• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python core.Logger类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中medpy.core.Logger的典型用法代码示例。如果您正苦于以下问题:Python Logger类的具体用法?Python Logger怎么用?Python Logger使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Logger类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: main

def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # load input image using nibabel
    logger.info('Loading image {}...'.format(args.input))
    image_labels_data, _ = load(args.image)    
    
    # load mask image
    logger.info('Loading mask {}...'.format(args.mask))
    image_mask_data, image_mask_data_header = load(args.mask)
    
    # check if output image exists
    if not args.force:
        if os.path.exists(args.output):
            logger.warning('The output image {} already exists. Skipping this image.'.format(args.output))
    
    # create a mask from the label image
    logger.info('Reducing the label image...')
    image_reduced_data = fit_labels_to_mask(image_labels_data, image_mask_data)
    
    # save resulting mask
    logger.info('Saving resulting mask as {} in the same format as input mask, only with data-type int8...'.format(args.output))
    image_reduced_data = image_reduced_data.astype(numpy.bool, copy=False) # bool sadly not recognized
    save(image_reduced_data, args.output, image_mask_data_header, args.force)
    
    logger.info('Successfully terminated.')
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:34,代码来源:medpy_reduce.py


示例2: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug:
        logger.setLevel(logging.DEBUG)
    elif args.verbose:
        logger.setLevel(logging.INFO)

    # check if output image exists
    if not args.force:
        if os.path.exists(args.output):
            logger.warning("The output image {} already exists. Exiting.".format(args.output))
            exit(-1)

    # load input image
    input_data, input_header = load(args.input)

    logger.debug("Old number of regions={}.".format(len(scipy.unique(input_data))))

    # cut and relabel along the required dimension
    logger.info("Cutting and relabeling...")
    dimensions = range(input_data.ndim)
    del dimensions[args.dimension]
    __split_along(input_data, dimensions)

    logger.debug("New number of regions={}.".format(len(scipy.unique(input_data))))

    # save result contour volume
    save(input_data, args.output, input_header, args.force)

    logger.info("Successfully terminated.")
开发者ID:tatafarewell,项目名称:medpy,代码行数:33,代码来源:discontinue_dimension.py


示例3: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # load input image
    data_input, header_input = load(args.input)
    
    # transform to uin8
    data_input = data_input.astype(scipy.uint8)
                                      
    # reduce to 3D, if larger dimensionality
    if data_input.ndim > 3:
        for _ in range(data_input.ndim - 3): data_input = data_input[...,0]
        
    # iter over slices (2D) until first with content is detected
    for plane in data_input:
        if scipy.any(plane):
            # set pixel spacing
            spacing = list(header.get_pixel_spacing(header_input))
            spacing = spacing[1:3]
            __update_header_from_array_nibabel(header_input, plane)
            header.set_pixel_spacing(header_input, spacing)
            # save image
            save(plane, args.output, header_input, args.force)
            break
    
    logger.info("Successfully terminated.")    
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:31,代码来源:extract_first_basal_slice.py


示例4: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # load input images
    input_data, input_header = load(args.input)
    original_data, _ = load(args.original)
    
    logger.debug('Old shape={}.'.format(input_data.shape))
    
    # compute position
    logger.info('Computing positon and pad volume...')
    position = __parse_contour_list(args.contours, input_data)
    
    # pad volume
    output_data = scipy.zeros(original_data.shape, input_data.dtype)
    output_data[position] = input_data
    
    
    logger.debug('New shape={}.'.format(input_data.shape))
    
    # save result contour volume
    save(output_data, args.output, input_header, args.force)

    logger.info("Successfully terminated.")
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:29,代码来源:pad_cut_by_contourfile.py


示例5: main

def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # check if output image exists (will also be performed before saving, but as the smoothing might be very time intensity, a initial check can save frustration)
    if not args.force:
        if os.path.exists(args.output):
            raise parser.error('The output image {} already exists.'.format(args.output))
    
    # loading image
    data_input, header_input = load(args.input)
    
    # apply the watershed
    logger.info('Applying anisotropic diffusion with settings: niter={} / kappa={} / gamma={}...'.format(args.iterations, args.kappa, args.gamma))
    data_output = anisotropic_diffusion(data_input, args.iterations, args.kappa, args.gamma, get_pixel_spacing(header_input))

    # save file
    save(data_output, args.output, header_input, args.force)
    
    logger.info('Successfully terminated.')
开发者ID:loli,项目名称:medpy,代码行数:27,代码来源:medpy_anisotropic_diffusion.py


示例6: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)  
    
    # constants
    colours = {'i': 10, 'o': 11}
    
    # load volumes
    marker_data, _ = load(args.marker)
    contour_data, _ = load(args.contour)
    
    # perform check
    contour_data = contour_data == colours[args.type]
    marker_data_fg = marker_data == 1
    marker_data_bg = marker_data == 2
    if scipy.logical_and(contour_data, marker_data_fg).any():
        logger.warning('Intersection between {} and {} (type {}) in foreground.'.format(args.marker, args.contour, args.type))
    elif scipy.logical_and(contour_data, marker_data_bg).any():
        logger.warning('Intersection between {} and {} (type {}) in background.'.format(args.marker, args.contour, args.type))
    else:
        print "No intersection."
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:25,代码来源:medpy_check_marker_intersection.py


示例7: main

def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
        
    # check if output image exists (will also be performed before saving, but as the gradient might be time intensity, a initial check can save frustration)
    if not args.force:
        if os.path.exists(args.output):
            raise ArgumentError('The output image {} already exists.'.format(args.output))        
        
    # loading image
    data_input, header_input = load(args.input)
    
    logger.debug('Input array: dtype={}, shape={}'.format(data_input.dtype, data_input.shape))
    
    # execute the gradient map filter
    logger.info('Applying gradient map filter...')
    data_output = filter.gradient_magnitude(data_input, header.get_pixel_spacing(header_input))
        
    logger.debug('Resulting array: dtype={}, shape={}'.format(data_output.dtype, data_output.shape))
    
    # save image
    save(data_output, args.output, header_input, args.force)
    
    logger.info('Successfully terminated.')
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:31,代码来源:medpy_itk_gradient.py


示例8: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug:
        logger.setLevel(logging.DEBUG)
    elif args.verbose:
        logger.setLevel(logging.INFO)

    # collect slice-wise results and compute average
    results_i, results_o = parseImageResults(args.score)
    results_i = splitResults(results_i)
    results_o = splitResults(results_o)

    # print results
    if args.csv:
        print "Inner contours"
        csvPrintResults(results_i)
        print "Outer contours"
        csvPrintResults(results_o)
    else:
        print "########## Inner contours ##########"
        prettyPrintResults(results_i)
        print "####################################"
        print

        print "########## Outer contours ##########"
        prettyPrintResults(results_o)
        print "####################################"
开发者ID:tatafarewell,项目名称:medpy,代码行数:30,代码来源:split_results.py


示例9: main

def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # check if output image already exists
    if not args.force:
        if os.path.exists(args.output):
            logger.warning('The output image {} already exists. Exiting.'.format(args.output))
            exit(-1)

    # load input image
    image_smoothed_data, image_header = load(args.input)
        
    # apply additional hole closing step
    logger.info('Closing holes...')
    def fun_holes(arr):
        return scipy.ndimage.morphology.binary_fill_holes(arr)
    xd_iterator(image_smoothed_data, (1, 2), fun_holes)
        
    # perform opening resp. closing
    # in 3D case: size 1 = 6-connectedness, 2 = 12-connectedness, 3 = 18-connectedness, etc.
    if 'erosion' == args.type:
        logger.info('Applying erosion...')
        def fun(arr):
            if 0 == args.iterations: return arr
            footprint = scipy.ndimage.morphology.generate_binary_structure(arr.ndim, args.size)
            return scipy.ndimage.morphology.binary_erosion(arr, footprint, iterations=args.iterations)
    elif 'dilation' == args.type:
        logger.info('Applying dilation...')
        def fun(arr):
            if 0 == args.iterations: return arr
            footprint = scipy.ndimage.morphology.generate_binary_structure(arr.ndim, args.size)
            return scipy.ndimage.morphology.binary_dilation(arr, footprint, iterations=args.iterations)
    elif 'opening' == args.type:
        logger.info('Applying opening...')
        def fun(arr):
            if 0 == args.iterations: return arr
            footprint = scipy.ndimage.morphology.generate_binary_structure(arr.ndim, args.size)
            return scipy.ndimage.morphology.binary_opening(arr, footprint, iterations=args.iterations)
    else: # closing
        logger.info('Applying closing...')
        def fun(arr):
            if 0 == args.iterations: return arr
            footprint = scipy.ndimage.morphology.generate_binary_structure(arr.ndim, args.size)
            return scipy.ndimage.morphology.binary_closing(arr, footprint, iterations=args.iterations)

    # iterate over slices and apply selected operation
    xd_iterator(image_smoothed_data, (1, 2), fun)

    # save resulting mas
    save(image_smoothed_data, args.output, image_header, args.force)
            
    logger.info('Successfully terminated.')
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:60,代码来源:morphology_sliced.py


示例10: main

def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # laod input image
    data_input, header_input = load(args.input)
    
#    # check if output image exists
#    if not args.force:
#        if os.path.exists(image_gradient_name):
#            logger.warning('The output image {} already exists. Skipping this step.'.format(image_gradient_name))
#            continue        
        
    # prepare result image
    data_output = scipy.zeros(data_input.shape, dtype=scipy.float32)
        
    # apply the gradient magnitude filter
    logger.info('Computing the gradient magnitude with Prewitt operator...')
    generic_gradient_magnitude(data_input, prewitt, output=data_output) # alternative to prewitt is sobel
        
    # save resulting mask
    save(data_output, args.output, header_input, args.force)
    
    logger.info('Successfully terminated.')
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:31,代码来源:medpy_gradient.py


示例11: zoom

def zoom(image, factor, dimension, hdr = False, order = 3):
    """
    Zooms the provided image by the supplied factor in the supplied dimension.
    The factor is an integer determining how many slices should be put between each
    existing pair.
    If an image header (hdr) is supplied, its voxel spacing gets updated.
    Returns the image and the updated header or false.
    """
    # check if supplied dimension is valid
    if dimension >= image.ndim:
        raise argparse.ArgumentError('The supplied zoom-dimension {} exceeds the image dimensionality of 0 to {}.'.format(dimension, image.ndim - 1))
    
    # get logger
    logger = Logger.getInstance()

    logger.debug('Old shape = {}.'.format(image.shape))

    # perform the zoom
    zoom = [1] * image.ndim
    zoom[dimension] = (image.shape[dimension] + (image.shape[dimension] - 1) * factor) / float(image.shape[dimension])
    logger.debug('Reshaping with = {}.'.format(zoom))
    image = interpolation.zoom(image, zoom, order=order)
        
    logger.debug('New shape = {}.'.format(image.shape))
    
    if hdr:
        new_spacing = list(header.get_pixel_spacing(hdr))
        new_spacing[dimension] = new_spacing[dimension] / float(factor + 1)
        logger.debug('Setting pixel spacing from {} to {}....'.format(header.get_pixel_spacing(hdr), new_spacing))
        header.set_pixel_spacing(hdr, tuple(new_spacing))
    
    return image, hdr
开发者ID:loli,项目名称:medpy,代码行数:32,代码来源:medpy_zoom_image.py


示例12: main

def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)

    # prepare logger
    logger = Logger.getInstance()
    if args.debug:
        logger.setLevel(logging.DEBUG)
    elif args.verbose:
        logger.setLevel(logging.INFO)

    # check if output image exists (will also be performed before saving, but as the watershed might be very time intensity, a initial check can save frustration)
    if not args.force:
        if os.path.exists(args.output):
            raise ArgumentError("The output image {} already exists.".format(args.output))

    # loading image
    data_input, header_input = load(args.input)

    # apply the watershed
    logger.info("Watershedding with settings: thr={} / level={}...".format(args.threshold, args.level))
    data_output = watershed(data_input, get_pixel_spacing(header_input), args.threshold, args.level)

    # save file
    save(data_output, args.output, header_input, args.force)

    logger.info("Successfully terminated.")
开发者ID:tatafarewell,项目名称:medpy,代码行数:29,代码来源:medpy_itk_watershed.py


示例13: __init__

 def __init__(self, image_labels, image_original):
     """
     Computes a number of statistics for the labels of a label image.
     These include beside others:
     1. a histogram of the sizes of the regions
     2. a histogram of the sphericity (not roundness) of the regions
     3. a histogram of how the intensity distribution in each region differs
     from a Gaussian distribution
     
     @param image_lables: The label image for which the statistics should be
                          computed as a numpy array
     @param image_original: The original image for which the label image was created.
     """
     if image_labels.shape != image_original.shape:
         raise ValueError('The input images must be of the same shape.')
     
     if not 3 == len(image_labels.shape):
         raise ValueError('Currently this class is only working with 3D images.')
     
     # prepare logger
     self._logger = Logger.getInstance()
     
     self._image_labels = image_labels
     self._image_original = image_original
     
     self._compute()
开发者ID:ShimonaNiharika,项目名称:MedIA,代码行数:26,代码来源:LabelImageStatistics.py


示例14: main

def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
        
    # write header line
    print('image;labels\n')
    
    # iterate over input images
    for image in args.images:
        
        # get and prepare image data
        logger.info('Processing image {}...'.format(image))
        image_data, _ = load(image)
        
        # count number of labels and flag a warning if they reach the ushort border
        count = len(numpy.unique(image_data)) 
        
        # count number of labels and write
        print('{};{}\n'.format(image.split('/')[-1], count))
        
        sys.stdout.flush()
            
    logger.info('Successfully terminated.')
开发者ID:loli,项目名称:medpy,代码行数:30,代码来源:medpy_label_count.py


示例15: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)

    # load input image
    input_data, input_header = load(args.input)
    
    logger.debug('Old shape={}.'.format(input_data.shape))
    
    # compute cut
    logger.info('Computing cut and cropping volume...')
    cut = __parse_contour_list(args.contours, input_data)
    # crop volume
    input_data = input_data[cut]
    
    logger.debug('New shape={}.'.format(input_data.shape))
    
    # save result contour volume
    save(input_data, args.output, input_header, args.force)

    logger.info("Successfully terminated.")
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:25,代码来源:extract_subvolume_by_contourfile.py


示例16: main

def main():
    args = getArguments(getParser())
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    with open(args.output, 'w') as outf:        
        outf.write('C;;E;;D;;ED;(std);ES;(std);Total;(std)')        
        with open(args.input, 'r') as inf:            
            for line in inf.readlines():                
                line = line.strip()                
                if 'ced' == line[0:3]:
                    _tmp = line.split('_')[1:]
                    _c = _tmp[0].split('-')
                    _e = _tmp[1].split('-')
                    _d = _tmp[2].split('-')
                    outf.write('\n')
                    outf.write('{};{};{};{};{};{};'.format(_c[0][1:], _c[1], _e[0][1:], _e[1], _d[0][1:], _d[1]))
                elif 'Mean (std) endo DM' in line:
                    _tmp = line.split(' ')
                    outf.write('{};{};{};{};'.format(_tmp[5], _tmp[6], _tmp[8], _tmp[9]))
                elif 'Total mean (std) endo DM' in line:
                    _tmp = line.split(' ')
                    outf.write('{};{}'.format(_tmp[5], _tmp[6]))
    
    logger.info("Successfully terminated.")    
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:28,代码来源:temporary.py


示例17: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # load input image1
    data_input1, _ = load(args.input1)
    
    # load input image2
    data_input2, _ = load(args.input2)
    
    # compare dtype and shape
    if not data_input1.dtype == data_input2.dtype: print 'Dtype differs: {} to {}'.format(data_input1.dtype, data_input2.dtype)
    if not data_input1.shape == data_input2.shape:
        print 'Shape differs: {} to {}'.format(data_input1.shape, data_input2.shape)
        print 'The voxel content of images of different shape can not be compared. Exiting.'
        sys.exit(-1)
    
    # compare image data
    voxel_total = reduce(lambda x, y: x*y, data_input1.shape)
    voxel_difference = len((data_input1 != data_input2).nonzero()[0])
    if not 0 == voxel_difference:
        print 'Voxel differ: {} of {} total voxels'.format(voxel_difference, voxel_total)
        print 'Max difference: {}'.format(scipy.absolute(data_input1 - data_input2).max())
    else: print 'No other difference.'
    
    logger.info("Successfully terminated.")    
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:30,代码来源:medpy_diff.py


示例18: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # load input image
    data_input, header_input = load(args.input)
    
    logger.debug('Original shape = {}.'.format(data_input.shape))
    
    # check if supplied dimension parameters is inside the images dimensions
    if args.dimension1 >= data_input.ndim or args.dimension1 < 0:
        raise ArgumentError('The first swap-dimension {} exceeds the number of input volume dimensions {}.'.format(args.dimension1, data_input.ndim))
    elif args.dimension2 >= data_input.ndim or args.dimension2 < 0:
        raise ArgumentError('The second swap-dimension {} exceeds the number of input volume dimensions {}.'.format(args.dimension2, data_input.ndim))
    
    # swap axes
    data_output = scipy.swapaxes(data_input, args.dimension1, args.dimension2)
    # swap pixel spacing and offset
    ps = list(header.get_pixel_spacing(header_input))
    ps[args.dimension1], ps[args.dimension2] = ps[args.dimension2], ps[args.dimension1]
    header.set_pixel_spacing(header_input, ps)
    os = list(header.get_offset(header_input))
    os[args.dimension1], os[args.dimension2] = os[args.dimension2], os[args.dimension1]
    header.set_offset(header_input, os)
    
    logger.debug('Resulting shape = {}.'.format(data_output.shape))
    
    # save resulting volume
    save(data_output, args.output, header_input, args.force)
    
    logger.info("Successfully terminated.")    
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:35,代码来源:medpy_swap_dimensions.py


示例19: main

def main():
    args = getArguments(getParser())

    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
    
    # loading input images
    b0img, b0hdr = load(args.b0image)
    bximg, bxhdr = load(args.bximage)
    
    # convert to float
    b0img = b0img.astype(numpy.float)
    bximg = bximg.astype(numpy.float)

    # check if image are compatible
    if not b0img.shape == bximg.shape:
        raise ArgumentError('The input images shapes differ i.e. {} != {}.'.format(b0img.shape, bximg.shape))
    if not header.get_pixel_spacing(b0hdr) == header.get_pixel_spacing(bxhdr):
        raise ArgumentError('The input images voxel spacing differs i.e. {} != {}.'.format(header.get_pixel_spacing(b0hdr), header.get_pixel_spacing(bxhdr)))
    
    # check if supplied threshold value as well as the b value is above 0
    if args.threshold is not None and not args.threshold >= 0:
        raise ArgumentError('The supplied threshold value must be greater than 0, otherwise a division through 0 might occur.')
    if not args.b > 0:
        raise ArgumentError('The supplied b-value must be greater than 0.')
    
    # compute threshold value if not supplied
    if args.threshold is None:
        b0thr = otsu(b0img, 32) / 4. # divide by 4 to decrease impact
        bxthr = otsu(bximg, 32) / 4.
        if 0 >= b0thr:
            raise ArgumentError('The supplied b0image seems to contain negative values.')
        if 0 >= bxthr:
            raise ArgumentError('The supplied bximage seems to contain negative values.')
    else:
        b0thr = bxthr = args.threshold
    
    logger.debug('thresholds={}/{}, b-value={}'.format(b0thr, bxthr, args.b))
    
    # threshold b0 + bx DW image to obtain a mask
    # b0 mask avoid division through 0, bx mask avoids a zero in the ln(x) computation
    mask = binary_fill_holes(b0img > b0thr) & binary_fill_holes(bximg > bxthr)
    
    # perform a number of binary morphology steps to select the brain only
    mask = binary_erosion(mask, iterations=1)
    mask = largest_connected_component(mask)
    mask = binary_dilation(mask, iterations=1)
    
    logger.debug('excluding {} of {} voxels from the computation and setting them to zero'.format(numpy.count_nonzero(mask), numpy.prod(mask.shape)))
    
    # compute the ADC
    adc = numpy.zeros(b0img.shape, b0img.dtype)
    adc[mask] = -1. * args.b * numpy.log(bximg[mask] / b0img[mask])
    adc[adc < 0] = 0
            
    # saving the resulting image
    save(adc, args.output, b0hdr, args.force)
开发者ID:kleinfeld,项目名称:medpy,代码行数:59,代码来源:medpy_apparent_diffusion_coefficient.py


示例20: main

def main():
    # parse cmd arguments
    parser = getParser()
    parser.parse_args()
    args = getArguments(parser)
    
    # prepare logger
    logger = Logger.getInstance()
    if args.debug: logger.setLevel(logging.DEBUG)
    elif args.verbose: logger.setLevel(logging.INFO)
        
    # load input image
    logger.info('Loading {}...'.format(args.image))
    image_data, image_header = load(args.image)
    
    # check if supplied cut dimension is inside the input images dimensions
    if args.dimension < 0 or args.dimension >= image_data.ndim:
        logger.critical('The supplied cut-dimensions {} is invalid. The input image has only {} dimensions.'.format(args.dimension, image_data.ndim))
        raise ArgumentError('The supplied cut-dimensions {} is invalid. The input image has only {} dimensions.'.format(args.dimension, image_data.ndim))
    
    # prepare output filenames
    name_output = args.output.replace('{}', '{:03d}')
    
    # determine cut lines
    no_sub_volumes = image_data.shape[args.dimension] / args.maxsize + 1 # int-division is desired
    slices_per_volume = image_data.shape[args.dimension] / no_sub_volumes # int-division is desired
    
    # construct processing dict for each sub-volume
    processing_array = []
    for i in range(no_sub_volumes):
        processing_array.append(
            {'path': name_output.format(i+1),
             'cut': (i * slices_per_volume, (i + 1) * slices_per_volume)})
        if no_sub_volumes - 1 == i: # last volume has to have increased cut end
            processing_array[i]['cut'] = (processing_array[i]['cut'][0], image_data.shape[args.dimension])

    # construct base indexing list
    index = [slice(None) for _ in range(image_data.ndim)]
    
    # execute extraction of the sub-volumes
    logger.info('Extracting sub-volumes...')
    for dic in processing_array:
        # check if output images exists
        if not args.force:
            if os.path.exists(dic['path']):
                logger.warning('The output file {} already exists. Skipping this volume.'.format(dic['path']))
                continue
        
        # extracting sub-volume
        index[args.dimension] = slice(dic['cut'][0], dic['cut'][1])
        volume = image_data[index]
        
        logger.debug('Extracted volume is of shape {}.'.format(volume.shape))
        
        # saving sub-volume in same format as input image
        logger.info('Saving cut {} as {}...'.format(dic['cut'], dic['path']))
        save(volume, dic['path'], image_header, args.force)
        
    logger.info('Successfully terminated.')
开发者ID:AlexanderRuesch,项目名称:medpy,代码行数:59,代码来源:medpy_extract_sub_volume_auto.py



注:本文中的medpy.core.Logger类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python io.load函数代码示例发布时间:2022-05-27
下一篇:
Python perl.decode_object_from_bytes_if_needed函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap