.argwhere(data_lh)
        #stc.lh_data[data_lh<np.percentile(data_lh[index_lh], thr)] = 0
        #data_rh=np.squeeze(stc.rh_data)
        #index_rh = np.argwhere(data_rh)
        #stc.rh_data[data_rh<np.percentile(data_rh[index_rh], thr)] = 0
        #non_index = np.argwhere(data)
        #stc.data[data<np.percentile(data[non_index], thr)] = 0
        func_labels_lh, func_labels_rh = mne.stc_to_label(
                    stc, src=src_inv, smooth=True,
                    subjects_dir=subjects_dir,
                    connected=True)
        # Left hemisphere definition
        i = 0
        while i < len(func_labels_lh):
            func_label = func_labels_lh[i]
            func_label.save(labels_path + '/%s_%d' %(event, i))
            i = i + 1
        # right hemisphere definition
        j = 0
        while j < len(func_labels_rh):
            func_label = func_labels_rh[j]
            func_label.save(labels_path + '/%s_%d' %(event, j))
            j = j + 1
开发者ID:dongqunxi,项目名称:ChronoProc,代码行数:57,代码来源:cluster_ROIs.py


示例8: apply_rois

def apply_rois(fn_stc, event, tmin=0.0, tmax=0.3, min_subject='fsaverage', thr=99):
    """
    Compute regions of interest (ROI) based on events
    ----------
    fn_stc : string
        evoked and morphed STC.
    event: string
        event of the related STC.
    tmin, tmax: float
        segment for ROIs definition.
    min_subject: string
        the subject as the common brain space.
    thr: float or int
        threshold of STC used for ROI identification.
    """
    fnlist = get_files_from_list(fn_stc)
    # loop across all filenames
    for ifn_stc in fnlist:
        subjects_dir = os.environ['SUBJECTS_DIR']
        # extract the subject infromation from the file name
        stc_path = os.path.split(ifn_stc)[0]
        #name = os.path.basename(fn_stc)
        #tri = name.split('_')[1].split('-')[0]
        min_path = subjects_dir + '/%s' % min_subject
        fn_src = min_path + '/bem/fsaverage-ico-4-src.fif'
        # Make sure the target path is exist
        labels_path = stc_path + '/%s/' %event
        reset_directory(labels_path)
        # Read the MNI source space
        src_inv = mne.read_source_spaces(fn_src)
        stc = mne.read_source_estimate(ifn_stc, subject=min_subject)
        bc_stc = stc.copy().crop(tmin, tmax)
        src_pow = np.sum(bc_stc.data ** 2, axis=1)
        bc_stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
        #stc_data = stc_morph.data
        #import pdb
        #pdb.set_trace()
        #zscore stc for ROIs estimation
        #d_mu = stc_data.mean(axis=1, keepdims=True)
        #d_std = stc_data.std(axis=1, ddof=1, keepdims=True)
        #z_data = (stc_data - d_mu)/d_std
        func_labels_lh, func_labels_rh = mne.stc_to_label(
            bc_stc, src=src_inv, smooth=True,
            subjects_dir=subjects_dir,
            connected=True)
        # Left hemisphere definition
        i = 0
        while i < len(func_labels_lh):
            func_label = func_labels_lh[i]
            func_label.save(labels_path + '%s_%s' % (event, str(i)))
            i = i + 1
        # right hemisphere definition
        j = 0
        while j < len(func_labels_rh):
            func_label = func_labels_rh[j]
            func_label.save(labels_path + '%s_%s' % (event, str(j)))
            j = j + 1    
开发者ID:dongqunxi,项目名称:ChronoProc,代码行数:57,代码来源:MNE_ROIs_Definition.py


示例9: apply_rois

def apply_rois(fn_stcs, event='LLst', tmin=0.0, tmax=0.6, tstep=0.05, window=0.2, 
               fmin=4, fmax=8, thr=99, min_subject='fsaverage'): 
    """
    Compute regions of interest (ROI) based on events
    ----------
    fn_stcs : the file name of morphed stc.
    evt: event related with stc
    thr: the percentile of stc's strength
    min_subject: the subject for the common brain space.
    
    """
    from mne import read_source_spaces 
    fnlist = get_files_from_list(fn_stcs)
    # loop across all filenames
    for fn_stc in fnlist:
        name = os.path.basename(fn_stc)
        subject = name.split('_')[0]
        subjects_dir = os.environ['SUBJECTS_DIR']
        min_dir = subjects_dir + '/%s' %min_subject
        labels_path = min_dir + '/DICS_ROIs/%s/%s/' %(subject, event)
        reset_directory(labels_path)
        src = min_dir + '/bem/%s-ico-4-src.fif' %min_subject
        src_inv = read_source_spaces(src)
        stc = mne.read_source_estimate(fn_stc, subject=min_subject) 
        stc = stc.crop(tmin, tmax)
        src_pow = np.sum(stc.data ** 2, axis=1)
        stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
        tbeg = tmin
        while tbeg < tmax:
            tend = tbeg + window
            win_stc = stc.copy().crop(tbeg, tend)
            stc_data = win_stc.data 
            src_pow = np.sum(stc_data ** 2, axis=1)
            win_stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
            func_labels_lh, func_labels_rh = mne.stc_to_label(
                win_stc, src=src_inv, smooth=True,
                subjects_dir=subjects_dir,
                connected=True)
            # Left hemisphere definition
            i = 0
            while i < len(func_labels_lh):
                func_label = func_labels_lh[i]
                func_label.save(labels_path + '%s_%s_win%.2f_%2f' % (event, str(i), tbeg, tend))
                i = i + 1
            # right hemisphere definition
            j = 0
            while j < len(func_labels_rh):
                func_label = func_labels_rh[j]
                func_label.save(labels_path + '%s_%s_win%2f_%2f' % (event, str(j), tbeg, tend))
                j = j + 1
            tbeg = tbeg + tstep
开发者ID:dongqunxi,项目名称:ChronoProc,代码行数:51,代码来源:DICS_ROIs_Definition01.py


示例10: apply_rois

def apply_rois(fn_stcs, evt='LLst', tmin=0.05, tmax=0.25, thr=99, min_subject='fsaverage'): 
    """
    Compute regions of interest (ROI) based on events
    ----------
    fn_stcs : the file name of morphed stc.
    evt: event related with stc
    thr: the percentile of stc's strength
    min_subject: the subject for the common brain space.
    
    """
    from mne import read_source_spaces 
    fnlist = get_files_from_list(fn_stcs)
    # loop across all filenames
    for fn_stc in fnlist:
        name = os.path.basename(fn_stc)
        subject = name.split('_')[0]
        subjects_dir = os.environ['SUBJECTS_DIR']
        min_dir = subjects_dir + '/%s' %min_subject
        labels_path = min_dir + '/DICS_ROIs/%s/%s/' %(subject, evt)
        reset_directory(labels_path)
        src = min_dir + '/bem/%s-ico-4-src.fif' %min_subject
        src_inv = read_source_spaces(src)
        stc = mne.read_source_estimate(fn_stc, subject=min_subject) 
        stc = stc.crop(tmin, tmax)
        src_pow = np.sum(stc.data ** 2, axis=1)
        stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
        #stc_data = stc_morph.data
        #import pdb
        #pdb.set_trace()
        #zscore stc for ROIs estimation
        #d_mu = stc_data.mean(axis=1, keepdims=True)
        #d_std = stc_data.std(axis=1, ddof=1, keepdims=True)
        #z_data = (stc_data - d_mu)/d_std
        func_labels_lh, func_labels_rh = mne.stc_to_label(
            stc, src=src_inv, smooth=True,
            subjects_dir=subjects_dir,
            connected=True)
        # Left hemisphere definition
        i = 0
        while i < len(func_labels_lh):
            func_label = func_labels_lh[i]
            func_label.save(labels_path + '%s_%s' % (evt, str(i)))
            i = i + 1
        # right hemisphere definition
        j = 0
        while j < len(func_labels_rh):
            func_label = func_labels_rh[j]
            func_label.save(labels_path + '%s_%s' % (evt, str(j)))
            j = j + 1  
开发者ID:dongqunxi,项目名称:ChronoProc,代码行数:49,代码来源:DICS_ROIs_Definition.py


示例11: apply_rois

def apply_rois(fn_stc, tmin, tmax, thr, min_subject='fsaverage'):

    '''
       Make ROIs using the common STCs.
        
       Parameters
       ----------
       fn_stc: string.
            The path of the common STCs
       tmin, tmax: float (s).
            The interest time range.
       thr: float or int
            The percentile of STCs strength.
       min_subject: string.
            The common subject.
       
    '''
    stc_avg = mne.read_source_estimate(fn_stc)
    stc_avg = stc_avg.crop(tmin, tmax)
    src_pow = np.sum(stc_avg.data ** 2, axis=1)
    stc_avg.data[src_pow < np.percentile(src_pow, thr)] = 0.
    fn_src = subjects_dir+'/%s/bem/fsaverage-ico-5-src.fif' %min_subject
    src_inv = mne.read_source_spaces(fn_src)
    func_labels_lh, func_labels_rh = mne.stc_to_label(
                    stc_avg, src=src_inv, smooth=True,
                    subjects_dir=subjects_dir,
                    connected=True)
    # Left hemisphere definition
    i = 0
    labels_path = fn_stc[:fn_stc.rfind('-')] + '/ini'
    reset_directory(labels_path)
    while i < len(func_labels_lh):
        func_label = func_labels_lh[i]
        func_label.save(labels_path + '/ROI_%d' %(i))
        i = i + 1
    # right hemisphere definition
    j = 0
    while j < len(func_labels_rh):
        func_label = func_labels_rh[j]
        func_label.save(labels_path + '/ROI_%d' %(j))
        j = j + 1
开发者ID:dongqunxi,项目名称:ChronoProc,代码行数:41,代码来源:ROIs_definition.py


示例12:

mean_data = np.mean(np.asarray([s.data for s in stc]), axis=0)
stc_mean = mne.SourceEstimate(
    mean_data, stc[0].vertices, tmin=stc[0].tmin, tstep=stc[0].tstep)

# use the stc_mean to generate a functional label
# region growing is halted at 60% of the peak value within the
# anatomical label / ROI specified by aparc_label_name

# calc lh label
stc_mean_label = stc_mean.in_label(label_lh)
data = np.abs(stc_mean_label.data)
stc_mean_label.data[data < 0.7 * np.max(data)] = 0.

func_labels_lh, _ = mne.stc_to_label(
    stc_mean_label,
    src=src,
    smooth=True,
    subjects_dir=subjects_dir,
    connected=True)
# take first as func_labels are ordered based on maximum values in stc
func_label_lh = func_labels_lh[0]

# calc rh label
stc_mean_label = stc_mean.in_label(label_rh)
data = np.abs(stc_mean_label.data)
stc_mean_label.data[data < 0.7 * np.max(data)] = 0.

_, func_labels_rh = mne.stc_to_label(
    stc_mean_label,
    src=src,
    smooth=True,
    subjects_dir=subjects_dir,
开发者ID:MadsJensen,项目名称:CAA,代码行数:32,代码来源:make_funtional_label.py


示例13:

stc_mean = stc.copy().crop(tmin, tmax).mean()

# use the stc_mean to generate a functional label
# region growing is halted at 60% of the peak value within the
# anatomical label / ROI specified by aparc_label_name
label = mne.read_labels_from_annot(subject, parc='aparc',
                                   subjects_dir=subjects_dir,
                                   regexp=aparc_label_name)[0]
stc_mean_label = stc_mean.in_label(label)
data = np.abs(stc_mean_label.data)
stc_mean_label.data[data < 0.6 * np.max(data)] = 0.

# 8.5% of original source space vertices were omitted during forward
# calculation, suppress the warning here with verbose='error'
func_labels, _ = mne.stc_to_label(stc_mean_label, src=src, smooth=True,
                                  subjects_dir=subjects_dir, connected=True,
                                  verbose='error')

# take first as func_labels are ordered based on maximum values in stc
func_label = func_labels[0]

# load the anatomical ROI for comparison
anat_label = mne.read_labels_from_annot(subject, parc='aparc',
                                        subjects_dir=subjects_dir,
                                        regexp=aparc_label_name)[0]

# extract the anatomical time course for each label
stc_anat_label = stc.in_label(anat_label)
pca_anat = stc.extract_label_time_course(anat_label, src, mode='pca_flip')[0]

stc_func_label = stc.in_label(func_label)
开发者ID:HSMin,项目名称:mne-python,代码行数:31,代码来源:plot_label_from_stc.py


示例14:

#temp = temp3.in_label(TPOJ1_label_lh)
#w_vertices = np.unique(np.append(w_vertices, temp.vertices[0]))

""" V1 """
temp = temp3.in_label(V1_label_lh)
v1_vertices = temp.vertices[0]

###############################################################################
""" Just to visualize the new ROI """
mask = np.logical_and(times >= 0.08, times <= 0.12)

lh_label = temp3.in_label(V1_label_lh)
data = np.max(lh_label.data[:,mask],axis=1)
lh_label.data[data < 1.72] = 0.

temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False,
                      subjects_dir=fs_dir, connected=False)
temp = temp3.in_label(temp_labels)
v1_vertices = temp.vertices[0]
new_label = mne.Label(v1_vertices, hemi='lh')
brain3_1.add_label(new_label, borders=True, color='k')
###############################################################################
mask = np.logical_and(times >= 0.38, times <= 0.42)
lh_label = temp3.in_label(TE2p_label_lh)
data = np.mean(lh_label.data[:,mask],axis=1)
lh_label.data[data < 1.72] = 0.

temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False,
                      subjects_dir=fs_dir, connected=False)
temp = temp3.in_label(temp_labels)
ventral_vertices = temp.vertices[0]
开发者ID:garikoitz,项目名称:BrainTools,代码行数:31,代码来源:source_analysis_session2_ROI.py


示例15: apply_rois

def apply_rois(fn_stc, event, tmin=0.0, tmax=0.3, tstep=0.05, window=0.2, 
                min_subject='fsaverage', thr=99):
    """
    Compute regions of interest (ROI) based on events
    ----------
    fn_stc : string
        evoked and morphed STC.
    event: string
        event of the related STC.
    tmin, tmax: float
        segment for ROIs definition.
    min_subject: string
        the subject as the common brain space.
    thr: float or int
        threshold of STC used for ROI identification.
    """
    from scipy.signal import detrend
    from scipy.stats.mstats import zscore 
    fnlist = get_files_from_list(fn_stc)
    # loop across all filenames
    for ifn_stc in fnlist:
        subjects_dir = os.environ['SUBJECTS_DIR']
        # extract the subject infromation from the file name
        stc_path = os.path.split(ifn_stc)[0]
        #name = os.path.basename(fn_stc)
        #tri = name.split('_')[1].split('-')[0]
        min_path = subjects_dir + '/%s' % min_subject
        fn_src = min_path + '/bem/fsaverage-ico-4-src.fif'
        # Make sure the target path is exist
        labels_path = stc_path + '/%s/' %event
        reset_directory(labels_path)
        # Read the MNI source space
        src_inv = mne.read_source_spaces(fn_src)
        stc = mne.read_source_estimate(ifn_stc, subject=min_subject)
        #stc = stc.crop(tmin, tmax)
        #src_pow = np.sum(stc.data ** 2, axis=1)
        #stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
        stc = stc.crop(tmin, tmax)
        cal_data = stc.data
        dt_data = detrend(cal_data, axis=-1)
        zc_data = zscore(dt_data, axis=-1)
        src_pow = np.sum(zc_data ** 2, axis=1)
        stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
        tbeg = tmin
        count = 1
        while tbeg < tmax:
            tend = tbeg + window
            if tend > tmax:
                break
            win_stc = stc.copy().crop(tbeg, tend)
            stc_data = win_stc.data 
            src_pow = np.sum(stc_data ** 2, axis=1)
            win_stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
            func_labels_lh, func_labels_rh = mne.stc_to_label(
                win_stc, src=src_inv, smooth=True,
                subjects_dir=subjects_dir,
                connected=True)
            # Left hemisphere definition
            i = 0
            while i < len(func_labels_lh):
                func_label = func_labels_lh[i]
                func_label.save(labels_path + '%s_%s_win%d' % (event, str(i), count))
                i = i + 1
            # right hemisphere definition
            j = 0
            while j < len(func_labels_rh):
                func_label = func_labels_rh[j]
                func_label.save(labels_path +  '%s_%s_win%d' % (event, str(j), count))
                j = j + 1
            tbeg = tbeg + tstep
            count = count + 1
开发者ID:dongqunxi,项目名称:ChronoProc,代码行数:71,代码来源:MNE_ROIs_Definition01.py


示例16: zip

                                                n_permutations=n_permutations,
                                                tail=0,
                                                stat_fun=stat_fun,
                                                connectivity=connectivity,
                                                n_jobs=n_jobs, seed=0)
    print "Time elapsed : %s (s)" % (time() - t0)

    clusters = [c.reshape(n_times, n_vertices).T for c in clusters]
	#you get a cluster for every single thing that crossed the first-stage threshold

    # stc_log_pv_cluster = copy.deepcopy(mean_stc1)
    # stc_log_pv_cluster.data = np.zeros_like(stc_log_pv_cluster.data)
    # for pv, c in zip(cluster_pv, clusters):
    #     stc_log_pv_cluster.data[c] = -np.log10(pv)
    # 
    # stc_log_pv_cluster.save(prefix + 'clusters_pv_%s_%s' % (stat_name, t))
    
    stc_cluster = copy.deepcopy(template_stc)
    #you only write out a cluster to an stc file if it crosses the second-stage threshold
    for k, c in enumerate(clusters):
        stc_cluster.data = c
        if cluster_pv[k] < 0.15:  ##This is the threshold for saving an stc file with cluster
            stcFileName = '/cluster/kuperberg/SemPrMM/MEG/results/source_space/cluster_stats/' + prefix + '%d-%d_cluster%d_%s_thresh_%s_pv_%.3f' % (args.t1*1000,args.t2*1000,k, stat_name, t, cluster_pv[k])
            stc_cluster.save(stcFileName)
            #stc_cluster.save('/cluster/kuperberg/SemPrMM/MEG/results/source_space/cluster_stats/' + prefix + '%d-%d_cluster%d_%s_thresh_%s_pv_%.3f' % (args.t1*1000,args.t2*1000,k, stat_name, t, cluster_pv[k]))
            labelArray = mne.stc_to_label(stc_cluster, 'fsaverage')
            label = labelArray[0]
            mne.write_label(stcFileName, label)            

    print 'pv : %s' % np.sort(cluster_pv)[:5]
开发者ID:KuperbergLab,项目名称:MEG_scripts,代码行数:30,代码来源:source_compute_cluster_stats_in_label.py


示例17: enumerate

import mne
import numpy as np
from scipy import stats

pval_thresh = .05
nverts_thresh = 600
b=3

src = mne.setup_source_space(subject='fsaverage',fname=None,spacing='ico5',surface='inflated')

# X will have the pvalues in 0
X = 1-np.array(all_stats[b][1])[:,None]  # p-values
X[X <= 1-pval_thresh] = 0
pval_stc = mne.SourceEstimate(X, vertices=stc.vertno, tmin=0, tstep=1,subject='fsaverage')
lh_labels, rh_labels = mne.stc_to_label(pval_stc, src=src, smooth=5, connected=True)
# was having problems ot mix p-values and correlations in stc, so let's keep them separated
X = np.empty([pval_stc.data.shape[0], 2])
X[:, 0] = all_stats[b][2][0]
X[:, 1] = all_stats[b][2][1]
corr_stc = mne.SourceEstimate(X, vertices=stc.vertno, tmin=0, tstep=1,subject='fsaverage')

my_txt = ['left','right']
for idx, labels in enumerate([lh_labels, rh_labels]):
    print 'Found %d seeds in %s hemisphere'%(len(labels), my_txt[idx])
    good_seeds = [label for label in labels if len(label.vertices)>nverts_thresh]
    num_sources = [pval_stc.in_label(label).data.shape[0] for label in good_seeds]
    print '%d of those are big enough'%(len(good_seeds))
    for s in range(len(good_seeds)):
        print 'Seed %d: %d sources, mean 1: %.2f, mean 2: %.2f'%(s+1, num_sources[s], 
            np.mean(corr_stc.in_label(good_seeds[s]).data[:,0]),
开发者ID:gsudre,项目名称:research_code,代码行数:30,代码来源:connectedness_seed_correlation_maps.py


示例18: range

    coord0 = mne.vertex_to_mni(vertices=src[0]['vertno'], hemis=0, subject='fsaverage_mne')
    coord1 = mne.vertex_to_mni(vertices=src[1]['vertno'], hemis=1, subject='fsaverage_mne')
    coord = np.vstack([coord0, coord1])
    # store the index of the sources within min_dist of the mask voxels
    b = []
    for i in range(gv.shape[0]):
        dist = np.sqrt((coord[:, 0] - gv[i, 0]) ** 2 + (coord[:, 1] - gv[i, 1]) ** 2 + (coord[:, 2] - gv[i, 2]) ** 2)
        if min(dist) <= min_dist:
            b.append(np.argmin(dist))
    # create a stc with 1s for the near sources
    d = np.zeros([coord.shape[0], 1])
    d[b] = 1
    stc = mne.SourceEstimate(d, vertices=[src[0]['vertno'], src[1]['vertno']],
                             tmin=0, tstep=1, subject='fsaverage_mne')
    # convert the stc to a label so we can morph it per subject later
    avg_label = mne.stc_to_label(stc, src=src, smooth=True, connected=False)
    if len(avg_label) > 2:
        raise ValueError('Found more than one label!')

data = []
for s in subjs:
    # check if it's AFNI or freesurfer label
    if roi.find('label') > 0:
        label_dir = '/Volumes/Shaw/MEG_structural/freesurfer/%s/labels/' % s
        label = mne.read_label(label_dir + roi)
        roi_pretty = roi.split('.')[0]
    else:
        roi_pretty = roi.split('/')[-1].split('+')[0]
    # right labels are normally in the second index
    if avg_label[0] is not None:
        label = avg_label[0].morph(subject_to=s)
开发者ID:gsudre,项目名称:research_code,代码行数:31,代码来源:extract_roi_power.py


示例19: data

# Set parameters
data_path = "/home/custine/MEG/data/krns_kr3/" + subj + "/" + sess + "/"
subjects_dir = "/mnt/file1/binder/KRNS/anatomies/surfaces/"
stc_fname = data_path + "ave_projon/stc/" + subj + "_" + sess + "_" + tag + "_All_c1M-spm-lh.stc"

# stc_file = '/home/custine/MEG/data/krns_kr3/9367/s5/ave_projon/stc/stc_py/9367_s5_run1_Sentence-lh.stc' #9367_s5_Noun_People_All_c1M-spm-lh.stc'
stcMAT_fname = data_path + "ave_projon/stc/" + subj + "_" + sess + "_" + tag + "_All_c1M-spm-lh_AllVertices.txt"
print stc_fname


stc = mne.read_source_estimate(stc_fname)
print stc
print "Shape of STC"
print np.shape(stc.data)

j_labels = mne.stc_to_label(stc, src="9367", subjects_dir="/mnt/file1/binder/KRNS/anatomies/surfaces/")
print "Jane Labels"
print j_labels[0]
print

# np.savetxt(stcMAT_fname, stc.data, delimiter = ',')

vert, sampLen = np.shape(stc.data)
print sampLen

################################################################################################################################
#######################################All Vertices - Computations################################################################
################################################################################################################################
# x = sampLen ## Number of samples in the data (trials)
#
# new = np.empty([0, x])
开发者ID:CandidaUstine,项目名称:MCW_MEG,代码行数:31,代码来源:plot_STC.py


示例20: apply_inverse

stc = apply_inverse(evoked, inverse_operator, lambda2, method,
                    pick_normal=True)

# Make an STC in the time interval of interest and take the mean
stc_mean = stc.copy().crop(tmin, tmax).mean()

# use the stc_mean to generate a functional label
# region growing is halted at 60% of the peak value within the
# anatomical label / ROI specified by aparc_label_name
label = mne.labels_from_parc(subject, parc='aparc', subjects_dir=subjects_dir,
                             regexp=aparc_label_name)[0][0]
stc_mean_label = stc_mean.in_label(label)
data = np.abs(stc_mean_label.data)
stc_mean_label.data[data < 0.6 * np.max(data)] = 0.

func_labels, _ = mne.stc_to_label(stc_mean_label, src=src, smooth=5,
                                  subjects_dir=subjects_dir, connected=True)

# take first as func_labels are ordered based on maximum values in stc
func_label = func_labels[0]

# load the anatomical ROI for comparison
anat_label = mne.labels_from_parc(subject, parc='aparc',
                                  subjects_dir=subjects_dir,
                                  regexp=aparc_label_name)[0][0]

# extract the anatomical time course for each label
stc_anat_label = stc.in_label(anat_label)
pca_anat = stc.extract_label_time_course(anat_label, src, mode='pca_flip')[0]

stc_func_label = stc.in_label(func_label)
pca_func = stc.extract_label_time_course(func_label, src, mode='pca_flip')[0]
开发者ID:dichaelen,项目名称:mne-python,代码行数:32,代码来源:plot_label_from_stc.py



注:本文中的mne.stc_to_label函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mne.vertex_to_mni函数代码示例发布时间:2022-05-27
下一篇:
Python mne.spatial_tris_connectivity函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap