• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python mne.add_source_space_distances函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.add_source_space_distances函数的典型用法代码示例。如果您正苦于以下问题:Python add_source_space_distances函数的具体用法?Python add_source_space_distances怎么用?Python add_source_space_distances使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了add_source_space_distances函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_add_patch_info

def test_add_patch_info():
    """Test adding patch info to source space."""
    # let's setup a small source space
    src = read_source_spaces(fname_small)
    src_new = read_source_spaces(fname_small)
    for s in src_new:
        s['nearest'] = None
        s['nearest_dist'] = None
        s['pinfo'] = None

    # test that no patch info is added for small dist_limit
    try:
        add_source_space_distances(src_new, dist_limit=0.00001)
    except RuntimeError:  # what we throw when scipy version is wrong
        pass
    else:
        assert all(s['nearest'] is None for s in src_new)
        assert all(s['nearest_dist'] is None for s in src_new)
        assert all(s['pinfo'] is None for s in src_new)

    # now let's use one that works
    add_source_space_distances(src_new)

    for s1, s2 in zip(src, src_new):
        assert_array_equal(s1['nearest'], s2['nearest'])
        assert_allclose(s1['nearest_dist'], s2['nearest_dist'], atol=1e-7)
        assert_equal(len(s1['pinfo']), len(s2['pinfo']))
        for p1, p2 in zip(s1['pinfo'], s2['pinfo']):
            assert_array_equal(p1, p2)
开发者ID:teonbrooks,项目名称:mne-python,代码行数:29,代码来源:test_source_space.py


示例2: test_add_source_space_distances_limited

def test_add_source_space_distances_limited():
    """Test adding distances to source space with a dist_limit."""
    tempdir = _TempDir()
    src = read_source_spaces(fname)
    src_new = read_source_spaces(fname)
    del src_new[0]['dist']
    del src_new[1]['dist']
    n_do = 200  # limit this for speed
    src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy()
    src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy()
    out_name = op.join(tempdir, 'temp-src.fif')
    try:
        add_source_space_distances(src_new, dist_limit=0.007)
    except RuntimeError:  # what we throw when scipy version is wrong
        raise SkipTest('dist_limit requires scipy > 0.13')
    write_source_spaces(out_name, src_new)
    src_new = read_source_spaces(out_name)

    for so, sn in zip(src, src_new):
        assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32))
        assert_array_equal(sn['dist_limit'], np.array([0.007], np.float32))
        do = so['dist']
        dn = sn['dist']

        # clean out distances > 0.007 in C code
        do.data[do.data > 0.007] = 0
        do.eliminate_zeros()

        # make sure we have some comparable distances
        assert np.sum(do.data < 0.007) > 400

        # do comparison over the region computed
        d = (do - dn)[:sn['vertno'][n_do - 1]][:, :sn['vertno'][n_do - 1]]
        assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-6)
开发者ID:teonbrooks,项目名称:mne-python,代码行数:34,代码来源:test_source_space.py


示例3: test_add_patch_info

def test_add_patch_info(monkeypatch):
    """Test adding patch info to source space."""
    # let's setup a small source space
    src = read_source_spaces(fname_small)
    src_new = read_source_spaces(fname_small)
    for s in src_new:
        s['nearest'] = None
        s['nearest_dist'] = None
        s['pinfo'] = None

    # test that no patch info is added for small dist_limit
    add_source_space_distances(src_new, dist_limit=0.00001)
    assert all(s['nearest'] is None for s in src_new)
    assert all(s['nearest_dist'] is None for s in src_new)
    assert all(s['pinfo'] is None for s in src_new)

    # now let's use one that works (and test our warning-throwing)
    monkeypatch.setattr(mne.source_space, '_DIST_WARN_LIMIT', 1)
    with pytest.warns(RuntimeWarning, match='Computing distances for 258'):
        add_source_space_distances(src_new)

    for s1, s2 in zip(src, src_new):
        assert_array_equal(s1['nearest'], s2['nearest'])
        assert_allclose(s1['nearest_dist'], s2['nearest_dist'], atol=1e-7)
        assert_equal(len(s1['pinfo']), len(s2['pinfo']))
        for p1, p2 in zip(s1['pinfo'], s2['pinfo']):
            assert_array_equal(p1, p2)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:27,代码来源:test_source_space.py


示例4: test_scale_mri

def test_scale_mri():
    """Test creating fsaverage and scaling it"""
    # create fsaverage
    tempdir = _TempDir()
    create_default_subject(subjects_dir=tempdir)
    is_mri = _is_mri_subject("fsaverage", tempdir)
    assert_true(is_mri, "Creating fsaverage failed")

    fid_path = os.path.join(tempdir, "fsaverage", "bem", "fsaverage-fiducials.fif")
    os.remove(fid_path)
    create_default_subject(update=True, subjects_dir=tempdir)
    assert_true(os.path.exists(fid_path), "Updating fsaverage")

    # remove redundant label files
    label_temp = os.path.join(tempdir, "fsaverage", "label", "*.label")
    label_paths = glob(label_temp)
    for label_path in label_paths[1:]:
        os.remove(label_path)

    # create source space
    path = os.path.join(tempdir, "fsaverage", "bem", "fsaverage-ico-0-src.fif")
    mne.setup_source_space("fsaverage", path, "ico0", overwrite=True, subjects_dir=tempdir, add_dist=False)

    # scale fsaverage
    os.environ["_MNE_FEW_SURFACES"] = "true"
    scale_mri("fsaverage", "flachkopf", [1, 0.2, 0.8], True, subjects_dir=tempdir)
    del os.environ["_MNE_FEW_SURFACES"]
    is_mri = _is_mri_subject("flachkopf", tempdir)
    assert_true(is_mri, "Scaling fsaverage failed")
    src_path = os.path.join(tempdir, "flachkopf", "bem", "flachkopf-ico-0-src.fif")
    assert_true(os.path.exists(src_path), "Source space was not scaled")
    scale_labels("flachkopf", subjects_dir=tempdir)

    # scale source space separately
    os.remove(src_path)
    scale_source_space("flachkopf", "ico-0", subjects_dir=tempdir)
    assert_true(os.path.exists(src_path), "Source space was not scaled")

    # add distances to source space
    src = mne.read_source_spaces(path)
    mne.add_source_space_distances(src)
    src.save(path)

    # scale with distances
    os.remove(src_path)
    scale_source_space("flachkopf", "ico-0", subjects_dir=tempdir)
开发者ID:rajegannathan,项目名称:grasp-lift-eeg-cat-dog-solution-updated,代码行数:46,代码来源:test_coreg.py


示例5: test_add_source_space_distances

def test_add_source_space_distances():
    """Test adding distances to source space."""
    tempdir = _TempDir()
    src = read_source_spaces(fname)
    src_new = read_source_spaces(fname)
    del src_new[0]['dist']
    del src_new[1]['dist']
    n_do = 19  # limit this for speed
    src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy()
    src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy()
    out_name = op.join(tempdir, 'temp-src.fif')
    n_jobs = 2
    assert n_do % n_jobs != 0
    add_source_space_distances(src_new, n_jobs=n_jobs)
    write_source_spaces(out_name, src_new)
    src_new = read_source_spaces(out_name)

    # iterate over both hemispheres
    for so, sn in zip(src, src_new):
        v = so['vertno'][:n_do]
        assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32))
        assert_array_equal(sn['dist_limit'], np.array([np.inf], np.float32))
        do = so['dist']
        dn = sn['dist']

        # clean out distances > 0.007 in C code (some residual), and Python
        ds = list()
        for d in [do, dn]:
            d.data[d.data > 0.007] = 0
            d = d[v][:, v]
            d.eliminate_zeros()
            ds.append(d)

        # make sure we actually calculated some comparable distances
        assert np.sum(ds[0].data < 0.007) > 10

        # do comparison
        d = ds[0] - ds[1]
        assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-9)
开发者ID:teonbrooks,项目名称:mne-python,代码行数:39,代码来源:test_source_space.py


示例6: test_scale_mri

def test_scale_mri():
    """Test creating fsaverage and scaling it."""
    # create fsaverage using the testing "fsaverage" instead of the FreeSurfer
    # one
    tempdir = _TempDir()
    fake_home = testing.data_path()
    create_default_subject(subjects_dir=tempdir, fs_home=fake_home,
                           verbose=True)
    assert _is_mri_subject('fsaverage', tempdir), "Creating fsaverage failed"

    fid_path = op.join(tempdir, 'fsaverage', 'bem', 'fsaverage-fiducials.fif')
    os.remove(fid_path)
    create_default_subject(update=True, subjects_dir=tempdir,
                           fs_home=fake_home)
    assert op.exists(fid_path), "Updating fsaverage"

    # copy MRI file from sample data (shouldn't matter that it's incorrect,
    # so here choose a small one)
    path_from = op.join(testing.data_path(), 'subjects', 'sample', 'mri',
                        'T1.mgz')
    path_to = op.join(tempdir, 'fsaverage', 'mri', 'orig.mgz')
    copyfile(path_from, path_to)

    # remove redundant label files
    label_temp = op.join(tempdir, 'fsaverage', 'label', '*.label')
    label_paths = glob(label_temp)
    for label_path in label_paths[1:]:
        os.remove(label_path)

    # create source space
    print('Creating surface source space')
    path = op.join(tempdir, 'fsaverage', 'bem', 'fsaverage-%s-src.fif')
    src = mne.setup_source_space('fsaverage', 'ico0', subjects_dir=tempdir,
                                 add_dist=False)
    mri = op.join(tempdir, 'fsaverage', 'mri', 'orig.mgz')
    print('Creating volume source space')
    vsrc = mne.setup_volume_source_space(
        'fsaverage', pos=50, mri=mri, subjects_dir=tempdir,
        add_interpolator=False)
    write_source_spaces(path % 'vol-50', vsrc)

    # scale fsaverage
    for scale in (.9, [1, .2, .8]):
        write_source_spaces(path % 'ico-0', src, overwrite=True)
        os.environ['_MNE_FEW_SURFACES'] = 'true'
        with pytest.warns(None):  # sometimes missing nibabel
            scale_mri('fsaverage', 'flachkopf', scale, True,
                      subjects_dir=tempdir, verbose='debug')
        del os.environ['_MNE_FEW_SURFACES']
        assert _is_mri_subject('flachkopf', tempdir), "Scaling failed"
        spath = op.join(tempdir, 'flachkopf', 'bem', 'flachkopf-%s-src.fif')

        assert op.exists(spath % 'ico-0'), "Source space ico-0 was not scaled"
        assert os.path.isfile(os.path.join(tempdir, 'flachkopf', 'surf',
                                           'lh.sphere.reg'))
        vsrc_s = mne.read_source_spaces(spath % 'vol-50')
        pt = np.array([0.12, 0.41, -0.22])
        assert_array_almost_equal(
            apply_trans(vsrc_s[0]['src_mri_t'], pt * np.array(scale)),
            apply_trans(vsrc[0]['src_mri_t'], pt))
        scale_labels('flachkopf', subjects_dir=tempdir)

        # add distances to source space after hacking the properties to make
        # it run *much* faster
        src_dist = src.copy()
        for s in src_dist:
            s.update(rr=s['rr'][s['vertno']], nn=s['nn'][s['vertno']],
                     tris=s['use_tris'])
            s.update(np=len(s['rr']), ntri=len(s['tris']),
                     vertno=np.arange(len(s['rr'])),
                     inuse=np.ones(len(s['rr']), int))
        mne.add_source_space_distances(src_dist)
        write_source_spaces(path % 'ico-0', src_dist, overwrite=True)

        # scale with distances
        os.remove(spath % 'ico-0')
        scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir)
        ssrc = mne.read_source_spaces(spath % 'ico-0')
        assert ssrc[0]['dist'] is not None
开发者ID:jhouck,项目名称:mne-python,代码行数:79,代码来源:test_coreg.py


示例7: enumerate

os.chdir(raw_dir)

subs = ['NLR_102_RS','NLR_103_AC','NLR_105_BB','NLR_110_HH','NLR_127_AM',
        'NLR_130_RW','NLR_132_WP','NLR_133_ML','NLR_145_AC','NLR_150_MG','NLR_151_RD',
        'NLR_152_TC','NLR_160_EK','NLR_161_AK','NLR_162_EF','NLR_163_LF','NLR_164_SF',
        'NLR_170_GM','NLR_172_TH','NLR_174_HS','NLR_179_GM','NLR_180_ZD','NLR_187_NB',
        'NLR_201_GS','NLR_202_DD','NLR_203_AM','NLR_204_AM','NLR_205_AC','NLR_206_LM',
        'NLR_207_AH','NLR_210_SB','NLR_211_LB'
        ]
subs = ['NLR_GB310','NLR_KB218','NLR_JB423','NLR_GB267','NLR_JB420','NLR_HB275','NLR_197_BK','NLR_GB355','NLR_GB387']
subs = ['NLR_HB205','NLR_IB319','NLR_JB227','NLR_JB486','NLR_KB396']
subs = ['NLR_JB227','NLR_JB486','NLR_KB396']
for n, s in enumerate(subs):    
    subject = s
                       
    # Create source space
    os.chdir(os.path.join(fs_dir,subject,'bem'))
    """ NLR_205: Head is too small to create ico5 """
    if s == 'NLR_205_AC' or s == 'NLR_JB227':
        spacing='oct6' # ico5 = 10242, oct6 = 4098 ...8196 = 4098 * 2
        fn2 = subject + '-' + 'oct-6' + '-src.fif'
    else:
        spacing='ico5' # 10242 * 2
        fn2 = subject + '-' + 'ico-5' + '-src.fif'

    src = mne.setup_source_space(subject=subject, spacing=spacing, # source spacing = 5 mm
                                 subjects_dir=fs_dir, add_dist=False, n_jobs=18, overwrite=True)
    src = mne.add_source_space_distances(src, dist_limit=np.inf, n_jobs=18, verbose=None)
    mne.write_source_spaces(fn2, src, overwrite=True)
开发者ID:garikoitz,项目名称:BrainTools,代码行数:29,代码来源:make_source_space.py


示例8: test_scale_mri

def test_scale_mri():
    """Test creating fsaverage and scaling it"""
    # create fsaverage
    tempdir = _TempDir()
    create_default_subject(subjects_dir=tempdir)
    assert_true(_is_mri_subject('fsaverage', tempdir),
                "Creating fsaverage failed")

    fid_path = os.path.join(tempdir, 'fsaverage', 'bem',
                            'fsaverage-fiducials.fif')
    os.remove(fid_path)
    create_default_subject(update=True, subjects_dir=tempdir)
    assert_true(os.path.exists(fid_path), "Updating fsaverage")

    # copy MRI file from sample data
    path = os.path.join('%s', 'fsaverage', 'mri', 'orig.mgz')
    sample_sdir = os.path.join(mne.datasets.sample.data_path(), 'subjects')
    copyfile(path % sample_sdir, path % tempdir)

    # remove redundant label files
    label_temp = os.path.join(tempdir, 'fsaverage', 'label', '*.label')
    label_paths = glob(label_temp)
    for label_path in label_paths[1:]:
        os.remove(label_path)

    # create source space
    path = os.path.join(tempdir, 'fsaverage', 'bem', 'fsaverage-%s-src.fif')
    src = mne.setup_source_space('fsaverage', 'ico0', subjects_dir=tempdir,
                                 add_dist=False)
    write_source_spaces(path % 'ico-0', src)
    mri = os.path.join(tempdir, 'fsaverage', 'mri', 'orig.mgz')
    vsrc = mne.setup_volume_source_space('fsaverage', pos=50, mri=mri,
                                         subjects_dir=tempdir,
                                         add_interpolator=False)
    write_source_spaces(path % 'vol-50', vsrc)

    # scale fsaverage
    os.environ['_MNE_FEW_SURFACES'] = 'true'
    scale = np.array([1, .2, .8])
    scale_mri('fsaverage', 'flachkopf', scale, True, subjects_dir=tempdir)
    del os.environ['_MNE_FEW_SURFACES']
    assert_true(_is_mri_subject('flachkopf', tempdir),
                "Scaling fsaverage failed")
    spath = os.path.join(tempdir, 'flachkopf', 'bem', 'flachkopf-%s-src.fif')

    assert_true(os.path.exists(spath % 'ico-0'),
                "Source space ico-0 was not scaled")
    vsrc_s = mne.read_source_spaces(spath % 'vol-50')
    pt = np.array([0.12, 0.41, -0.22])
    assert_array_almost_equal(apply_trans(vsrc_s[0]['src_mri_t'], pt * scale),
                              apply_trans(vsrc[0]['src_mri_t'], pt))
    scale_labels('flachkopf', subjects_dir=tempdir)

    # add distances to source space
    mne.add_source_space_distances(src)
    src.save(path % 'ico-0', overwrite=True)

    # scale with distances
    os.remove(spath % 'ico-0')
    scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir)
    ssrc = mne.read_source_spaces(spath % 'ico-0')
    assert_is_not(ssrc[0]['dist'], None)
开发者ID:claire-braboszcz,项目名称:mne-python,代码行数:62,代码来源:test_coreg.py


示例9: compute_forward_stack

def compute_forward_stack(subjects_dir,
                          subject,
                          recordings_path,
                          info_from=(('data_type', 'rest'), ('run_index', 0)),
                          fwd_params=None, src_params=None,
                          hcp_path=op.curdir, n_jobs=1, verbose=None):
    """
    Convenience function for conducting standard MNE analyses.

    .. note::
       this function computes bem solutions, source spaces and forward models
       optimized for connectivity computation, i.e., the fsaverage space
       is morphed onto the subject's space.

    Parameters
    ----------
    subject : str
        The subject name.
    hcp_path : str
        The directory containing the HCP data.
    recordings_path : str
        The path where MEG data and transformations are stored.
    subjects_dir : str
        The directory containing the extracted HCP subject data.
    info_from : tuple of tuples | dict
        The reader info concerning the data from which sensor positions
        should be read.
        Must not be empty room as sensor positions are in head
        coordinates for 4D systems, hence not available in that case.
        Note that differences between the sensor positions across runs
        are smaller than 12 digits, hence negligible.
    fwd_params : None | dict
        The forward parameters
    src_params : None | dict
        The src params. Defaults to:

        dict(subject='fsaverage', fname=None, spacing='oct6', n_jobs=2,
             surface='white', subjects_dir=subjects_dir, add_dist=True)
    hcp_path : str
        The prefix of the path of the HCP data.
    n_jobs : int
        The number of jobs to use in parallel.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose)

    Returns
    -------
    out : dict
        A dictionary with the following keys:
            fwd : instance of mne.Forward
                The forward solution.
            src_subject : instance of mne.SourceSpace
                The source model on the subject's surface
            src_fsaverage : instance of mne.SourceSpace
                The source model on fsaverage's surface
            bem_sol : dict
                The BEM.
            info : instance of mne.io.meas_info.Info
                The actual measurement info used.
    """
    if isinstance(info_from, tuple):
        info_from = dict(info_from)

    head_mri_t = mne.read_trans(
        op.join(recordings_path, subject, '{}-head_mri-trans.fif'.format(
            subject)))
    
    src_defaults = dict(subject='fsaverage', spacing='oct6', n_jobs=n_jobs,
             surface='white', subjects_dir=subjects_dir, add_dist=True)
    if 'fname' in mne.fixes._get_args(mne.setup_source_space):
        # needed for mne-0.14 and below
        src_defaults.update(dict(fname=None))
    else:
        # remove 'fname' argument (if necessary) when using mne-0.15+
        if 'fname' in src_params:
            del src_params['fname']
    src_params = _update_dict_defaults(src_params, src_defaults)

    add_source_space_distances = False
    if src_params['add_dist']:  # we want the distances on the morphed space
        src_params['add_dist'] = False
        add_source_space_distances = True

    src_fsaverage = mne.setup_source_space(**src_params)
    src_subject = mne.morph_source_spaces(
        src_fsaverage, subject, subjects_dir=subjects_dir)

    if add_source_space_distances:  # and here we compute them post hoc.
        src_subject = mne.add_source_space_distances(
            src_subject, n_jobs=n_jobs)

    bems = mne.make_bem_model(subject, conductivity=(0.3,),
                              subjects_dir=subjects_dir,
                              ico=None)  # ico = None for morphed SP.
    bem_sol = mne.make_bem_solution(bems)
    bem_sol['surfs'][0]['coord_frame'] = 5

    info = read_info(subject=subject, hcp_path=hcp_path, **info_from)
    picks = _pick_data_channels(info, with_ref_meg=False)
    info = pick_info(info, picks)
#.........这里部分代码省略.........
开发者ID:mne-tools,项目名称:mne-hcp,代码行数:101,代码来源:anatomy.py


示例10: make_mne_forward

def make_mne_forward(anatomy_path,
                     subject,
                     recordings_path,
                     info_from=(('data_type', 'rest'), ('run_index', 0)),
                     fwd_params=None, src_params=None,
                     hcp_path=op.curdir, n_jobs=1):
    """"
    Convenience script for conducting standard MNE analyses.

    Parameters
    ----------
    subject : str
        The subject name.
    hcp_path : str
        The directory containing the HCP data.
    recordings_path : str
        The path where MEG data and transformations are stored.
    anatomy_path : str
        The directory containing the extracted HCP subject data.
    info_from : tuple of tuples | dict
        The reader info concerning the data from which sensor positions
        should be read.
        Must not be empty room as sensor positions are in head
        coordinates for 4D systems, hence not available in that case.
        Note that differences between the sensor positions across runs
        are smaller than 12 digits, hence negligible.
    fwd_params : None | dict
        The forward parameters
    src_params : None | dict
        The src params. Defaults to:

        dict(subject='fsaverage', fname=None, spacing='oct6', n_jobs=2,
             surface='white', subjects_dir=anatomy_path, add_dist=True)
    hcp_path : str
        The prefix of the path of the HCP data.
    n_jobs : int
        The number of jobs to use in parallel.
    """
    if isinstance(info_from, tuple):
        info_from = dict(info_from)

    head_mri_t = mne.read_trans(
        op.join(recordings_path, subject, '{}-head_mri-trans.fif'.format(
            subject)))

    src_params = _update_dict_defaults(
        src_params,
        dict(subject='fsaverage', fname=None, spacing='oct6', n_jobs=n_jobs,
             surface='white', subjects_dir=anatomy_path, add_dist=True))

    add_source_space_distances = False
    if src_params['add_dist']:  # we want the distances on the morphed space
        src_params['add_dist'] = False
        add_source_space_distances = True

    src_fsaverage = mne.setup_source_space(**src_params)
    src_subject = mne.morph_source_spaces(
        src_fsaverage, subject, subjects_dir=anatomy_path)

    if add_source_space_distances:  # and here we compute them post hoc.
        src_subject = mne.add_source_space_distances(
            src_subject, n_jobs=n_jobs)

    bems = mne.make_bem_model(subject, conductivity=(0.3,),
                              subjects_dir=anatomy_path,
                              ico=None)  # ico = None for morphed SP.
    bem_sol = mne.make_bem_solution(bems)

    info = read_info_hcp(subject=subject, hcp_path=hcp_path, **info_from)
    picks = _pick_data_channels(info, with_ref_meg=False)
    info = pick_info(info, picks)

    # here we assume that as a result of our MNE-HCP processing
    # all other transforms in info are identity
    for trans in ['dev_head_t', 'ctf_head_t']:
        #  'dev_ctf_t' is not identity
        assert np.sum(info[trans]['trans'] - np.eye(4)) == 0

    fwd = mne.make_forward_solution(
        info, trans=head_mri_t, bem=bem_sol, src=src_subject,
        n_jobs=n_jobs)

    return dict(fwd=fwd, src_subject=src_subject,
                src_fsaverage=src_fsaverage,
                bem_sol=bem_sol, info=info)
开发者ID:JohnGriffiths,项目名称:mne-hcp,代码行数:85,代码来源:inverse.py



注:本文中的mne.add_source_space_distances函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mne.combine_evoked函数代码示例发布时间:2022-05-27
下一篇:
Python mn_execution.forbidCompiling函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap