• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python mne.read_selection函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.read_selection函数的典型用法代码示例。如果您正苦于以下问题:Python read_selection函数的具体用法?Python read_selection怎么用?Python read_selection使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了read_selection函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_read_selection

def test_read_selection():
    """Test reading of selections."""
    # test one channel for each selection
    ch_names = ['MEG 2211', 'MEG 0223', 'MEG 1312', 'MEG 0412', 'MEG 1043',
                'MEG 2042', 'MEG 2032', 'MEG 0522', 'MEG 1031']
    sel_names = ['Vertex', 'Left-temporal', 'Right-temporal', 'Left-parietal',
                 'Right-parietal', 'Left-occipital', 'Right-occipital',
                 'Left-frontal', 'Right-frontal']

    raw = read_raw_fif(raw_fname)
    for i, name in enumerate(sel_names):
        sel = read_selection(name)
        assert_true(ch_names[i] in sel)
        sel_info = read_selection(name, info=raw.info)
        assert_equal(sel, sel_info)

    # test some combinations
    all_ch = read_selection(['L', 'R'])
    left = read_selection('L')
    right = read_selection('R')

    assert_true(len(all_ch) == len(left) + len(right))
    assert_true(len(set(left).intersection(set(right))) == 0)

    frontal = read_selection('frontal')
    occipital = read_selection('Right-occipital')
    assert_true(len(set(frontal).intersection(set(occipital))) == 0)

    ch_names_new = [ch.replace(' ', '') for ch in ch_names]
    raw_new = read_raw_fif(raw_new_fname)
    for i, name in enumerate(sel_names):
        sel = read_selection(name, info=raw_new.info)
        assert_true(ch_names_new[i] in sel)

    assert_raises(TypeError, read_selection, name, info='foo')
开发者ID:HSMin,项目名称:mne-python,代码行数:35,代码来源:test_selection.py


示例2: _get_data

def _get_data():
    """Read in data used in tests."""
    # read forward model
    forward = mne.read_forward_solution(fname_fwd)
    # read data
    raw = mne.io.read_raw_fif(fname_raw, preload=True)
    events = mne.read_events(fname_event)
    event_id, tmin, tmax = 1, -0.1, 0.15

    # decimate for speed
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.pick_types(raw.info, selection=left_temporal_channels)
    picks = picks[::2]
    raw.pick_channels([raw.ch_names[ii] for ii in picks])
    del picks

    raw.info.normalize_proj()  # avoid projection warnings

    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        baseline=(None, 0.), preload=True, reject=reject)

    noise_cov = mne.compute_covariance(epochs, tmin=None, tmax=0.)

    data_cov = mne.compute_covariance(epochs, tmin=0.01, tmax=0.15)

    return epochs, data_cov, noise_cov, forward
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:26,代码来源:test_check.py


示例3: test_lcmv

def test_lcmv():
    """Test LCMV
    """
    event_id, tmin, tmax = 1, -0.2, 0.2

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: EEG + MEG - bad channels (modify to your needs)
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True,
                       exclude=raw.info['bads'], selection=left_temporal_channels)

    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0), preload=True,
                        reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
    evoked = epochs.average()

    noise_cov = mne.read_cov(fname_cov)
    noise_cov = mne.cov.regularize(noise_cov, evoked.info,
                                   mag=0.05, grad=0.05, eeg=0.1, proj=True)

    data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15)
    stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.01)

    stc_pow = np.sum(stc.data, axis=1)
    idx = np.argmax(stc_pow)
    max_stc = stc.data[idx]
    tmax = stc.times[np.argmax(max_stc)]

    assert_true(0.09 < tmax < 0.1)
    assert_true(2. < np.max(max_stc) < 3.)
开发者ID:baca790,项目名称:mne-python,代码行数:33,代码来源:test_lcmv.py


示例4: test_lcmv_raw

def test_lcmv_raw():
    """Test LCMV with raw data
    """
    raw, _, _, _, noise_cov, label, forward, _, _, _ =\
        _get_data(all_forward=False, epochs=False, data_cov=False)

    tmin, tmax = 0, 20
    start, stop = raw.time_as_index([tmin, tmax])

    # use only the left-temporal MEG channels for LCMV
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.fiff.pick_types(raw.info, meg=True, exclude='bads',
                                selection=left_temporal_channels)

    data_cov = mne.compute_raw_data_covariance(raw, tmin=tmin, tmax=tmax)

    stc = lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01, label=label,
                   start=start, stop=stop, picks=picks)

    assert_array_almost_equal(np.array([tmin, tmax]),
                              np.array([stc.times[0], stc.times[-1]]),
                              decimal=2)

    # make sure we get an stc with vertices only in the lh
    vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
    assert_true(len(stc.vertno[0]) == len(np.intersect1d(vertno[0],
                                                         label.vertices)))
    assert_true(len(stc.vertno[1]) == 0)
开发者ID:Anevar,项目名称:mne-python,代码行数:28,代码来源:test_lcmv.py


示例5: _get_data

def _get_data(tmin=-0.1, tmax=0.15, all_forward=True, epochs=True,
              epochs_preload=True, data_cov=True):
    """Read in data used in tests."""
    label = mne.read_label(fname_label)
    events = mne.read_events(fname_event)
    raw = mne.io.read_raw_fif(fname_raw, preload=True)
    forward = mne.read_forward_solution(fname_fwd)
    if all_forward:
        forward_surf_ori = _read_forward_solution_meg(
            fname_fwd, surf_ori=True)
        forward_fixed = _read_forward_solution_meg(
            fname_fwd, force_fixed=True, surf_ori=True, use_cps=False)
        forward_vol = _read_forward_solution_meg(fname_fwd_vol)
    else:
        forward_surf_ori = None
        forward_fixed = None
        forward_vol = None

    event_id, tmin, tmax = 1, tmin, tmax

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bad channels
    # Set up pick list: MEG - bad channels
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True,
                           eog=True, ref_meg=False, exclude='bads',
                           selection=left_temporal_channels)
    raw.pick_channels([raw.ch_names[ii] for ii in picks])
    raw.info.normalize_proj()  # avoid projection warnings

    if epochs:
        # Read epochs
        epochs = mne.Epochs(
            raw, events, event_id, tmin, tmax, proj=True,
            baseline=(None, 0), preload=epochs_preload,
            reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
        if epochs_preload:
            epochs.resample(200, npad=0, n_jobs=2)
        epochs.crop(0, None)
        evoked = epochs.average()
        info = evoked.info
    else:
        epochs = None
        evoked = None
        info = raw.info

    noise_cov = mne.read_cov(fname_cov)
    noise_cov['projs'] = []  # avoid warning
    with warnings.catch_warnings(record=True):  # bad proj
        noise_cov = mne.cov.regularize(noise_cov, info, mag=0.05, grad=0.05,
                                       eeg=0.1, proj=True)
    if data_cov:
        with warnings.catch_warnings(record=True):  # too few samples
            data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.145)
    else:
        data_cov = None

    return raw, epochs, evoked, data_cov, noise_cov, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol
开发者ID:HSMin,项目名称:mne-python,代码行数:59,代码来源:test_lcmv.py


示例6: _get_data

def _get_data(tmin=-0.1, tmax=0.15, all_forward=True, epochs=True,
              epochs_preload=True, data_cov=True):
    """Read in data used in tests
    """
    label = mne.read_label(fname_label)
    events = mne.read_events(fname_event)
    raw = mne.fiff.Raw(fname_raw, preload=True)
    forward = mne.read_forward_solution(fname_fwd)
    if all_forward:
        forward_surf_ori = mne.read_forward_solution(fname_fwd, surf_ori=True)
        forward_fixed = mne.read_forward_solution(fname_fwd, force_fixed=True,
                                                  surf_ori=True)
        forward_vol = mne.read_forward_solution(fname_fwd_vol, surf_ori=True)
    else:
        forward_surf_ori = None
        forward_fixed = None
        forward_vol = None

    event_id, tmin, tmax = 1, tmin, tmax

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    if epochs:
        # Set up pick list: MEG - bad channels
        left_temporal_channels = mne.read_selection('Left-temporal')
        picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False,
                                    stim=True, eog=True, ref_meg=False,
                                    exclude='bads',
                                    selection=left_temporal_channels)

        # Read epochs
        epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                            picks=picks, baseline=(None, 0),
                            preload=epochs_preload,
                            reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
        if epochs_preload:
            epochs.resample(200, npad=0, n_jobs=2)
        evoked = epochs.average()
        info = evoked.info
    else:
        epochs = None
        evoked = None
        info = raw.info

    noise_cov = mne.read_cov(fname_cov)
    noise_cov = mne.cov.regularize(noise_cov, info,
                                   mag=0.05, grad=0.05, eeg=0.1, proj=True)
    if data_cov:
        data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15)
    else:
        data_cov = None

    return raw, epochs, evoked, data_cov, noise_cov, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol
开发者ID:Anevar,项目名称:mne-python,代码行数:55,代码来源:test_lcmv.py


示例7: test_read_selection

def test_read_selection():
    """Test reading of selections"""
    # test one channel for each selection
    ch_names = [
        "MEG 2211",
        "MEG 0223",
        "MEG 1312",
        "MEG 0412",
        "MEG 1043",
        "MEG 2042",
        "MEG 2032",
        "MEG 0522",
        "MEG 1031",
    ]
    sel_names = [
        "Vertex",
        "Left-temporal",
        "Right-temporal",
        "Left-parietal",
        "Right-parietal",
        "Left-occipital",
        "Right-occipital",
        "Left-frontal",
        "Right-frontal",
    ]

    raw = read_raw_fif(raw_fname)
    for i, name in enumerate(sel_names):
        sel = read_selection(name)
        assert_true(ch_names[i] in sel)
        sel_info = read_selection(name, info=raw.info)
        assert_equal(sel, sel_info)

    # test some combinations
    all_ch = read_selection(["L", "R"])
    left = read_selection("L")
    right = read_selection("R")

    assert_true(len(all_ch) == len(left) + len(right))
    assert_true(len(set(left).intersection(set(right))) == 0)

    frontal = read_selection("frontal")
    occipital = read_selection("Right-occipital")
    assert_true(len(set(frontal).intersection(set(occipital))) == 0)

    ch_names_new = [ch.replace(" ", "") for ch in ch_names]
    raw_new = read_raw_fif(raw_new_fname)
    for i, name in enumerate(sel_names):
        sel = read_selection(name, info=raw_new.info)
        assert_true(ch_names_new[i] in sel)

    assert_raises(TypeError, read_selection, name, info="foo")
开发者ID:mmagnuski,项目名称:mne-python,代码行数:52,代码来源:test_selection.py


示例8: test_lcmv

def test_lcmv():
    """Test LCMV with evoked data and single trials
    """
    event_id, tmin, tmax = 1, -0.1, 0.15

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: EEG + MEG - bad channels (modify to your needs)
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False,
                                stim=True, eog=True, exclude='bads',
                                selection=left_temporal_channels)

    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0), preload=True,
                        reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
    epochs.resample(200, npad=0, n_jobs=2)
    evoked = epochs.average()

    noise_cov = mne.read_cov(fname_cov)
    noise_cov = mne.cov.regularize(noise_cov, evoked.info,
                                   mag=0.05, grad=0.05, eeg=0.1, proj=True)

    data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15)
    stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.01)

    stc_pow = np.sum(stc.data, axis=1)
    idx = np.argmax(stc_pow)
    max_stc = stc.data[idx]
    tmax = stc.times[np.argmax(max_stc)]

    assert_true(0.09 < tmax < 0.1)
    assert_true(2. < np.max(max_stc) < 3.)

    # Now test single trial using fixed orientation forward solution
    # so we can compare it to the evoked solution
    forward_fixed = mne.read_forward_solution(fname_fwd, force_fixed=True,
                                              surf_ori=True)
    stcs = lcmv_epochs(epochs, forward_fixed, noise_cov, data_cov, reg=0.01)

    epochs.drop_bad_epochs()
    assert_true(len(epochs.events) == len(stcs))

    # average the single trial estimates
    stc_avg = np.zeros_like(stc.data)
    for this_stc in stcs:
        stc_avg += this_stc.data
    stc_avg /= len(stcs)

    # compare it to the solution using evoked with fixed orientation
    stc_fixed = lcmv(evoked, forward_fixed, noise_cov, data_cov, reg=0.01)
    assert_array_almost_equal(stc_avg, stc_fixed.data)
开发者ID:cdamon,项目名称:mne-python,代码行数:54,代码来源:test_lcmv.py


示例9: _get_data

def _get_data(tmin=-0.11, tmax=0.15, read_all_forward=True, compute_csds=True):
    """Read in data used in tests."""
    label = mne.read_label(fname_label)
    events = mne.read_events(fname_event)[:10]
    raw = mne.io.read_raw_fif(fname_raw, preload=False)
    raw.add_proj([], remove_existing=True)  # we'll subselect so remove proj
    forward = mne.read_forward_solution(fname_fwd)
    if read_all_forward:
        forward_surf_ori = _read_forward_solution_meg(
            fname_fwd, surf_ori=True)
        forward_fixed = _read_forward_solution_meg(
            fname_fwd, force_fixed=True, use_cps=False)
        forward_vol = mne.read_forward_solution(fname_fwd_vol)
        forward_vol = mne.convert_forward_solution(forward_vol, surf_ori=True)
    else:
        forward_surf_ori = None
        forward_fixed = None
        forward_vol = None

    event_id, tmin, tmax = 1, tmin, tmax

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: MEG - bad channels
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.pick_types(raw.info, meg=True, eeg=False,
                           stim=True, eog=True, exclude='bads',
                           selection=left_temporal_channels)

    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0), preload=True,
                        reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
    epochs.resample(200, npad=0, n_jobs=2)
    evoked = epochs.average().crop(0, None)

    # Computing the data and noise cross-spectral density matrices
    if compute_csds:
        data_csd = csd_epochs(epochs, mode='multitaper', tmin=0.045,
                              tmax=None, fmin=8, fmax=12,
                              mt_bandwidth=72.72)
        noise_csd = csd_epochs(epochs, mode='multitaper', tmin=None,
                               tmax=0.0, fmin=8, fmax=12,
                               mt_bandwidth=72.72)
    else:
        data_csd, noise_csd = None, None

    return raw, epochs, evoked, data_csd, noise_csd, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol
开发者ID:HSMin,项目名称:mne-python,代码行数:50,代码来源:test_dics.py


示例10: test_lcmv_raw

def test_lcmv_raw():
    """Test LCMV with raw data
    """
    forward = mne.read_forward_solution(fname_fwd)
    label = mne.read_label(fname_label)
    noise_cov = mne.read_cov(fname_cov)
    raw = mne.fiff.Raw(fname_raw, preload=False)

    tmin, tmax = 0, 20
    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: EEG + MEG - bad channels (modify to your needs)
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, stim=True,
                                eog=True, exclude='bads',
                                selection=left_temporal_channels)

    noise_cov = mne.read_cov(fname_cov)
    noise_cov = mne.cov.regularize(noise_cov, raw.info,
                                   mag=0.05, grad=0.05, eeg=0.1, proj=True)

    start, stop = raw.time_as_index([tmin, tmax])

    # use only the left-temporal MEG channels for LCMV
    picks = mne.fiff.pick_types(raw.info, meg=True, exclude='bads',
                                selection=left_temporal_channels)

    data_cov = mne.compute_raw_data_covariance(raw, tmin=tmin, tmax=tmax)

    stc = lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01, label=label,
                   start=start, stop=stop, picks=picks)

    assert_array_almost_equal(np.array([tmin, tmax]),
                              np.array([stc.times[0], stc.times[-1]]),
                              decimal=2)

    # make sure we get an stc with vertices only in the lh
    vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
    assert_true(len(stc.vertno[0]) == len(np.intersect1d(vertno[0],
                                                         label.vertices)))
    assert_true(len(stc.vertno[1]) == 0)
开发者ID:emanuele,项目名称:mne-python,代码行数:42,代码来源:test_lcmv.py


示例11: _get_data

def _get_data(tmin=-0.11, tmax=0.15, read_all_forward=True, compute_csds=True):
    """Read in real MEG data. Used to test deprecated dics_* functions."""
    """Read in data used in tests."""
    if read_all_forward:
        fwd_free, fwd_surf, fwd_fixed, fwd_vol, _ = _load_forward()
    label_fname = op.join(data_path, 'MEG', 'sample', 'labels', 'Aud-lh.label')
    label = mne.read_label(label_fname)
    events = mne.read_events(fname_event)[:10]
    raw = mne.io.read_raw_fif(fname_raw, preload=False)
    raw.add_proj([], remove_existing=True)  # we'll subselect so remove proj
    event_id, tmin, tmax = 1, tmin, tmax

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: MEG - bad channels
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.pick_types(raw.info, meg=True, eeg=False,
                           stim=True, eog=True, exclude='bads',
                           selection=left_temporal_channels)

    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0), preload=True,
                        reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
    epochs.resample(200, npad=0, n_jobs=2)
    evoked = epochs.average().crop(0, None)

    # Computing the data and noise cross-spectral density matrices
    if compute_csds:
        data_csd = csd_multitaper(epochs, tmin=0.045, tmax=None, fmin=8,
                                  fmax=12, bandwidth=72.72).sum()
        noise_csd = csd_multitaper(epochs, tmin=None, tmax=0, fmin=8, fmax=12,
                                   bandwidth=72.72).sum()
    else:
        data_csd, noise_csd = None, None

    return (raw, epochs, evoked, data_csd, noise_csd, label, fwd_free,
            fwd_surf, fwd_fixed, fwd_vol)
开发者ID:jdammers,项目名称:mne-python,代码行数:39,代码来源:test_dics.py


示例12: read_data

def read_data():
    """Read in data used in tests
    """
    label = mne.read_label(fname_label)
    events = mne.read_events(fname_event)[:10]
    raw = mne.fiff.Raw(fname_raw, preload=False)
    forward = mne.read_forward_solution(fname_fwd)
    forward_surf_ori = mne.read_forward_solution(fname_fwd, surf_ori=True)
    forward_fixed = mne.read_forward_solution(fname_fwd, force_fixed=True,
                                              surf_ori=True)
    forward_vol = mne.read_forward_solution(fname_fwd_vol, surf_ori=True)

    event_id, tmin, tmax = 1, -0.11, 0.15

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: MEG - bad channels
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False,
                                stim=True, eog=True, exclude='bads',
                                selection=left_temporal_channels)

    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0), preload=True,
                        reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
    epochs.resample(200, npad=0, n_jobs=2)
    evoked = epochs.average()

    # Computing the data and noise cross-spectral density matrices
    data_csd = compute_epochs_csd(epochs, mode='multitaper', tmin=0.04,
                                  tmax=None, fmin=8, fmax=12)
    noise_csd = compute_epochs_csd(epochs, mode='multitaper', tmin=None,
                                   tmax=0.0, fmin=8, fmax=12)

    return raw, epochs, evoked, data_csd, noise_csd, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol
开发者ID:emanuele,项目名称:mne-python,代码行数:38,代码来源:test_dics.py


示例13: global_RMS

def global_RMS(sub, session, baseline=500, selection="Vertex"):
    """ make global RMS
        baseline is in indexes
    """

    f_load = "sub_%d_%s_tsss_mc_epochs.fif" % (sub, session)
    epochs = mne.read_epochs(f_load)

    if selection is not None:
        selection = mne.viz._clean_names(mne.read_selection(selection))
        data_picks = mne.epochs.pick_types(epochs.info, meg='grad',
                                           exclude='bads', selection=None)
    else:
        data_picks = mne.epochs.pick_types(epochs.info, meg='grad',
                                           exclude='bads')

    data = epochs.get_data()[:, data_picks, :]
    data = np.sqrt(np.square(data.mean(axis=0)))
    data = data.mean(axis=0)
    baseline_std = data[:baseline].std().mean()

    grms = data/baseline_std

    return grms
开发者ID:MadsJensen,项目名称:readiness_scripts,代码行数:24,代码来源:analyse_functions.py


示例14: test_read_selection

def test_read_selection():
    """Test reading of selections"""
    # test one channel for each selection
    ch_names = [
        "MEG 2211",
        "MEG 0223",
        "MEG 1312",
        "MEG 0412",
        "MEG 1043",
        "MEG 2042",
        "MEG 2032",
        "MEG 0522",
        "MEG 1031",
    ]
    sel_names = [
        "Vertex",
        "Left-temporal",
        "Right-temporal",
        "Left-parietal",
        "Right-parietal",
        "Left-occipital",
        "Right-occipital",
        "Left-frontal",
        "Right-frontal",
    ]

    for i, name in enumerate(sel_names):
        sel = read_selection(name)
        assert ch_names[i] in sel

    # test some combinations
    all_ch = read_selection(["L", "R"])
    left = read_selection("L")
    right = read_selection("R")

    assert len(all_ch) == len(left) + len(right)
    assert len(set(left).intersection(set(right))) == 0

    frontal = read_selection("frontal")
    occipital = read_selection("Right-occipital")
    assert len(set(frontal).intersection(set(occipital))) == 0
开发者ID:jasmainak,项目名称:mne-python,代码行数:41,代码来源:test_selection.py


示例15: _get_data

def _get_data(tmin=-0.1, tmax=0.15, all_forward=True, epochs=True,
              epochs_preload=True, data_cov=True):
    """Read in data used in tests."""
    label = mne.read_label(fname_label)
    events = mne.read_events(fname_event)
    raw = mne.io.read_raw_fif(fname_raw, preload=True)
    forward = mne.read_forward_solution(fname_fwd)
    if all_forward:
        forward_surf_ori = _read_forward_solution_meg(
            fname_fwd, surf_ori=True)
        forward_fixed = _read_forward_solution_meg(
            fname_fwd, force_fixed=True, surf_ori=True, use_cps=False)
        forward_vol = _read_forward_solution_meg(fname_fwd_vol)
    else:
        forward_surf_ori = None
        forward_fixed = None
        forward_vol = None

    event_id, tmin, tmax = 1, tmin, tmax

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bad channels
    # Set up pick list: MEG - bad channels
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.pick_types(raw.info, selection=left_temporal_channels)
    picks = picks[::2]  # decimate for speed
    # add a couple channels we will consider bad
    bad_picks = [100, 101]
    bads = [raw.ch_names[pick] for pick in bad_picks]
    assert not any(pick in picks for pick in bad_picks)
    picks = np.concatenate([picks, bad_picks])
    raw.pick_channels([raw.ch_names[ii] for ii in picks])
    del picks

    raw.info['bads'] = bads  # add more bads
    raw.info.normalize_proj()  # avoid projection warnings

    if epochs:
        # Read epochs
        epochs = mne.Epochs(
            raw, events, event_id, tmin, tmax, proj=True,
            baseline=(None, 0), preload=epochs_preload, reject=reject)
        if epochs_preload:
            epochs.resample(200, npad=0, n_jobs=2)
        epochs.crop(0, None)
        evoked = epochs.average()
        info = evoked.info
    else:
        epochs = None
        evoked = None
        info = raw.info

    noise_cov = mne.read_cov(fname_cov)
    noise_cov['projs'] = []  # avoid warning
    noise_cov = mne.cov.regularize(noise_cov, info, mag=0.05, grad=0.05,
                                   eeg=0.1, proj=True, rank=None)
    if data_cov:
        data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.145)
    else:
        data_cov = None

    return raw, epochs, evoked, data_cov, noise_cov, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol
开发者ID:kambysese,项目名称:mne-python,代码行数:63,代码来源:test_lcmv.py


示例16: test_tf_lcmv

def test_tf_lcmv():
    """Test TF beamforming based on LCMV
    """
    fname_raw = op.join(data_path, 'MEG', 'sample',
                        'sample_audvis_filt-0-40_raw.fif')
    label = mne.read_label(fname_label)
    events = mne.read_events(fname_event)
    raw = mne.fiff.Raw(fname_raw, preload=True)
    forward = mne.read_forward_solution(fname_fwd)

    event_id, tmin, tmax = 1, -0.2, 0.2

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: MEG - bad channels
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False,
                                stim=True, eog=True, exclude='bads',
                                selection=left_temporal_channels)

    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0),
                        preload=False,
                        reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
    epochs.drop_bad_epochs()

    freq_bins = [(4, 12), (15, 40)]
    time_windows = [(-0.1, 0.1), (0.0, 0.2)]
    win_lengths = [0.2, 0.2]
    tstep = 0.1
    reg = 0.05

    source_power = []
    noise_covs = []
    for (l_freq, h_freq), win_length in zip(freq_bins, win_lengths):
        raw_band = raw.copy()
        raw_band.filter(l_freq, h_freq, method='iir', n_jobs=1, picks=picks)
        epochs_band = mne.Epochs(raw_band, epochs.events, epochs.event_id,
                                 tmin=tmin, tmax=tmax, proj=True)
        with warnings.catch_warnings(record=True):  # not enough samples
            noise_cov = compute_covariance(epochs_band, tmin=tmin, tmax=tmin +
                                           win_length)
        noise_cov = mne.cov.regularize(noise_cov, epochs_band.info, mag=reg,
                                       grad=reg, eeg=reg, proj=True)
        noise_covs.append(noise_cov)
        del raw_band  # to save memory

        # Manually calculating source power in on frequency band and several
        # time windows to compare to tf_lcmv results and test overlapping
        if (l_freq, h_freq) == freq_bins[0]:
            for time_window in time_windows:
                with warnings.catch_warnings(record=True):
                    data_cov = compute_covariance(epochs_band,
                                                  tmin=time_window[0],
                                                  tmax=time_window[1])
                stc_source_power = _lcmv_source_power(epochs.info, forward,
                                                      noise_cov, data_cov,
                                                      reg=reg, label=label)
                source_power.append(stc_source_power.data)

    stcs = tf_lcmv(epochs, forward, noise_covs, tmin, tmax, tstep, win_lengths,
                   freq_bins, reg=reg, label=label)

    assert_true(len(stcs) == len(freq_bins))
    assert_true(stcs[0].shape[1] == 4)

    # Averaging all time windows that overlap the time period 0 to 100 ms
    source_power = np.mean(source_power, axis=0)

    # Selecting the first frequency bin in tf_lcmv results
    stc = stcs[0]

    # Comparing tf_lcmv results with _lcmv_source_power results
    assert_array_almost_equal(stc.data[:, 2], source_power[:, 0])

    # Test if using unsupported max-power orientation is detected
    assert_raises(ValueError, tf_lcmv, epochs, forward, noise_covs, tmin, tmax,
                  tstep, win_lengths, freq_bins=freq_bins,
                  pick_ori='max-power')

    # Test if incorrect number of noise CSDs is detected
    # Test if incorrect number of noise covariances is detected
    assert_raises(ValueError, tf_lcmv, epochs, forward, [noise_covs[0]], tmin,
                  tmax, tstep, win_lengths, freq_bins)

    # Test if freq_bins and win_lengths incompatibility is detected
    assert_raises(ValueError, tf_lcmv, epochs, forward, noise_covs, tmin, tmax,
                  tstep, win_lengths=[0, 1, 2], freq_bins=freq_bins)

    # Test if time step exceeding window lengths is detected
    assert_raises(ValueError, tf_lcmv, epochs, forward, noise_covs, tmin, tmax,
                  tstep=0.15, win_lengths=[0.2, 0.1], freq_bins=freq_bins)

    # Test correct detection of preloaded epochs objects that do not contain
    # the underlying raw object
    epochs_preloaded = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                                  baseline=(None, 0), preload=True)
    assert_raises(ValueError, tf_lcmv, epochs_preloaded, forward, noise_covs,
#.........这里部分代码省略.........
开发者ID:Anevar,项目名称:mne-python,代码行数:101,代码来源:test_lcmv.py


示例17: len

#n_times = len(epochs_plan.times)
# Take only the data channels (here the gradiometers)
#data_picks = fiff.pick_types(epochs_plan.info, meg='grad', exclude='bads')
# Make arrays X and y such that :
# X is 3d with X.shape[0] is the total number of epochs to classify
# y is filled with integers coding for the class to predict
# We must have X.shape[0] equal to y.shape[0]
#X = [e.get_data()[:, data_picks, :] for e in epochs_list]
#y = [k * np.ones(len(this_X)) for k, this_X in enumerate(X)]
#X = np.concatenate(X)
#y = np.concatenate(y)


#### setup X & y ####
vertex_parietal = ["Vertex", "parietal"]
selection = mne.viz._clean_names(mne.read_selection(vertex_parietal))

data_picks = mne.fiff.pick_types(sub_2_plan.info, meg='grad', exclude='bads',
                        selection = selection)
#cond_A = sub_8_classic.get_data()[:, data_picks, :]
#cond_B = sub_8_plan.get_data()[:, data_picks, :]
#cond_C = sub_8_interupt.get_data()[:, data_picks, :]


n_trials = np.min([len(cmb_A), len(cmb_B), len(cmb_C)])

for i in range(n_trials):
    foo = cmb_A[i, :, :]
    if i == 0:
        X = foo.reshape(-1)
    else:
开发者ID:MadsJensen,项目名称:readiness_scripts,代码行数:31,代码来源:sk_learn-bits.py


示例18: read_proj

###############################################################################
# Set parameters
data_path = sample.data_path("..")
raw_fname = data_path + "/MEG/sample/sample_audvis_raw.fif"
proj_fname = data_path + "/MEG/sample/sample_audvis_eog_proj.fif"

# Setup for reading the raw data
raw = fiff.Raw(raw_fname)
exclude = raw.info["bads"] + ["MEG 2443", "EEG 053"]  # bads + 2 more

# Add SSP projection vectors to reduce EOG and ECG artifacts
projs = read_proj(proj_fname)
raw.add_proj(projs, remove_existing=True)

# Pick MEG magnetometers in the Left-temporal region
selection = read_selection("Left-temporal")
picks = fiff.pick_types(raw.info, meg="mag", eeg=False, eog=False, stim=False, exclude=exclude, selection=selection)

tmin, tmax = 0, 60  # use the first 60s of data
fmin, fmax = 2, 300  # look at frequencies between 2 and 300Hz
NFFT = 2048  # the FFT size (NFFT). Ideally a power of 2
psds, freqs = compute_raw_psd(
    raw, tmin=tmin, tmax=tmax, picks=picks, fmin=fmin, fmax=fmax, NFFT=NFFT, n_jobs=1, plot=False, proj=False
)

# And now do the same with SSP applied
psds_ssp, freqs = compute_raw_psd(
    raw, tmin=tmin, tmax=tmax, picks=picks, fmin=fmin, fmax=fmax, NFFT=NFFT, n_jobs=1, plot=False, proj=True
)

# Convert PSDs to dB
开发者ID:sudo-nim,项目名称:mne-python,代码行数:31,代码来源:plot_compute_raw_data_spectrum.py


示例19:

# We create an :class:`mne.Epochs` object containing two trials: one with
# both noise and signal and one with just noise

t0 = raw.first_samp  # First sample in the data
t1 = t0 + n_times - 1  # Sample just before the second trial
epochs = mne.Epochs(
    raw,
    events=np.array([[t0, 0, 1], [t1, 0, 2]]),
    event_id=dict(signal=1, noise=2),
    tmin=0, tmax=10,
    preload=True,
)

# Plot some of the channels of the simulated data that are situated above one
# of our simulated sources.
picks = mne.pick_channels(epochs.ch_names, mne.read_selection('Left-frontal'))
epochs.plot(picks=picks)

###############################################################################
# Power mapping
# -------------
# With our simulated dataset ready, we can now pretend to be researchers that
# have just recorded this from a real subject and are going to study what parts
# of the brain communicate with each other.
#
# First, we'll create a source estimate of the MEG data. We'll use both a
# straightforward MNE-dSPM inverse solution for this, and the DICS beamformer
# which is specifically designed to work with oscillatory data.

###############################################################################
# Computing the inverse using MNE-dSPM:
开发者ID:jdammers,项目名称:mne-python,代码行数:31,代码来源:plot_dics.py


示例20: test_tf_lcmv

def test_tf_lcmv():
    """Test TF beamforming based on LCMV."""
    label = mne.read_label(fname_label)
    events = mne.read_events(fname_event)
    raw = mne.io.read_raw_fif(fname_raw, preload=True)
    forward = mne.read_forward_solution(fname_fwd)

    event_id, tmin, tmax = 1, -0.2, 0.2

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: MEG - bad channels
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.pick_types(raw.info, selection=left_temporal_channels)
    picks = picks[::2]  # decimate for speed
    raw.pick_channels([raw.ch_names[ii] for ii in picks])
    raw.info.normalize_proj()  # avoid projection warnings
    del picks

    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        baseline=None, preload=False, reject=reject)
    epochs.load_data()

    freq_bins = [(4, 12), (15, 40)]
    time_windows = [(-0.1, 0.1), (0.0, 0.2)]
    win_lengths = [0.2, 0.2]
    tstep = 0.1
    reg = 0.05

    source_power = []
    noise_covs = []
    for (l_freq, h_freq), win_length in zip(freq_bins, win_lengths):
        raw_band = raw.copy()
        raw_band.filter(l_freq, h_freq, method='iir', n_jobs=1,
                        iir_params=dict(output='ba'))
        epochs_band = mne.Epochs(
            raw_band, epochs.events, epochs.event_id, tmin=tmin, tmax=tmax,
            baseline=None, proj=True)
        noise_cov = mne.compute_covariance(
            epochs_band, tmin=tmin, tmax=tmin + win_length)
        noise_cov = mne.cov.regularize(
            noise_cov, epochs_band.info, mag=reg, grad=reg, eeg=reg,
            proj=True)
        noise_covs.append(noise_cov)
        del raw_band  # to save memory

        # Manually calculating source power in on frequency band and several
        # time windows to compare to tf_lcmv results and test overlapping
        if (l_freq, h_freq) == freq_bins[0]:
            for time_window in time_windows:
                data_cov = mne.compute_covariance(
                    epochs_band, tmin=time_window[0], tmax=time_window[1])
 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mne.read_source_estimate函数代码示例发布时间:2022-05-27
下一篇:
Python mne.read_proj函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap