• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python model.PCAModel类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中menpo.model.PCAModel的典型用法代码示例。如果您正苦于以下问题:Python PCAModel类的具体用法?Python PCAModel怎么用?Python PCAModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了PCAModel类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _build_shape_model

    def _build_shape_model(cls, shapes, max_components):
        r"""
        Builds a shape model given a set of shapes.

        Parameters
        ----------
        shapes: list of :map:`PointCloud`
            The set of shapes from which to build the model.
        max_components: None or int or float
            Specifies the number of components of the trained shape model.
            If int, it specifies the exact number of components to be retained.
            If float, it specifies the percentage of variance to be retained.
            If None, all the available components are kept (100% of variance).

        Returns
        -------
        shape_model: :class:`menpo.model.pca`
            The PCA shape model.
        """

        # centralize shapes
        centered_shapes = [Translation(-s.centre()).apply(s) for s in shapes]
        # align centralized shape using Procrustes Analysis
        gpa = GeneralizedProcrustesAnalysis(centered_shapes)
        aligned_shapes = [s.aligned_source() for s in gpa.transforms]
        # build shape model
        shape_model = PCAModel(aligned_shapes)
        if max_components is not None:
            # trim shape model if required
            shape_model.trim_components(max_components)

        return shape_model
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:32,代码来源:builder.py


示例2: test_pca_trim

def test_pca_trim():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # trim components
    model.trim_components(5)
    # number of active components should be the same as number of components
    assert_equal(model.n_active_components, model.n_components)
开发者ID:kritsong,项目名称:menpo,代码行数:7,代码来源:test_model.py


示例3: _build_shape_model

def _build_shape_model(shapes, max_components):
    r"""
    Builds a shape model given a set of shapes.

    Parameters
    ----------
    shapes: list of :map:`PointCloud`
        The set of shapes from which to build the model.
    max_components: None or int or float
        Specifies the number of components of the trained shape model.
        If int, it specifies the exact number of components to be retained.
        If float, it specifies the percentage of variance to be retained.
        If None, all the available components are kept (100% of variance).

    Returns
    -------
    shape_model: :class:`menpo.model.pca`
        The PCA shape model.
    """
    # build shape model
    shape_model = PCAModel(shapes)
    if max_components is not None:
        # trim shape model if required
        shape_model.trim_components(max_components)

    return shape_model
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:26,代码来源:builder.py


示例4: test_pca_orthogonalize_against

def test_pca_orthogonalize_against():
    pca_samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    pca_model = PCAModel(pca_samples)
    lm_samples = np.asarray([np.random.randn(10) for _ in range(4)])
    lm_model = LinearModel(np.asarray(lm_samples))
    # orthogonalize
    pca_model.orthonormalize_against_inplace(lm_model)
    # number of active components must remain the same
    assert_equal(pca_model.n_active_components, 6)
开发者ID:OlivierML,项目名称:menpo,代码行数:9,代码来源:test_model.py


示例5: test_pca_increment_noncentred

def test_pca_increment_noncentred():
    pca_samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    ipca_model = PCAModel(pca_samples[:3], centre=False)
    ipca_model.increment(pca_samples[3:6])
    ipca_model.increment(pca_samples[6:])

    bpca_model = PCAModel(pca_samples, centre=False)

    assert_almost_equal(np.abs(ipca_model.components),
                        np.abs(bpca_model.components))
    assert_almost_equal(ipca_model.eigenvalues, bpca_model.eigenvalues)
    assert_almost_equal(ipca_model.mean_vector, bpca_model.mean_vector)
开发者ID:OlivierML,项目名称:menpo,代码行数:12,代码来源:test_model.py


示例6: __init__

    def __init__(self, data, max_n_components=None):
        if isinstance(data, PCAModel):
            shape_model = data
        else:
            aligned_shapes = align_shapes(data)
            shape_model = PCAModel(aligned_shapes)

        if max_n_components is not None:
            shape_model.trim_components(max_n_components)
        super(PDM, self).__init__(shape_model)
        # Default target is the mean
        self._target = self.model.mean()
开发者ID:lydonchandra,项目名称:menpofit,代码行数:12,代码来源:modelinstance.py


示例7: test_pca_n_active_components_too_many

def test_pca_n_active_components_too_many():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # too many components
    model.n_active_components = 100
    assert_equal(model.n_active_components, 9)
    # reset too smaller number of components
    model.n_active_components = 5
    assert_equal(model.n_active_components, 5)
    # reset to too many components
    model.n_active_components = 100
    assert_equal(model.n_active_components, 9)
开发者ID:OlivierML,项目名称:menpo,代码行数:12,代码来源:test_model.py


示例8: test_pca_variance_after_trim

def test_pca_variance_after_trim():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # set number of active components
    model.trim_components(5)
    # kept variance must be smaller than total variance
    assert(model.variance() < model.original_variance())
    # kept variance ratio must be smaller than 1.0
    assert(model.variance_ratio() < 1.0)
    # noise variance must be bigger than 0.0
    assert(model.noise_variance() > 0.0)
    # noise variance ratio must also be bigger than 0.0
    assert(model.noise_variance_ratio() > 0.0)
    # inverse noise variance is computable
    assert(model.inverse_noise_variance() == 1 / model.noise_variance())
开发者ID:OlivierML,项目名称:menpo,代码行数:15,代码来源:test_model.py


示例9: _build_appearance_model_full

def _build_appearance_model_full(all_patches, n_appearance_parameters,
                                 level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution'.format(level_str))

    # apply pca
    appearance_model = PCAModel(all_patches)

    # trim components
    if n_appearance_parameters is not None:
        appearance_model.trim_components(n_appearance_parameters)

    # get mean appearance vector
    app_mean = appearance_model.mean().as_vector()

    # compute covariance matrix
    app_cov = appearance_model.components.T.dot(np.diag(1/appearance_model.eigenvalues)).dot(appearance_model.components)

    return app_mean, app_cov
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:20,代码来源:builder.py


示例10: _build_appearance_model_full

def _build_appearance_model_full(all_patches, n_appearance_parameters,
                                 patches_len, level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution'.format(level_str))

    # get mean appearance vector
    n_images = len(all_patches)
    tmp = np.empty((patches_len, n_images))
    for c, i in enumerate(all_patches):
        tmp[..., c] = vectorize_patches_image(i)
    app_mean = np.mean(tmp, axis=1)

    # apply pca
    appearance_model = PCAModel(all_patches)

    # trim components
    if n_appearance_parameters is not None:
        appearance_model.trim_components(n_appearance_parameters)

    # compute covariance matrix
    app_cov = appearance_model.components.T.dot(np.diag(1/appearance_model.eigenvalues)).dot(appearance_model.components)

    return app_mean, app_cov
开发者ID:nontas,项目名称:antonakoscvpr2015,代码行数:24,代码来源:builder.py


示例11: _build_appearance_model_full_yorgos

def _build_appearance_model_full_yorgos(all_patches, n_appearance_parameters,
                                        patches_image_shape, level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution'.format(level_str))

    # get mean appearance vector
    n_images = len(all_patches)
    tmp = np.empty(patches_image_shape + (n_images,))
    for c, i in enumerate(all_patches):
        tmp[..., c] = i.pixels
    app_mean = np.mean(tmp, axis=-1)

    # apply pca
    appearance_model = PCAModel(all_patches)

    # trim components
    if n_appearance_parameters is not None:
        appearance_model.trim_components(n_appearance_parameters)

    # compute covariance matrix
    app_cov = np.eye(appearance_model.n_features, appearance_model.n_features) - appearance_model.components.T.dot(appearance_model.components)

    return app_mean, app_cov
开发者ID:nontas,项目名称:antonakoscvpr2015,代码行数:24,代码来源:builder.py


示例12: test_pca_variance

def test_pca_variance():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # kept variance must be equal to total variance
    assert_equal(model.variance(), model.original_variance())
    # kept variance ratio must be 1.0
    assert_equal(model.variance_ratio(), 1.0)
    # noise variance must be 0.0
    assert_equal(model.noise_variance(), 0.0)
    # noise variance ratio must be also 0.0
    assert_equal(model.noise_variance_ratio(), 0.0)
开发者ID:kritsong,项目名称:menpo,代码行数:11,代码来源:test_model.py


示例13: test_pca_trim_variance_limit

def test_pca_trim_variance_limit():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # impossible to keep more than 1.0 ratio variance
    model.trim_components(2.5)
开发者ID:OlivierML,项目名称:menpo,代码行数:5,代码来源:test_model.py


示例14: aam_builder


#.........这里部分代码省略.........
    shapes = [i.landmarks[group][label].lms for i in images]
    reference_shape = mean_pointcloud(shapes)
    if diagonal_range:
        x, y = reference_shape.range()
        scale = diagonal_range / np.sqrt(x**2 + y**2)
        Scale(scale, reference_shape.n_dims).apply_inplace(reference_shape)
    images = [i.rescale_to_reference_shape(reference_shape, group=group,
                                           label=label,
                                           interpolator=interpolator)
              for i in images]

    if scaled_reference_frames:
        print '- Setting gaussian smoothing generators'
        generator = [i.smoothing_pyramid(n_levels=n_levels,
                                         downscale=downscale)
                     for i in images]
    else:
        print '- Setting gaussian pyramid generators'
        generator = [i.gaussian_pyramid(n_levels=n_levels,
                                        downscale=downscale)
                     for i in images]

    print '- Building model pyramids'
    shape_models = []
    appearance_models = []
    # for each level
    for j in np.arange(n_levels):
        print ' - Level {}'.format(j)

        print '  - Computing feature_type'
        images = [compute_features(g.next(), feature_type) for g in generator]
        # extract potentially rescaled shapes
        shapes = [i.landmarks[group][label].lms for i in images]

        if scaled_reference_frames or j == 0:
            print '  - Building shape model'
            if j != 0:
                shapes = [Scale(1/downscale, n_dims=shapes[0].n_dims).apply(s)
                          for s in shapes]
            # centralize shapes
            centered_shapes = [Translation(-s.centre).apply(s) for s in shapes]
            # align centralized shape using Procrustes Analysis
            gpa = GeneralizedProcrustesAnalysis(centered_shapes)
            aligned_shapes = [s.aligned_source for s in gpa.transforms]

            # build shape model
            shape_model = PCAModel(aligned_shapes)
            if max_shape_components is not None:
                # trim shape model if required
                shape_model.trim_components(max_shape_components)

            print '  - Building reference frame'
            mean_shape = mean_pointcloud(aligned_shapes)
            if patch_size is not None:
                # build patch based reference frame
                reference_frame = build_patch_reference_frame(
                    mean_shape, boundary=boundary, patch_size=patch_size)
            else:
                # build reference frame
                reference_frame = build_reference_frame(
                    mean_shape, boundary=boundary, trilist=trilist)

        # add shape model to the list
        shape_models.append(shape_model)

        print '  - Computing transforms'
        transforms = [transform_cls(reference_frame.landmarks['source'].lms,
                                    i.landmarks[group][label].lms)
                      for i in images]

        print '  - Warping images'
        images = [i.warp_to(reference_frame.mask, t,
                            interpolator=interpolator)
                  for i, t in zip(images, transforms)]

        for i in images:
            i.landmarks['source'] = reference_frame.landmarks['source']
        if patch_size:
            for i in images:
                i.build_mask_around_landmarks(patch_size, group='source')
        else:
            for i in images:
                i.constrain_mask_to_landmarks(group='source', trilist=trilist)

        print '  - Building appearance model'
        appearance_model = PCAModel(images)
        # trim appearance model if required
        if max_appearance_components is not None:
            appearance_model.trim_components(max_appearance_components)

        # add appearance model to the list
        appearance_models.append(appearance_model)

    # reverse the list of shape and appearance models so that they are
    # ordered from lower to higher resolution
    shape_models.reverse()
    appearance_models.reverse()

    return AAM(shape_models, appearance_models, transform_cls, feature_type,
               reference_shape, downscale, patch_size, interpolator)
开发者ID:ikassi,项目名称:menpo,代码行数:101,代码来源:base.py


示例15: test_pca_init_from_covariance

def test_pca_init_from_covariance():
    n_samples = 30
    n_features = 10
    n_dims = 2
    centre_values = [True, False]
    for centre in centre_values:
        # generate samples list and convert it to nd.array
        samples = [PointCloud(np.random.randn(n_features, n_dims))
                   for _ in range(n_samples)]
        data, template = as_matrix(samples, return_template=True)
        # compute covariance matrix and mean
        if centre:
            mean_vector = np.mean(data, axis=0)
            mean = template.from_vector(mean_vector)
            X = data - mean_vector
            C = np.dot(X.T, X) / (n_samples - 1)
        else:
            mean = samples[0]
            C = np.dot(data.T, data) / (n_samples - 1)
        # create the 2 pca models
        pca1 = PCAModel.init_from_covariance_matrix(C, mean,
                                                    centred=centre,
                                                    n_samples=n_samples)
        pca2 = PCAModel(samples, centre=centre)
        # compare them
        assert_array_almost_equal(pca1.component_vector(0, with_mean=False),
                                  pca2.component_vector(0, with_mean=False))
        assert_array_almost_equal(pca1.component(7).as_vector(),
                                  pca2.component(7).as_vector())
        assert_array_almost_equal(pca1.components, pca2.components)
        assert_array_almost_equal(pca1.eigenvalues, pca2.eigenvalues)
        assert_array_almost_equal(pca1.eigenvalues_cumulative_ratio(),
                                  pca2.eigenvalues_cumulative_ratio())
        assert_array_almost_equal(pca1.eigenvalues_ratio(),
                                  pca2.eigenvalues_ratio())
        weights = np.random.randn(pca1.n_active_components)
        assert_array_almost_equal(pca1.instance(weights).as_vector(),
                                  pca2.instance(weights).as_vector())
        weights2 = np.random.randn(pca1.n_active_components - 4)
        assert_array_almost_equal(pca1.instance_vector(weights2),
                                  pca2.instance_vector(weights2))
        assert_array_almost_equal(pca1.mean().as_vector(),
                                  pca2.mean().as_vector())
        assert_array_almost_equal(pca1.mean_vector,
                                  pca2.mean_vector)
        assert(pca1.n_active_components == pca2.n_active_components)
        assert(pca1.n_components == pca2.n_components)
        assert(pca1.n_features == pca2.n_features)
        assert(pca1.n_samples == pca2.n_samples)
        assert(pca1.noise_variance() == pca2.noise_variance())
        assert(pca1.noise_variance_ratio() == pca2.noise_variance_ratio())
        assert_almost_equal(pca1.variance(), pca2.variance())
        assert_almost_equal(pca1.variance_ratio(), pca2.variance_ratio())
        assert_array_almost_equal(pca1.whitened_components(),
                                  pca2.whitened_components())
开发者ID:kritsong,项目名称:menpo,代码行数:55,代码来源:test_model.py


示例16: test_pca_inverse_noise_variance

def test_pca_inverse_noise_variance():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # inverse noise_variance it's not computable
    model.inverse_noise_variance()
开发者ID:kritsong,项目名称:menpo,代码行数:5,代码来源:test_model.py


示例17: test_pca_trim_negative_float

def test_pca_trim_negative_float():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # no negative number of components
    model.trim_components(-2)
开发者ID:kritsong,项目名称:menpo,代码行数:5,代码来源:test_model.py


示例18: build

    def build(self, images, group=None, label=None, verbose=False, **kwargs):
        # compute reference shape
        reference_shape = self._compute_reference_shape(images, group, label,
                                                        verbose)
        # normalize images
        images = self._normalize_images(images, group, label, reference_shape,
                                        verbose)

        # build models at each scale
        if verbose:
            print_dynamic('- Building models\n')
        shape_models = []
        appearance_models = []
        classifiers = []
        # for each pyramid level (high --> low)
        for j, s in enumerate(self.scales):
            if verbose:
                if len(self.scales) > 1:
                    level_str = '  - Level {}: '.format(j)
                else:
                    level_str = '  - '

            # obtain image representation
            if j == 0:
                # compute features at highest level
                feature_images = self._compute_features(images, level_str,
                                                        verbose)
                level_images = feature_images
            elif self.scale_features:
                # scale features at other levels
                level_images = self._scale_images(feature_images, s,
                                                  level_str, verbose)
            else:
                # scale images and compute features at other levels
                scaled_images = self._scale_images(images, s, level_str,
                                                   verbose)
                level_images = self._compute_features(scaled_images,
                                                      level_str, verbose)

            # extract potentially rescaled shapes ath highest level
            level_shapes = [i.landmarks[group][label]
                            for i in level_images]

            # obtain shape representation
            if j == 0 or self.scale_shapes:
                # obtain shape model
                if verbose:
                    print_dynamic('{}Building shape model'.format(level_str))
                shape_model = self._build_shape_model(
                    level_shapes, self.max_shape_components)
                # add shape model to the list
                shape_models.append(shape_model)
            else:
                # copy precious shape model and add it to the list
                shape_models.append(deepcopy(shape_model))

            # obtain warped images
            warped_images = self._warp_images(level_images, level_shapes,
                                              shape_model.mean(), level_str,
                                              verbose)

            # obtain appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(level_str))
            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components is not None:
                appearance_model.trim_components(
                    self.max_appearance_components)
            # add appearance model to the list
            appearance_models.append(appearance_model)

            if isinstance(self, GlobalUnifiedBuilder):
                # obtain parts images
                parts_images = self._parts_images(level_images, level_shapes,
                                                  level_str, verbose)
            else:
                # parts images are warped images
                parts_images = warped_images

            # build desired responses
            mvn = multivariate_normal(mean=np.zeros(2), cov=self.covariance)
            grid = build_sampling_grid(self.parts_shape)
            Y = [mvn.pdf(grid + offset) for offset in self.offsets]

            # build classifiers
            n_landmarks = level_shapes[0].n_points
            level_classifiers = []
            for l in range(n_landmarks):
                if verbose:
                    print_dynamic('{}Building classifiers - {}'.format(
                        level_str,
                        progress_bar_str((l + 1.) / n_landmarks,
                                         show_bar=False)))

                X = [i.pixels[l] for i in parts_images]

                clf = self.classifier(X, Y, **kwargs)
                level_classifiers.append(clf)

#.........这里部分代码省略.........
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:101,代码来源:builder.py


示例19: build


#.........这里部分代码省略.........
                print_dynamic('- Building model\n')

        shape_models = []
        appearance_models = []
        # for each pyramid level (high --> low)
        for j in range(self.n_levels):
            # since models are built from highest to lowest level, the
            # parameters in form of list need to use a reversed index
            rj = self.n_levels - j - 1

            if verbose:
                level_str = '  - '
                if self.n_levels > 1:
                    level_str = '  - Level {}: '.format(j + 1)

            # get feature images of current level
            feature_images = []
            for c, g in enumerate(generators):
                if verbose:
                    print_dynamic(
                        '{}Computing feature space/rescaling - {}'.format(
                        level_str,
                        progress_bar_str((c + 1.) / len(generators),
                                         show_bar=False)))
                feature_images.append(next(g))

            # extract potentially rescaled shapes
            shapes = [i.landmarks[group][label] for i in feature_images]

            # define shapes that will be used for training
            if j == 0:
                original_shapes = shapes
                train_shapes = shapes
            else:
                if self.scaled_shape_models:
                    train_shapes = shapes
                else:
                    train_shapes = original_shapes

            # train shape model and find reference frame
            if verbose:
                print_dynamic('{}Building shape model'.format(level_str))
            shape_model = build_shape_model(
                train_shapes, self.max_shape_components[rj])
            reference_frame = self._build_reference_frame(shape_model.mean())

            # add shape model to the list
            shape_models.append(shape_model)

            # compute transforms
            if verbose:
                print_dynamic('{}Computing transforms'.format(level_str))


            # Create a dummy initial transform
            s_to_t_transform = self.transform(
                reference_frame.landmarks['source'].lms,
                reference_frame.landmarks['source'].lms)

            # warp images to reference frame
            warped_images = []
            for c, i in enumerate(feature_images):
                if verbose:
                    print_dynamic('{}Warping images - {}'.format(
                        level_str,
                        progress_bar_str(float(c + 1) / len(feature_images),
                                         show_bar=False)))
                # Setting the target can be significantly faster for transforms
                # such as CachedPiecewiseAffine
                s_to_t_transform.set_target(i.landmarks[group][label])
                warped_images.append(i.warp_to_mask(reference_frame.mask,
                                                    s_to_t_transform))

            # attach reference_frame to images' source shape
            for i in warped_images:
                i.landmarks['source'] = reference_frame.landmarks['source']

            # build appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(level_str))
            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components[rj] is not None:
                appearance_model.trim_components(
                    self.max_appearance_components[rj])

            # add appearance model to the list
            appearance_models.append(appearance_model)

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of shape and appearance models so that they are
        # ordered from lower to higher resolution
        shape_models.reverse()
        appearance_models.reverse()
        n_training_images = len(images)

        return self._build_aam(shape_models, appearance_models,
                               n_training_images)
开发者ID:OlivierML,项目名称:menpofit,代码行数:101,代码来源:builder.py


示例20: _train_batch

    def _train_batch(self, image_batch, increment=False, group=None,
                     verbose=False, shape_forgetting_factor=1.0,
                     appearance_forgetting_factor=1.0):
        r"""
        Builds an Active Appearance Model from a list of landmarked images.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images from which to build the AAM.
        group : `string`, optional
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.
        verbose : `boolean`, optional
            Flag that controls information and progress printing.

        Returns
        -------
        aam : :map:`AAM`
            The AAM object. Shape and appearance models are stored from
            lowest to highest scale
        """
        # Rescale to existing reference shape
        image_batch = rescale_images_to_reference_shape(
            image_batch, group, self.reference_shape,
            verbose=verbose)

        # build models at each scale
        if verbose:
            print_dynamic('- Building models\n')

        feature_images = []
        # for each scale (low --> high)
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # Handle holistic features
            if j == 0 and self.holistic_features[j] == no_op:
                # Saves a lot of memory
                feature_images = image_batch
            elif j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features(image_batch,
                                                  self.holistic_features[j],
                                                  prefix=scale_prefix,
                                                  verbose=verbose)
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
            else:
                scaled_images = feature_images

            # Extract potentially rescaled shapes
            scale_shapes = [i.landmarks[group].lms for i in scaled_images]

            # Build the shape model
            if verbose:
                print_dynamic('{}Building shape model'.format(scale_prefix))

            if not increment:
                if j == 0:
                    shape_model = self._build_shape_model(
                        scale_shapes, j)
                    self.shape_models.append(shape_model)
                else:
                    self.shape_models.append(deepcopy(shape_model))
            else:
                self._increment_shape_model(
                    scale_shapes,  self.shape_models[j],
                    forgetting_factor=shape_forgetting_factor)

            # Obtain warped images - we use a scaled version of the
            # reference shape, computed here. This is because the mean
            # moves when we are incrementing, and we need a consistent
            # reference frame.
            scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(
                self.reference_shape)
            warped_images = self._warp_images(scaled_images, scale_shapes,
                                              scaled_reference_shape,
                                              j, scale_prefix, verbose)

            # obtain appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(
                    scale_prefix))

            if not increment:
                appearance_model = PCAModel(warped_images)
                # trim appearance model if required
#.........这里部分代码省略.........
开发者ID:HaoyangWang,项目名称:menpofit,代码行数:101,代码来源:base.py



注:本文中的menpo.model.PCAModel类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python shape.LabelledPointUndirectedGraph类代码示例发布时间:2022-05-27
下一篇:
Python io.import_landmark_file函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap