本文整理汇总了Python中menpo.model.PCAModel类的典型用法代码示例。如果您正苦于以下问题:Python PCAModel类的具体用法?Python PCAModel怎么用?Python PCAModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PCAModel类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _build_shape_model
def _build_shape_model(cls, shapes, max_components):
r"""
Builds a shape model given a set of shapes.
Parameters
----------
shapes: list of :map:`PointCloud`
The set of shapes from which to build the model.
max_components: None or int or float
Specifies the number of components of the trained shape model.
If int, it specifies the exact number of components to be retained.
If float, it specifies the percentage of variance to be retained.
If None, all the available components are kept (100% of variance).
Returns
-------
shape_model: :class:`menpo.model.pca`
The PCA shape model.
"""
# centralize shapes
centered_shapes = [Translation(-s.centre()).apply(s) for s in shapes]
# align centralized shape using Procrustes Analysis
gpa = GeneralizedProcrustesAnalysis(centered_shapes)
aligned_shapes = [s.aligned_source() for s in gpa.transforms]
# build shape model
shape_model = PCAModel(aligned_shapes)
if max_components is not None:
# trim shape model if required
shape_model.trim_components(max_components)
return shape_model
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:32,代码来源:builder.py
示例2: test_pca_trim
def test_pca_trim():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# trim components
model.trim_components(5)
# number of active components should be the same as number of components
assert_equal(model.n_active_components, model.n_components)
开发者ID:kritsong,项目名称:menpo,代码行数:7,代码来源:test_model.py
示例3: _build_shape_model
def _build_shape_model(shapes, max_components):
r"""
Builds a shape model given a set of shapes.
Parameters
----------
shapes: list of :map:`PointCloud`
The set of shapes from which to build the model.
max_components: None or int or float
Specifies the number of components of the trained shape model.
If int, it specifies the exact number of components to be retained.
If float, it specifies the percentage of variance to be retained.
If None, all the available components are kept (100% of variance).
Returns
-------
shape_model: :class:`menpo.model.pca`
The PCA shape model.
"""
# build shape model
shape_model = PCAModel(shapes)
if max_components is not None:
# trim shape model if required
shape_model.trim_components(max_components)
return shape_model
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:26,代码来源:builder.py
示例4: test_pca_orthogonalize_against
def test_pca_orthogonalize_against():
pca_samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
pca_model = PCAModel(pca_samples)
lm_samples = np.asarray([np.random.randn(10) for _ in range(4)])
lm_model = LinearModel(np.asarray(lm_samples))
# orthogonalize
pca_model.orthonormalize_against_inplace(lm_model)
# number of active components must remain the same
assert_equal(pca_model.n_active_components, 6)
开发者ID:OlivierML,项目名称:menpo,代码行数:9,代码来源:test_model.py
示例5: test_pca_increment_noncentred
def test_pca_increment_noncentred():
pca_samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
ipca_model = PCAModel(pca_samples[:3], centre=False)
ipca_model.increment(pca_samples[3:6])
ipca_model.increment(pca_samples[6:])
bpca_model = PCAModel(pca_samples, centre=False)
assert_almost_equal(np.abs(ipca_model.components),
np.abs(bpca_model.components))
assert_almost_equal(ipca_model.eigenvalues, bpca_model.eigenvalues)
assert_almost_equal(ipca_model.mean_vector, bpca_model.mean_vector)
开发者ID:OlivierML,项目名称:menpo,代码行数:12,代码来源:test_model.py
示例6: __init__
def __init__(self, data, max_n_components=None):
if isinstance(data, PCAModel):
shape_model = data
else:
aligned_shapes = align_shapes(data)
shape_model = PCAModel(aligned_shapes)
if max_n_components is not None:
shape_model.trim_components(max_n_components)
super(PDM, self).__init__(shape_model)
# Default target is the mean
self._target = self.model.mean()
开发者ID:lydonchandra,项目名称:menpofit,代码行数:12,代码来源:modelinstance.py
示例7: test_pca_n_active_components_too_many
def test_pca_n_active_components_too_many():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# too many components
model.n_active_components = 100
assert_equal(model.n_active_components, 9)
# reset too smaller number of components
model.n_active_components = 5
assert_equal(model.n_active_components, 5)
# reset to too many components
model.n_active_components = 100
assert_equal(model.n_active_components, 9)
开发者ID:OlivierML,项目名称:menpo,代码行数:12,代码来源:test_model.py
示例8: test_pca_variance_after_trim
def test_pca_variance_after_trim():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# set number of active components
model.trim_components(5)
# kept variance must be smaller than total variance
assert(model.variance() < model.original_variance())
# kept variance ratio must be smaller than 1.0
assert(model.variance_ratio() < 1.0)
# noise variance must be bigger than 0.0
assert(model.noise_variance() > 0.0)
# noise variance ratio must also be bigger than 0.0
assert(model.noise_variance_ratio() > 0.0)
# inverse noise variance is computable
assert(model.inverse_noise_variance() == 1 / model.noise_variance())
开发者ID:OlivierML,项目名称:menpo,代码行数:15,代码来源:test_model.py
示例9: _build_appearance_model_full
def _build_appearance_model_full(all_patches, n_appearance_parameters,
level_str, verbose):
# build appearance model
if verbose:
print_dynamic('{}Training appearance distribution'.format(level_str))
# apply pca
appearance_model = PCAModel(all_patches)
# trim components
if n_appearance_parameters is not None:
appearance_model.trim_components(n_appearance_parameters)
# get mean appearance vector
app_mean = appearance_model.mean().as_vector()
# compute covariance matrix
app_cov = appearance_model.components.T.dot(np.diag(1/appearance_model.eigenvalues)).dot(appearance_model.components)
return app_mean, app_cov
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:20,代码来源:builder.py
示例10: _build_appearance_model_full
def _build_appearance_model_full(all_patches, n_appearance_parameters,
patches_len, level_str, verbose):
# build appearance model
if verbose:
print_dynamic('{}Training appearance distribution'.format(level_str))
# get mean appearance vector
n_images = len(all_patches)
tmp = np.empty((patches_len, n_images))
for c, i in enumerate(all_patches):
tmp[..., c] = vectorize_patches_image(i)
app_mean = np.mean(tmp, axis=1)
# apply pca
appearance_model = PCAModel(all_patches)
# trim components
if n_appearance_parameters is not None:
appearance_model.trim_components(n_appearance_parameters)
# compute covariance matrix
app_cov = appearance_model.components.T.dot(np.diag(1/appearance_model.eigenvalues)).dot(appearance_model.components)
return app_mean, app_cov
开发者ID:nontas,项目名称:antonakoscvpr2015,代码行数:24,代码来源:builder.py
示例11: _build_appearance_model_full_yorgos
def _build_appearance_model_full_yorgos(all_patches, n_appearance_parameters,
patches_image_shape, level_str, verbose):
# build appearance model
if verbose:
print_dynamic('{}Training appearance distribution'.format(level_str))
# get mean appearance vector
n_images = len(all_patches)
tmp = np.empty(patches_image_shape + (n_images,))
for c, i in enumerate(all_patches):
tmp[..., c] = i.pixels
app_mean = np.mean(tmp, axis=-1)
# apply pca
appearance_model = PCAModel(all_patches)
# trim components
if n_appearance_parameters is not None:
appearance_model.trim_components(n_appearance_parameters)
# compute covariance matrix
app_cov = np.eye(appearance_model.n_features, appearance_model.n_features) - appearance_model.components.T.dot(appearance_model.components)
return app_mean, app_cov
开发者ID:nontas,项目名称:antonakoscvpr2015,代码行数:24,代码来源:builder.py
示例12: test_pca_variance
def test_pca_variance():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# kept variance must be equal to total variance
assert_equal(model.variance(), model.original_variance())
# kept variance ratio must be 1.0
assert_equal(model.variance_ratio(), 1.0)
# noise variance must be 0.0
assert_equal(model.noise_variance(), 0.0)
# noise variance ratio must be also 0.0
assert_equal(model.noise_variance_ratio(), 0.0)
开发者ID:kritsong,项目名称:menpo,代码行数:11,代码来源:test_model.py
示例13: test_pca_trim_variance_limit
def test_pca_trim_variance_limit():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# impossible to keep more than 1.0 ratio variance
model.trim_components(2.5)
开发者ID:OlivierML,项目名称:menpo,代码行数:5,代码来源:test_model.py
示例14: aam_builder
#.........这里部分代码省略.........
shapes = [i.landmarks[group][label].lms for i in images]
reference_shape = mean_pointcloud(shapes)
if diagonal_range:
x, y = reference_shape.range()
scale = diagonal_range / np.sqrt(x**2 + y**2)
Scale(scale, reference_shape.n_dims).apply_inplace(reference_shape)
images = [i.rescale_to_reference_shape(reference_shape, group=group,
label=label,
interpolator=interpolator)
for i in images]
if scaled_reference_frames:
print '- Setting gaussian smoothing generators'
generator = [i.smoothing_pyramid(n_levels=n_levels,
downscale=downscale)
for i in images]
else:
print '- Setting gaussian pyramid generators'
generator = [i.gaussian_pyramid(n_levels=n_levels,
downscale=downscale)
for i in images]
print '- Building model pyramids'
shape_models = []
appearance_models = []
# for each level
for j in np.arange(n_levels):
print ' - Level {}'.format(j)
print ' - Computing feature_type'
images = [compute_features(g.next(), feature_type) for g in generator]
# extract potentially rescaled shapes
shapes = [i.landmarks[group][label].lms for i in images]
if scaled_reference_frames or j == 0:
print ' - Building shape model'
if j != 0:
shapes = [Scale(1/downscale, n_dims=shapes[0].n_dims).apply(s)
for s in shapes]
# centralize shapes
centered_shapes = [Translation(-s.centre).apply(s) for s in shapes]
# align centralized shape using Procrustes Analysis
gpa = GeneralizedProcrustesAnalysis(centered_shapes)
aligned_shapes = [s.aligned_source for s in gpa.transforms]
# build shape model
shape_model = PCAModel(aligned_shapes)
if max_shape_components is not None:
# trim shape model if required
shape_model.trim_components(max_shape_components)
print ' - Building reference frame'
mean_shape = mean_pointcloud(aligned_shapes)
if patch_size is not None:
# build patch based reference frame
reference_frame = build_patch_reference_frame(
mean_shape, boundary=boundary, patch_size=patch_size)
else:
# build reference frame
reference_frame = build_reference_frame(
mean_shape, boundary=boundary, trilist=trilist)
# add shape model to the list
shape_models.append(shape_model)
print ' - Computing transforms'
transforms = [transform_cls(reference_frame.landmarks['source'].lms,
i.landmarks[group][label].lms)
for i in images]
print ' - Warping images'
images = [i.warp_to(reference_frame.mask, t,
interpolator=interpolator)
for i, t in zip(images, transforms)]
for i in images:
i.landmarks['source'] = reference_frame.landmarks['source']
if patch_size:
for i in images:
i.build_mask_around_landmarks(patch_size, group='source')
else:
for i in images:
i.constrain_mask_to_landmarks(group='source', trilist=trilist)
print ' - Building appearance model'
appearance_model = PCAModel(images)
# trim appearance model if required
if max_appearance_components is not None:
appearance_model.trim_components(max_appearance_components)
# add appearance model to the list
appearance_models.append(appearance_model)
# reverse the list of shape and appearance models so that they are
# ordered from lower to higher resolution
shape_models.reverse()
appearance_models.reverse()
return AAM(shape_models, appearance_models, transform_cls, feature_type,
reference_shape, downscale, patch_size, interpolator)
开发者ID:ikassi,项目名称:menpo,代码行数:101,代码来源:base.py
示例15: test_pca_init_from_covariance
def test_pca_init_from_covariance():
n_samples = 30
n_features = 10
n_dims = 2
centre_values = [True, False]
for centre in centre_values:
# generate samples list and convert it to nd.array
samples = [PointCloud(np.random.randn(n_features, n_dims))
for _ in range(n_samples)]
data, template = as_matrix(samples, return_template=True)
# compute covariance matrix and mean
if centre:
mean_vector = np.mean(data, axis=0)
mean = template.from_vector(mean_vector)
X = data - mean_vector
C = np.dot(X.T, X) / (n_samples - 1)
else:
mean = samples[0]
C = np.dot(data.T, data) / (n_samples - 1)
# create the 2 pca models
pca1 = PCAModel.init_from_covariance_matrix(C, mean,
centred=centre,
n_samples=n_samples)
pca2 = PCAModel(samples, centre=centre)
# compare them
assert_array_almost_equal(pca1.component_vector(0, with_mean=False),
pca2.component_vector(0, with_mean=False))
assert_array_almost_equal(pca1.component(7).as_vector(),
pca2.component(7).as_vector())
assert_array_almost_equal(pca1.components, pca2.components)
assert_array_almost_equal(pca1.eigenvalues, pca2.eigenvalues)
assert_array_almost_equal(pca1.eigenvalues_cumulative_ratio(),
pca2.eigenvalues_cumulative_ratio())
assert_array_almost_equal(pca1.eigenvalues_ratio(),
pca2.eigenvalues_ratio())
weights = np.random.randn(pca1.n_active_components)
assert_array_almost_equal(pca1.instance(weights).as_vector(),
pca2.instance(weights).as_vector())
weights2 = np.random.randn(pca1.n_active_components - 4)
assert_array_almost_equal(pca1.instance_vector(weights2),
pca2.instance_vector(weights2))
assert_array_almost_equal(pca1.mean().as_vector(),
pca2.mean().as_vector())
assert_array_almost_equal(pca1.mean_vector,
pca2.mean_vector)
assert(pca1.n_active_components == pca2.n_active_components)
assert(pca1.n_components == pca2.n_components)
assert(pca1.n_features == pca2.n_features)
assert(pca1.n_samples == pca2.n_samples)
assert(pca1.noise_variance() == pca2.noise_variance())
assert(pca1.noise_variance_ratio() == pca2.noise_variance_ratio())
assert_almost_equal(pca1.variance(), pca2.variance())
assert_almost_equal(pca1.variance_ratio(), pca2.variance_ratio())
assert_array_almost_equal(pca1.whitened_components(),
pca2.whitened_components())
开发者ID:kritsong,项目名称:menpo,代码行数:55,代码来源:test_model.py
示例16: test_pca_inverse_noise_variance
def test_pca_inverse_noise_variance():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# inverse noise_variance it's not computable
model.inverse_noise_variance()
开发者ID:kritsong,项目名称:menpo,代码行数:5,代码来源:test_model.py
示例17: test_pca_trim_negative_float
def test_pca_trim_negative_float():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# no negative number of components
model.trim_components(-2)
开发者ID:kritsong,项目名称:menpo,代码行数:5,代码来源:test_model.py
示例18: build
def build(self, images, group=None, label=None, verbose=False, **kwargs):
# compute reference shape
reference_shape = self._compute_reference_shape(images, group, label,
verbose)
# normalize images
images = self._normalize_images(images, group, label, reference_shape,
verbose)
# build models at each scale
if verbose:
print_dynamic('- Building models\n')
shape_models = []
appearance_models = []
classifiers = []
# for each pyramid level (high --> low)
for j, s in enumerate(self.scales):
if verbose:
if len(self.scales) > 1:
level_str = ' - Level {}: '.format(j)
else:
level_str = ' - '
# obtain image representation
if j == 0:
# compute features at highest level
feature_images = self._compute_features(images, level_str,
verbose)
level_images = feature_images
elif self.scale_features:
# scale features at other levels
level_images = self._scale_images(feature_images, s,
level_str, verbose)
else:
# scale images and compute features at other levels
scaled_images = self._scale_images(images, s, level_str,
verbose)
level_images = self._compute_features(scaled_images,
level_str, verbose)
# extract potentially rescaled shapes ath highest level
level_shapes = [i.landmarks[group][label]
for i in level_images]
# obtain shape representation
if j == 0 or self.scale_shapes:
# obtain shape model
if verbose:
print_dynamic('{}Building shape model'.format(level_str))
shape_model = self._build_shape_model(
level_shapes, self.max_shape_components)
# add shape model to the list
shape_models.append(shape_model)
else:
# copy precious shape model and add it to the list
shape_models.append(deepcopy(shape_model))
# obtain warped images
warped_images = self._warp_images(level_images, level_shapes,
shape_model.mean(), level_str,
verbose)
# obtain appearance model
if verbose:
print_dynamic('{}Building appearance model'.format(level_str))
appearance_model = PCAModel(warped_images)
# trim appearance model if required
if self.max_appearance_components is not None:
appearance_model.trim_components(
self.max_appearance_components)
# add appearance model to the list
appearance_models.append(appearance_model)
if isinstance(self, GlobalUnifiedBuilder):
# obtain parts images
parts_images = self._parts_images(level_images, level_shapes,
level_str, verbose)
else:
# parts images are warped images
parts_images = warped_images
# build desired responses
mvn = multivariate_normal(mean=np.zeros(2), cov=self.covariance)
grid = build_sampling_grid(self.parts_shape)
Y = [mvn.pdf(grid + offset) for offset in self.offsets]
# build classifiers
n_landmarks = level_shapes[0].n_points
level_classifiers = []
for l in range(n_landmarks):
if verbose:
print_dynamic('{}Building classifiers - {}'.format(
level_str,
progress_bar_str((l + 1.) / n_landmarks,
show_bar=False)))
X = [i.pixels[l] for i in parts_images]
clf = self.classifier(X, Y, **kwargs)
level_classifiers.append(clf)
#.........这里部分代码省略.........
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:101,代码来源:builder.py
示例19: build
#.........这里部分代码省略.........
print_dynamic('- Building model\n')
shape_models = []
appearance_models = []
# for each pyramid level (high --> low)
for j in range(self.n_levels):
# since models are built from highest to lowest level, the
# parameters in form of list need to use a reversed index
rj = self.n_levels - j - 1
if verbose:
level_str = ' - '
if self.n_levels > 1:
level_str = ' - Level {}: '.format(j + 1)
# get feature images of current level
feature_images = []
for c, g in enumerate(generators):
if verbose:
print_dynamic(
'{}Computing feature space/rescaling - {}'.format(
level_str,
progress_bar_str((c + 1.) / len(generators),
show_bar=False)))
feature_images.append(next(g))
# extract potentially rescaled shapes
shapes = [i.landmarks[group][label] for i in feature_images]
# define shapes that will be used for training
if j == 0:
original_shapes = shapes
train_shapes = shapes
else:
if self.scaled_shape_models:
train_shapes = shapes
else:
train_shapes = original_shapes
# train shape model and find reference frame
if verbose:
print_dynamic('{}Building shape model'.format(level_str))
shape_model = build_shape_model(
train_shapes, self.max_shape_components[rj])
reference_frame = self._build_reference_frame(shape_model.mean())
# add shape model to the list
shape_models.append(shape_model)
# compute transforms
if verbose:
print_dynamic('{}Computing transforms'.format(level_str))
# Create a dummy initial transform
s_to_t_transform = self.transform(
reference_frame.landmarks['source'].lms,
reference_frame.landmarks['source'].lms)
# warp images to reference frame
warped_images = []
for c, i in enumerate(feature_images):
if verbose:
print_dynamic('{}Warping images - {}'.format(
level_str,
progress_bar_str(float(c + 1) / len(feature_images),
show_bar=False)))
# Setting the target can be significantly faster for transforms
# such as CachedPiecewiseAffine
s_to_t_transform.set_target(i.landmarks[group][label])
warped_images.append(i.warp_to_mask(reference_frame.mask,
s_to_t_transform))
# attach reference_frame to images' source shape
for i in warped_images:
i.landmarks['source'] = reference_frame.landmarks['source']
# build appearance model
if verbose:
print_dynamic('{}Building appearance model'.format(level_str))
appearance_model = PCAModel(warped_images)
# trim appearance model if required
if self.max_appearance_components[rj] is not None:
appearance_model.trim_components(
self.max_appearance_components[rj])
# add appearance model to the list
appearance_models.append(appearance_model)
if verbose:
print_dynamic('{}Done\n'.format(level_str))
# reverse the list of shape and appearance models so that they are
# ordered from lower to higher resolution
shape_models.reverse()
appearance_models.reverse()
n_training_images = len(images)
return self._build_aam(shape_models, appearance_models,
n_training_images)
开发者ID:OlivierML,项目名称:menpofit,代码行数:101,代码来源:builder.py
示例20: _train_batch
def _train_batch(self, image_batch, increment=False, group=None,
verbose=False, shape_forgetting_factor=1.0,
appearance_forgetting_factor=1.0):
r"""
Builds an Active Appearance Model from a list of landmarked images.
Parameters
----------
images : list of :map:`MaskedImage`
The set of landmarked images from which to build the AAM.
group : `string`, optional
The key of the landmark set that should be used. If ``None``,
and if there is only one set of landmarks, this set will be used.
verbose : `boolean`, optional
Flag that controls information and progress printing.
Returns
-------
aam : :map:`AAM`
The AAM object. Shape and appearance models are stored from
lowest to highest scale
"""
# Rescale to existing reference shape
image_batch = rescale_images_to_reference_shape(
image_batch, group, self.reference_shape,
verbose=verbose)
# build models at each scale
if verbose:
print_dynamic('- Building models\n')
feature_images = []
# for each scale (low --> high)
for j in range(self.n_scales):
if verbose:
if len(self.scales) > 1:
scale_prefix = ' - Scale {}: '.format(j)
else:
scale_prefix = ' - '
else:
scale_prefix = None
# Handle holistic features
if j == 0 and self.holistic_features[j] == no_op:
# Saves a lot of memory
feature_images = image_batch
elif j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
# Compute features only if this is the first pass through
# the loop or the features at this scale are different from
# the features at the previous scale
feature_images = compute_features(image_batch,
self.holistic_features[j],
prefix=scale_prefix,
verbose=verbose)
# handle scales
if self.scales[j] != 1:
# Scale feature images only if scale is different than 1
scaled_images = scale_images(feature_images, self.scales[j],
prefix=scale_prefix,
verbose=verbose)
else:
scaled_images = feature_images
# Extract potentially rescaled shapes
scale_shapes = [i.landmarks[group].lms for i in scaled_images]
# Build the shape model
if verbose:
print_dynamic('{}Building shape model'.format(scale_prefix))
if not increment:
if j == 0:
shape_model = self._build_shape_model(
scale_shapes, j)
self.shape_models.append(shape_model)
else:
self.shape_models.append(deepcopy(shape_model))
else:
self._increment_shape_model(
scale_shapes, self.shape_models[j],
forgetting_factor=shape_forgetting_factor)
# Obtain warped images - we use a scaled version of the
# reference shape, computed here. This is because the mean
# moves when we are incrementing, and we need a consistent
# reference frame.
scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(
self.reference_shape)
warped_images = self._warp_images(scaled_images, scale_shapes,
scaled_reference_shape,
j, scale_prefix, verbose)
# obtain appearance model
if verbose:
print_dynamic('{}Building appearance model'.format(
scale_prefix))
if not increment:
appearance_model = PCAModel(warped_images)
# trim appearance model if required
#.........这里部分代码省略.........
开发者ID:HaoyangWang,项目名称:menpofit,代码行数:101,代码来源:base.py
注:本文中的menpo.model.PCAModel类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论