本文整理汇总了Python中mkl.set_num_threads函数的典型用法代码示例。如果您正苦于以下问题:Python set_num_threads函数的具体用法?Python set_num_threads怎么用?Python set_num_threads使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了set_num_threads函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: pool_threading
def pool_threading(nthreads=None):
if nthreads is None:
nthreads = omp_num_threads()
try:
import mkl
old_mkl_num_threads = mkl.get_max_threads()
mkl.set_num_threads(1)
except ImportError:
pass
old_omp_num_threads = os.getenv('OMP_NUM_THREADS')
os.environ['OMP_NUM_THREADS'] = '1'
pool = multiprocessing.dummy.Pool(nthreads)
yield pool
pool.close()
pool.join()
try:
mkl.set_num_threads(old_mkl_num_threads)
except NameError:
pass
if old_omp_num_threads is not None:
os.environ['OMP_NUM_THREADS'] = old_omp_num_threads
else:
del os.environ['OMP_NUM_THREADS']
开发者ID:ghisvail,项目名称:pyoperators,代码行数:25,代码来源:misc.py
示例2: handle_mkl
def handle_mkl(max_threads):
"""Set max threads if mkl is availavle"""
try:
import mkl
mkl.set_num_threads(max_threads)
except ImportError:
pass
开发者ID:dengemann,项目名称:meeg-preprocessing,代码行数:7,代码来源:utils.py
示例3: run
def run(expt, display=False):
if isinstance(expt, str):
expt = get_experiment(expt)
storage.ensure_directory(expt.figures_dir())
storage.ensure_directory(expt.outputs_dir())
mkl.set_num_threads(1)
v = gnp.garray(expt.dataset.load().as_matrix())
v = 0.999 * v + 0.001 * 0.5
if expt.permute:
idxs = np.random.permutation(v.shape[0])
v = v[idxs]
if display:
expt.diagnostics += ['objective']
expt.show_after = expt.save_after
visuals = Visuals(expt, v)
if expt.init_rbm == 'base_rates':
init_rbm = None
elif isinstance(expt.init_rbm, TrainedRBM):
init_rbm = load_trained_rbm(expt.init_rbm.location).convert_to_garrays()
else:
raise RuntimeError('Unknown init_rbm')
assert isinstance(expt.training, rbm_training.TrainingParams)
rbm_training.train_rbm(v, expt.nhid, expt.training, after_step=visuals.after_step, init_rbm=init_rbm)
开发者ID:rgrosse,项目名称:fang,代码行数:31,代码来源:from_scratch.py
示例4: configure
def configure(num_jobs=8, TEST=False, subtract=0, num_proc=None, num_thread_per_proc=None):
'''
num_jobs is typically the # of genes we are parallelizing over
'''
if num_proc is None:
num_proc = multiprocessing.cpu_count() - subtract
if num_jobs > num_proc:
num_jobs = num_proc
if num_thread_per_proc is None:
num_thread_per_proc = int(np.floor(num_proc/num_jobs))
if TEST:
num_jobs = 1
num_thread_per_proc = 1
try:
import mkl
mkl.set_num_threads(num_thread_per_proc)
except ImportError:
print "MKL not available, so I'm not adjusting the number of threads"
print "Launching %d jobs with %d MKL threads each" % (num_jobs, num_thread_per_proc)
return num_jobs
开发者ID:benchling,项目名称:Azimuth,代码行数:26,代码来源:local_multiprocessing.py
示例5: run_all
def run_all(nsubs, nrois, nthreads=2):
import mkl
mkl.set_num_threads(nthreads)
print "setup"
cmats, design, grp = gen_data(nsubs=nsubs, nrois=nrois, nvoxs=nrois)
print "degree"
dall = time_fun(local_degree, cmats, design)
print "glm"
gall = time_fun(local_glm, cmats, design)
print "mdmr"
mall = time_fun(local_mdmr, cmats, design)
print "svm"
sall = time_fun(local_svm, cmats, grp)
print "kmeans"
kall = time_fun(local_kmeans, cmats, grp)
print "end"
times = np.vstack((dall, gall, mall, sall, kall))
return times
开发者ID:czarrar,项目名称:cwas-paper,代码行数:26,代码来源:compare.py
示例6: silhouette_original_clusterings
def silhouette_original_clusterings(dataset='CB1', neuropil='Antennal_lobe', clusterer_or_k=60):
"""Returns a pandas dataframe with the silhouette index of each cluster member.
The dataframe have columns (cluster_id, member_id, silhouette).
"""
# Read the expression matrix
print('Reading expression matrix')
Xdf = ExpressionDataset.dataset(dset=dataset, neuropil=neuropil).Xdf(index_type='string')
# Generate a flat map cluster_id -> members
print('Finding cluster assignments')
clusters_df, _ = get_original_clustering(dataset=dataset, neuropil=neuropil,
clusterer_or_k=clusterer_or_k)
dfs = []
for cluster_id, members in zip(clusters_df.cluster_id,
clusters_df.original_voxels_in_cluster):
dfs.append(pd.DataFrame({'cluster_id': cluster_id, 'member_id': members}))
members_df = pd.concat(dfs).set_index('member_id').loc[Xdf.index]
# Compute the distance matrix - this must be parameterised
print('Computing distance')
import mkl
mkl.set_num_threads(6)
D = dicedist_metric(Xdf)
# Compute silhouette
# Here we could go for the faster implementation in third_party, if needed
print('Computing silhouette index')
members_df['silhouette'] = silhouette_samples(D.values,
members_df.cluster_id.values,
metric='precomputed')
return (members_df.
reset_index().
rename(columns=lambda col: {'index': 'member_id'}.get(col, col))
[['cluster_id', 'member_id', 'silhouette']])
开发者ID:strawlab,项目名称:braincode,代码行数:35,代码来源:clusters_quality.py
示例7: fftvec
def fftvec(vec):
"""
performs a fft on a vector with 3 components in the first index position
This is really just a wrapper for fft, fftn and their inverses
"""
try:
from anfft import fft, fftn
fft_type = 1
except:
# print "Could not import anfft, importing scipy instead."
#Update 9/18/2013 -- numpy with mkl is way faster than scipy
import mkl
mkl.set_num_threads(8)
from numpy.fft import fft, fftn
fft_type = 0
if force_gpu:
fft_type = 2 #set gpu fft's manually -- not sure what a automatic way would look like
from numpy import complex64, shape, array, empty
if vec.ndim > 2:
if vec.shape[0] == 3:
# "Vector": first index has size 3 so fft the other columns
if fft_type==1:
return array([fftn(i,measure=True) for i in vec]).astype(complex64)
# result = empty(vec.shape, dtype=complex64)
# result[0] = fftn(vec[0], measure=True).astype(complex64)
# result[1] = fftn(vec[1], measure=True).astype(complex64)
# result[2] = fftn(vec[2], measure=True).astype(complex64)
# return result
elif fft_type==0:
return fftn(vec, axes=range(1,vec.ndim)).astype(complex64)
elif fft_type==2:
# return array([gpu_fft(i) for i in vec.astype(complex64)])
result = empty(vec.shape, dtype=complex64)
result[0] = gpu_fft(vec[0].copy())
result[1] = gpu_fft(vec[1].copy())
result[2] = gpu_fft(vec[2].copy())
return result
else: # "Scalar", fft the whole thing
if fft_type==1:
return fftn(vec,measure=True).astype(complex64)
elif fft_type==0:
return fftn(vec).astype(complex64)
elif fft_type==2:
return gpu_fft(vec.copy())
elif vec.ndim == 1: #Not a vector, so use fft
if fft_type==1:
return fft(vec,measure = True).astype(complex64)
elif fft_type==0:
return fft(vec).astype(complex64)
elif fft_type==2:
return gpu_fft(vec.astype(complex64))
else:
#0th index is 3, so its a vector
#return fft(vec, axis=1).astype(complex64)
return array([fft(i) for i in vec])
开发者ID:DrJeckyl,项目名称:Python-ShearingBox-Analysis,代码行数:58,代码来源:Functions.py
示例8: parallel_loop
def parallel_loop(args):
import numpy as np
import time
import pysparsefht
from utils import random_k_sparse
try:
import mkl as mkl_service
# for such parallel processing, it is better
# to deactivate multithreading in mkl
mkl_service.set_num_threads(1)
except ImportError:
pass
n = args[0]
b = np.arange(1, n-1)
K = 2**b
B = 2**b
# compute value of C
C = np.empty_like(b)
C[:np.floor(n/3)] = n/b[:np.floor(n/3)]
C[np.floor(n/3):np.floor(2*n/3)] = 3
C[np.floor(2*n/3):] = n / (n - b[np.floor(2*n/3):])
algo_name = params['algo_name']
seed = args[1]
if algo_name == 'RANDOM':
algo = pysparsefht.ALGO_RANDOM
elif algo_name == 'DETERMINISTIC':
algo = pysparsefht.ALGO_OPTIMIZED
else:
ValueError('No such algorithm.')
# initialize rng
np.random.seed(seed)
# a list for return values
ret = []
# generate a seed for the C RNG
C_seed = np.random.randint(4294967295, dtype=np.uint32)
# create sparse vector
Tsfht, Tfht = pysparsefht.benchmark(K, B, C, 2**n,
loops=params['inner_loops'], warm=params['warm'], body=params['body'], max_mag=params['max_mag'],
sfht_max_iter=params['max_iter'], seed=C_seed)
return [Tsfht, Tfht, b, C]
开发者ID:LCAV,项目名称:SparseFHT,代码行数:53,代码来源:timing_sim.py
示例9: _initialize_fft
def _initialize_fft(self):
""" Define the two-dimensional FFT methods.
"""
if self.use_mkl:
import mkl
mkl.set_num_threads(self.nthreads)
import mkl_fft
self.fft = (lambda x : mkl_fft.fft2(x))
self.ifft = (lambda x : mkl_fft.ifft2(x))
else:
self.fft = (lambda x : np.fft.fft2(x))
self.ifft = (lambda x : np.fft.ifft2(x))
开发者ID:crocha700,项目名称:NIWQG,代码行数:14,代码来源:Kernel.py
示例10: dtest
def dtest(n=50, d=0.0, r=0.0, model_covariate=True, niters=100, nperms=4999):
import mkl
mkl.set_num_threads(2)
d = float(d)
r = float(r)
# Data/Distances
pvals = np.zeros(niters)
Fvals = np.zeros(niters)
for i in xrange(niters):
# Design
## Categorical
gp = np.repeat([0, 1], n/2)
np.random.shuffle(gp)
x = gp*d + np.random.standard_normal(n)
## Continuous
# see http://stackoverflow.com/questions/16024677/generate-correlated-data-in-python-3-3
# and http://stats.stackexchange.com/questions/19367/creating-two-random-sequences-with-50-correlation?lq=1
uncorrelated = np.random.standard_normal((2,n))
motion = uncorrelated[0]
y = r*motion + np.sqrt(1-r**2)*uncorrelated[1]
## Design Matrix
if model_covariate:
design = np.vstack((np.ones(n), gp, motion)).T
else:
design = np.vstack((np.ones(n), gp)).T
# Date
points = np.vstack((x,y)).T
# Distances
dmat = euclidean_distances(points)
dmats = dmat[np.newaxis,:,:]
# Only the group effect is the variable of interest
cols = [1]
# Call MDMR
pval, Fval, _, _ = mdmr(dmats, design, cols, nperms)
pvals[i] = pval
Fvals[i] = Fval
return pvals, Fvals
开发者ID:czarrar,项目名称:cwas-paper,代码行数:48,代码来源:10_simulate.py
示例11: prep_cwas_workflow
def prep_cwas_workflow(c, subject_infos):
from CPAC.cwas import create_cwas
import numpy as np
try:
import mkl
mkl.set_num_threads(c.cwasThreads)
except ImportError:
pass
print 'Preparing CWAS workflow'
p_id, s_ids, scan_ids, s_paths = (list(tup) for tup in zip(*subject_infos))
print 'Subjects', s_ids
# Read in list of subject functionals
lines = open(c.cwasFuncFiles).readlines()
spaths = [ l.strip().strip('"') for l in lines ]
# Read in design/regressor file
regressor = np.loadtxt(c.cwasRegressorFile)
wf = pe.Workflow(name='cwas_workflow')
wf.base_dir = c.workingDirectory
cw = create_cwas()
cw.inputs.inputspec.roi = c.cwasROIFile
cw.inputs.inputspec.subjects = spaths
cw.inputs.inputspec.regressor = regressor
cw.inputs.inputspec.cols = c.cwasRegressorCols
cw.inputs.inputspec.f_samples = c.cwasFSamples
cw.inputs.inputspec.strata = c.cwasRegressorStrata # will stay None?
cw.inputs.inputspec.parallel_nodes = c.cwasParallelNodes
cw.inputs.inputspec.memory_limit = c.cwasMemory
cw.inputs.inputspec.dtype = c.cwasDtype
ds = pe.Node(nio.DataSink(), name='cwas_sink')
out_dir = os.path.dirname(s_paths[0]).replace(s_ids[0], 'cwas_results')
ds.inputs.base_directory = out_dir
ds.inputs.container = ''
wf.connect(cw, 'outputspec.F_map',
ds, 'F_map')
wf.connect(cw, 'outputspec.p_map',
ds, 'p_map')
wf.run(plugin='MultiProc',
plugin_args={'n_procs': c.numCoresPerSubject})
开发者ID:czarrar,项目名称:C-PAC,代码行数:47,代码来源:cpac_cwas_pipeline.py
示例12: dtest
def dtest(pos_nodes=0, effect=0.0, dist="euclidean", n=100, nodes=400, nperms=4999, iters=100):
import mkl
mkl.set_num_threads(2)
print "Start"
#print "Categorical Effect"
grp = np.repeat([0, 1], n/2)
np.random.shuffle(grp)
#print "Design Matrix"
design = np.vstack((np.ones(n), grp)).T
cols = [1]
#print "Distance Matrices"
dmats = np.zeros((iters,n,n))
for i in xrange(iters):
#if (i % 10) == 0:
# print i,
# Data
## Fist, I created the matrix with the random data
points = np.random.standard_normal((n,nodes))
## Second, I select a random selection of nodes to add the effect
neg_nodes = nodes - pos_nodes
change_nodes = np.repeat([0,1], [neg_nodes, pos_nodes])
np.random.shuffle(change_nodes)
## Finally, I add the effect to a select subjects and nodes
for i in (change_nodes==1).nonzero()[0]:
points[grp==1,i] += effect
# Compute Distances
if dist == "euclidean":
dmat = euclidean_distances(points)
elif dist == "pearson":
dmat = compute_distances(points)
else:
raise Exception("Unknown distance measure %s" % dist)
dmats[i] = dmat
#print ""
#print "MDMR"
pvals = []; Fvals = [];
pvals, Fvals, _, _ = mdmr(dmats, design, cols, nperms)
#print "Done"
return pvals, Fvals
开发者ID:czarrar,项目名称:cwas-paper,代码行数:46,代码来源:10_simple_simulate.py
示例13: __init__
def __init__(self, *args, **kwargs):
super(Worker, self).__init__()
self.nthreads = pyrat._nthreads # number of threads for processing
if pyrat._debug is True:
self.nthreads = 1
try:
import mkl
if self.nthreads > 1: # switch of mkl multithreading
mkl.set_num_threads(1) # because we do it ourself
else:
mkl.set_num_threads(999)
except ImportError:
pass
# self.blockprocess = True # blockprocessing on/off
# self.blocksize = 128 # size of single block
for para in self.para: # copy defaults to self
setattr(self, para['var'], para['value'])
for (k, v) in kwargs.items(): # copy keywords to self
setattr(self, k, v) # eventually overwriting defaults
if not hasattr(self, 'layer'): # if no keyword was used
self.layer = pyrat.data.active # use active layer
# --------------------------------------------------
self.name = self.__class__.__name__ # name of worker class (string)
self.input = '' # input layer(s)
self.output = '' # output layer(s)
self.blockoverlap = 0 # block overlap
self.vblock = False # vertical blocks on/off
self.blocks = [] # list of block boundaries
self.valid = [] # valid part of each block
# self.block = False # actual block range / validity
self.allowed_ndim = False
self.require_para = False
self.allowed_dtype = False
开发者ID:birgander2,项目名称:PyRAT,代码行数:38,代码来源:Worker.py
示例14: mpirun
def mpirun(f,arguments,comm=MPI.COMM_WORLD,bcast=True):
'''
Wrapper for the parallel running of f using the mpi4py.
Parameters
----------
f : callable
The function to be parallelly run using the mpi4py.
arguments : list of tuple
The list of arguments passed to the function f.
comm : MPI.Comm, optional
The MPI communicator.
bcast : True or False
When True, broadcast the result for all processes;
Otherwise only the rank 0 process hold the result.
Returns
-------
list
The returned values of f with respect to the arguments.
'''
size=comm.Get_size()
rank=comm.Get_rank()
if size>1:
import mkl
mkl.set_num_threads(1)
temp=[]
for i,argument in enumerate(arguments):
if i%size==rank:
temp.append(f(*argument))
temp=comm.gather(temp,root=0)
result=[]
if rank==0:
for i in range(len(arguments)):
result.append(temp[i%size][i//size])
if bcast:
result=comm.bcast(result,root=0)
return result
开发者ID:waltergu,项目名称:HamiltonianPy,代码行数:38,代码来源:Utilities.py
示例15: start_benchmark
def start_benchmark():
print "Benchmark starting timing with numpy %s\nVersion: %s" % (numpy.__version__, sys.version)
print ("-" * 80)
for cur_threads in threads_range:
header_set = False
# This doesn't work: os.environ is not adjusted
#os.environ[THREADS_LIMIT_ENV] = '%d' % cur_threads
mkl.set_num_threads(cur_threads)
print "Maximum number of threads used for computation is : %d" % cur_threads
header_str = "%20s" % "Function"
header_str += ' - %9s - Speedup' % 'Time [ms]'
if cur_threads == 1:
timings_single = []
for ii,fun in enumerate(tests):
result_str = "%20s" % fun.__name__
t = timeit.Timer(stmt="%s()" % fun.__name__, setup="from __main__ import %s" % fun.__name__)
res = t.repeat(repeat=3, number=1)
timing = 1000.0 * sum(res)/len(res)
if cur_threads == 1:
timings_single.append(timing)
result_str += ' - %9.1f - %5.1f' % (timing, timings_single[ii]/timing)
if not header_set is True:
print header_str
header_set = True
print result_str
开发者ID:cjayb,项目名称:benchmarks,代码行数:36,代码来源:numpy_mkl.py
示例16: len
#!/usr/bin/env python
import os, sys
from os import path
sys.path.append("/home2/data/Projects/CWAS/pyClusterROI")
if len(sys.argv) != 2:
sys.exit("Usage: %s num-threads" % sys.argv[0])
# control mkl
import mkl
mkl.set_num_threads(int(sys.argv[1]))
###
# 1. SETUP
###
print "1. Setup"
obase = "/home2/data/Projects/CWAS/development+motion/spatial_cluster"
# functions for connectivity metric
from make_local_connectivity_ones import *
# name of the maskfile that we will be using
roidir = "/home2/data/Projects/CWAS/share/development+motion/rois"
maskfile = path.join(roidir, "mask_gray_4mm.nii.gz")
###
开发者ID:czarrar,项目名称:cwas-paper,代码行数:31,代码来源:05_create_random_clusters.py
示例17: __enter__
def __enter__(self):
mkl.set_num_threads(self.num_threads)
开发者ID:lelegan,项目名称:modl,代码行数:2,代码来源:mkl.py
示例18: __init__
def __init__(self):
import os, sys
MoleculeName = ''
if len(sys.argv) < 2:
print "Ideally you give me a molecule name, Defaulting to /Integrals"
else:
MoleculeName = sys.argv[1]
self.MoleculeName = MoleculeName # Defined Globally in Main.py
self.nocc = 4
self.nvirt = 4
self.nmo = 8 # These will be determined on-the-fly reading from disk anyways.
self.occ = []
self.virt = []
self.all = []
self.alpha = []
self.beta = []
# Try to get a faster timestep by freezing the CoreOrbitals.
# if it's not None, then freeze that many orbitals (evenly alpha and beta.)
self.FreezeCore = 8
self.AvailablePropagators = ["phTDA2TCL","Whole2TCL", "AllPH"]
self.Propagator = "phTDA2TCL"
self.Correlated = True
self.SecularApproximation = 0 # 0 => Nonsecular 1=> Secular
self.ImaginaryTime = True
self.Temperature = 303.15*2
self.TMax = 250.0
self.TStep = 0.01
self.tol = 1e-9
self.Safety = .9 #Ensures that if Error = Emax, the step size decreases slightly
self.RK45 = True
self.LoadPrev = False
# self.MarkovEta = 0.05
self.MarkovEta = 0.001
self.Tc = 3000.0
self.Compiler = "gcc"
self.Flags = ["-mtune=native", "-O3"]
self.latex = True
self.fluorescence = True # If true, this performs the fluorescence calculations in SpectralAnalysis
# above a certain energy
# no relaxation is included and the denominator is the bare electronic
# denominator to avoid integration issues.
self.UVCutoff = 300.0/27.2113 # No Relaxation above 1eV
try:
mkl.set_num_threads(8)
except NameError:
print "No MKL so I can't set the number of threads"
# This is a hack switch to shut off the Boson Correlation Function
# ------------------------------------------------------------------------
# Adiabatic = 0 # Implies numerical integration of expdeltaS and bosons.
# Adiabatic = 1 # Implies numerical integration of expdeltaS no bosons.
# Adiabatic = 2 # Implies analytical integration of expdeltaS, no bosons.
# Adiabatic = 3 # Implies analytical integration of expdeltaS, no bosons, and the perturbative terms are forced to be anti-hermitian.
# Adiabatic = 4 # Implies Markov Approximation.
self.Adiabatic = 0
self.Inhomogeneous = False
self.InhomogeneousTerms = self.Inhomogeneous
self.Inhomogenous = False
self.Undressed = True
self.ContBath = True # Whether the bath is continuous/There is a continuous bath.
self.ReOrg = True
self.FiniteDifferenceBosons = False
self.DipoleGuess = True # if False, a superposition of bright states will be used.
self.AllDirections = True # Will initalize three concurrent propagations.
self.DirectionSpecific = True
self.InitialDirection = -1 # 0 = x etc. Only excites in the x direction -1=isotropic
self.BeginWithStatesOfEnergy = None
# self.BeginWithStatesOfEnergy = 18.7/27.2113
# self.BeginWithStatesOfEnergy = 18.2288355687/27.2113
self.PulseWidth = 1.7/27.2113
self.Plotting = True
self.DoCisDecomposition = True
self.DoBCT = True # plot and fourier transform the bath correlation tensor.
self.DoEntropies = True
if (self.Undressed):
self.DoEntropies = False
self.FieldThreshold = pow(10.0,-7.0)
self.ExponentialStep = False #This will be set automatically if a matrix is made.
self.LegendFontSize = 14
self.LabelFontSize = 16
print "--------------------------------------------"
print "Running With Overall Parameters: "
print "--------------------------------------------"
print "self.MoleculeName", self.MoleculeName
print "self.AllDirections", self.AllDirections
print "self.Propagator", self.Propagator
print "self.Temperature", self.Temperature
print "self.TMax", self.TMax
#.........这里部分代码省略.........
开发者ID:jparkhill,项目名称:CorrelatedPolaron,代码行数:101,代码来源:TensorNumerics.py
示例19: range
import numpy
import numpy.fft as fft
numpy.use_fastnumpy = True
import time
#from scipy.fftpack import fft
import mkl
print 'Intel MKL version:', mkl.get_version_string()
print 'Intel cpu_clocks:', mkl.get_cpu_clocks()
print 'Intel cpu_frequency:', mkl.get_cpu_frequency()
#print 'Intel MKL, freeing buffer memory:', mkl.thread_free_buffers()
print 'max Intel threads:', mkl.get_max_threads()
mkl.set_num_threads(2)
N = 2**16
print 'using numpy', numpy.__version__
a = numpy.random.rand(2, N)
print a.shape, 'items'
t0 = time.clock()
for i in range(100):
continue
base = time.clock()-t0
fftn = fft.fftn
t0 = time.clock()
for i in range(100):
r = fftn(a, (N,), (1,))
print 'simple loop', time.clock()-t0-base
开发者ID:cjayb,项目名称:benchmarks,代码行数:30,代码来源:numpy_mkl_fftn.py
示例20: load_subject
import os, sys
from os import path as op
import scipy
import nibabel as nb
import numpy as np
from pandas import read_table, read_csv
from patsy import dmatrices, dmatrix
from CPAC.cwas import cwas
from CPAC.cwas.utils import calc_subdists, calc_mdmrs
from CPAC.cwas.subdist import *
from CPAC.cwas.mdmr import mdmr, gen_perms
import mkl
mkl.set_num_threads(8)
####
# Cool Functions
####
def load_subject(filepath, dtype='float64'):
return nb.load(filepath).get_data().astype(dtype)
def load_subjects(filepaths, dtype='float64'):
print "Loading Subjects"
funcs = [ load_subject(fp, dtype) for fp in filepaths ]
return funcs
def rois2voxels(dat, rois):
开发者ID:czarrar,项目名称:cwas-paper,代码行数:31,代码来源:10_mdmr_standard.py
注:本文中的mkl.set_num_threads函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论