本文整理汇总了Python中mdp.utils.mult函数的典型用法代码示例。如果您正苦于以下问题:Python mult函数的具体用法?Python mult怎么用?Python mult使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了mult函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _inverse
def _inverse(self, y, n=None):
"""Project data from the output to the input space using the
first 'n' components.
If 'n' is not set, use all available components.
:param y: Data to be projected to the input space.
:type y: numpy.ndarray
:param n: Number of first principle components.
:type n: int
:return: The projected data
:rtype: numpy.ndarray
"""
if n is None:
n = y.shape[1]
if n > self.output_dim:
error_str = ("y has dimension %d,"
" should be at most %d" % (n, self.output_dim))
raise mdp.NodeException(error_str)
v = self.get_recmatrix()
if n is not None:
return mult(y, v[:n, :]) + self.avg
return mult(y, v) + self.avg
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:27,代码来源:pca_nodes.py
示例2: _energy
def _energy(self, v, h):
if self._gaussian:
return ((((v - self.bv) ** 2).sum() / 2) - mult(h, self.bh) -
(mult(v, self.w) * h).sum(axis=1))
else:
return (-mult(v, self.bv) - mult(h, self.bh) -
(mult(v, self.w) * h).sum(axis=1))
开发者ID:JianboTang,项目名称:Oger,代码行数:7,代码来源:rbm_nodes.py
示例3: _train
def _train(self, x):
"""Update the principal components.
:param x: Data vectors.
:type x: numpy.ndarray
"""
[w1, w2] = self._amnesic(self.get_current_train_iteration() + 1)
red_j = self.output_dim
red_j_flag = False
explained_var = 0.0
r = x
for j in range(self.output_dim):
v = self._v[:, j:j + 1]
d = self.d[j]
v = w1 * v + w2 * mult(r, v) / d * r.T
d = mdp.numx_linalg.norm(v)
vn = old_div(v, d)
r = r - mult(r, vn) * vn.T
explained_var += d
if not red_j_flag:
ratio = explained_var / self._var_tot
if ratio > self.var_rel:
red_j = j
red_j_flag = True
self._v[:, j:j + 1] = v
self.v[:, j:j + 1] = vn
self.d[j] = d
self._var_tot = explained_var
self._reduced_dims = red_j
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:34,代码来源:pca_nodes_online.py
示例4: matmult_n_MDP_benchmark
def matmult_n_MDP_benchmark(dim):
""" This benchmark multiplies two non-contiguous matrices using the
MDP internal matrix multiplication routine.
First argument matrix dimensionality"""
a = numx_rand.random((dim,dim)).T
b = numx_rand.random((dim,dim)).T
mult(a,b)
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:7,代码来源:benchmark_mdp.py
示例5: _inverse
def _inverse(self, y, n=None):
"""Project 'y' to the input space using the first 'n' components.
:param y: Vectors from the output space.
:type y: numpy.ndarray
:param n: The number of components to use for projection to the
input space. If 'n' is not set, use all available components.
:type n: int
:return: The projected vectors.
:rtype: numpy.ndarray
:raises mdp.NodeException: If the valid dimension is exceeded.
"""
if n is None:
n = y.shape[1]
if n > self.output_dim:
error_str = ("y has dimension %d,"
" should be at most %d" % (n, self.output_dim))
raise mdp.NodeException(error_str)
v = self.get_recmatrix()
if n is not None:
return mult(y, v[:n, :])
return mult(y, v)
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:26,代码来源:mca_nodes_online.py
示例6: _train
def _train(self, x, y):
"""
:param x: Array of different input observations.
:type x: numpy.ndarray
:param y: Array of size (x.shape[0], output_dim) that contains the
observed output to the input x's.
:type y: numpy.ndarray
"""
# initialize internal vars if necessary
if self._xTx is None:
if self.with_bias:
x_size = self._input_dim + 1
else:
x_size = self._input_dim
self._xTx = numx.zeros((x_size, x_size), self._dtype)
self._xTy = numx.zeros((x_size, self._output_dim), self._dtype)
if self.with_bias:
x = self._add_constant(x)
# update internal variables
self._xTx += mult(x.T, x)
self._xTy += mult(x.T, y)
self._tlen += x.shape[0]
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:25,代码来源:regression_nodes.py
示例7: _calculate_gradient
def _calculate_gradient(self, y):
x = self._last_x
dy = Oger.utils.LogisticFunction.df(x, self._last_y) * y
dw = mult(x.T, dy)
self._gradient_vector = numx.concatenate((dw.ravel(), dy.sum(axis=0)))
dx = mult(self.w, dy.T).T
return dx
开发者ID:JianboTang,项目名称:Oger,代码行数:7,代码来源:gradient_nodes.py
示例8: _sample_v
def _sample_v(self, h, x):
# returns P(v=1|h,W,b) and a sample from it
dynamic_b = mult(x, self.a)
v_in = self.bv + mult(h, self.w.T) + dynamic_b
if self._gaussian:
return v_in, v_in
else:
probs = Oger.utils.LogisticFunction.f(v_in)
v = (probs > random(probs.shape)).astype(self.dtype)
return probs, v
开发者ID:JianboTang,项目名称:Oger,代码行数:10,代码来源:rbm_nodes.py
示例9: test_mult_diag
def test_mult_diag():
dim = 20
d = numx_rand.random(size=(dim,))
dd = numx.diag(d)
mtx = numx_rand.random(size=(dim, dim))
res1 = utils.mult(dd, mtx)
res2 = utils.mult_diag(d, mtx, left=True)
assert_array_almost_equal(res1, res2, 10)
res1 = utils.mult(mtx, dd)
res2 = utils.mult_diag(d, mtx, left=False)
assert_array_almost_equal(res1, res2, 10)
开发者ID:beniamino38,项目名称:mdp-toolkit,代码行数:12,代码来源:test_utils.py
示例10: _inverse
def _inverse(self, y, n=None):
"""Project 'y' to the input space using the first 'n' components.
If 'n' is not set, use all available components."""
if n is None:
n = y.shape[1]
if n > self.output_dim:
error_str = "y has dimension %d," " should be at most %d" % (n, self.output_dim)
raise mdp.NodeException(error_str)
v = self.get_recmatrix()
if n is not None:
return mult(y, v[:n, :]) + self.avg
return mult(y, v) + self.avg
开发者ID:pmolfese,项目名称:afni,代码行数:13,代码来源:pca_nodes.py
示例11: get_CD_gradient
def get_CD_gradient(self, x, n_updates=1):
"""Use Gibbs sampling to estimate the contrastive divergence gradient.
- x: a binary matrix having different variables on different columns and observations on the rows (concatenation of visibles and context)
- n_updates: number of CD iterations. Default value: 1
Returns a tuple (dw, dbv, dbh, da, db) that contains the gradients of the
weights and the biases of the visibles and the hidden respectively and
the autoregressive gradients da and db.
"""
# useful quantities
n = x.shape[0]
v, x = self._split_data(x)
w, a, b, bv, bh = self.w, self.a, self.b, self.bv, self.bh
# first update of the hidden units for the data term
ph_data, h_data = self._sample_h(v, x)
# n updates of both v and h for the model term
h_model = h_data.copy()
for i in range(n_updates):
pv_model, v_model = self._sample_v(h_model, x)
ph_model, h_model = self._sample_h(v_model, x)
# find dw
data_term = mult(v.T, ph_data)
model_term = mult(v_model.T, ph_model)
dw = (data_term - model_term) / n
# find da
data_term = v
model_term = v_model
# Should I include the weight decay here as well?
da = mult(x.T, data_term - model_term) / n
# find db
data_term = ph_data
model_term = ph_model
db = mult(x.T, data_term - model_term) / n
# find dbv
data_term = v.sum(axis=0)
model_term = v_model.sum(axis=0)
dbv = (data_term - model_term) / n
# find dbh
data_term = ph_data.sum(axis=0)
model_term = ph_model.sum(axis=0)
dbh = (data_term - model_term) / n
return (dw, dbv, dbh, da, db)
开发者ID:JianboTang,项目名称:Oger,代码行数:51,代码来源:rbm_nodes.py
示例12: _inverse
def _inverse(self, y):
# counter-rotate input
x = mult(y, self.RP.T)
# invert whitening node if needed
if not self.whitened:
x = self.white.inverse(x)
return x
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:7,代码来源:isfa_nodes.py
示例13: _down_pass
def _down_pass(self, h, top_updates=0, epsilon=0.1, decay=0.0, momentum=0.0):
"""
top_updates -- set >0 for top node, so that it ends up sampling
from the prior
"""
# TODO: check input
pv, v = self._sample_v(h)
for _ in range(top_updates):
ph, h = self._sample_h(v)
pv, v = self._sample_v(h)
# reconstruct hidden state
ph1, h1 = self._sample_h(v)
# adapt generative weights
delta = mult(v.T, (h - ph1)) / v.shape[0]
self.dw_sleep = momentum * self.dw_sleep + epsilon * (delta - decay * self.w_rec)
self.w_rec += self.dw_sleep
# adapt biases
delta = (h - ph1).mean(axis=0)
self.dbh = momentum * self.dbh + epsilon * delta
self.bh += self.dbh
return v, pv, mdp.utils.norm2(self.dbh)
开发者ID:pointtonull,项目名称:golsoft,代码行数:26,代码来源:dbn_nodes.py
示例14: guess
def guess(input, reservoir, dirname):
#print input.shape
"""
pylab.plot(input)
pylab.show()
pylab.figure()
"""
try:
beta = np.loadtxt(dirname + os.sep + 'beta.mat')
except:
return 0 #19
x = reservoir.execute(input)
#m = readout._execute(x)
#m = mult(x, readout.beta)
m = mult(x, beta)
# find maximum place of m
mcs = np.zeros(m.shape[1])
for i in range(m.shape[1]):
mc = sum(m[:,i]) / m.shape[1]
mcs[i] = mc
return mcs.argmax()
开发者ID:noverkill,项目名称:isolated,代码行数:29,代码来源:learn.py
示例15: _sample_v
def _sample_v(self, h, sample_l=False, concatenate=True):
# returns P(v=1|h,W,b), a sample from it, P(l=1|h,W,b),
# and a sample from it
ldim, vdim = self._labels_dim, self._visible_dim
# activation
a = self.bv + mult(h, self.w.T)
av, al = a[:, :vdim], a[:, vdim:]
# ## visible units: logistic activation
probs_v = old_div(1.,(1. + exp(-av)))
v = (probs_v > random(probs_v.shape)).astype('d')
# ## label units: softmax activation
# subtract maximum to regularize exponent
exponent = al - rrep(al.max(axis=1), ldim)
probs_l = exp(exponent)
probs_l /= rrep(probs_l.sum(axis=1), ldim)
if sample_l:
# ?? todo: I'm sure this can be optimized
l = numx.zeros((h.shape[0], ldim))
for t in range(h.shape[0]):
l[t, :] = mdp.numx_rand.multinomial(1, probs_l[t, :])
else:
l = probs_l.copy()
if concatenate:
probs = numx.concatenate((probs_v, probs_l), axis=1)
x = numx.concatenate((v, l), axis=1)
return probs, x
else:
return probs_v, probs_l, v, l
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:34,代码来源:rbm_nodes.py
示例16: _execute
def _execute(self, data, n = None):
""" Execute learned transformation on *data*.
Projects the given data to the axis of the most significant
eigenvectors and returns the data in this lower-dimensional subspace.
"""
# 'INITIALIZATION'
if self.retained_channels==None:
self.retained_channels = data.shape[1]
if n is None:
n = self.retained_channels
if self.channel_names is None:
self.channel_names = data.channel_names
if len(self.channel_names)<self.retained_channels:
self.retained_channels = len(self.channel_names)
self._log("To many channels chosen for the retained channels! Replaced by maximum number.",level=logging.CRITICAL)
if not(self.output_dim==self.retained_channels):
# overwrite internal output_dim variable, since it is set wrong
self._output_dim = self.retained_channels
# 'Real' Processing
#projected_data = super(PCANodeWrapper, self)._execute(data, n)
x = data.view(numpy.ndarray)
projected_data = mult(x-self.avg, self.v[:, :self.retained_channels])
if self.new_channels is None:
self.new_channel_names = ["pca%03d" % i
for i in range(projected_data.shape[1])]
return TimeSeries(projected_data, self.new_channel_names,
data.sampling_frequency, data.start_time,
data.end_time, data.name, data.marker_name)
开发者ID:AlexanderFabisch,项目名称:pyspace,代码行数:31,代码来源:pca.py
示例17: _execute
def _execute(self, x):
#----------------------------------------------------
# similar algorithm to that within self.stop_training()
# refer there for notes & comments on code
#----------------------------------------------------
N = self.data.shape[0]
Nx = x.shape[0]
W = numx.zeros((Nx, N), dtype=self.dtype)
k, r = self.k, self.r
d_out = self.output_dim
Q_diag_idx = numx.arange(k)
for row in range(Nx):
#find nearest neighbors of x in M
M_xi = self.data-x[row]
nbrs = numx.argsort( (M_xi**2).sum(1) )[:k]
M_xi = M_xi[nbrs]
#find corrected covariance matrix Q
Q = mult(M_xi, M_xi.T)
if r is None and k > d_out:
sig2 = (svd(M_xi, compute_uv=0))**2
r = numx.sum(sig2[d_out:])
Q[Q_diag_idx, Q_diag_idx] += r
if r is not None:
Q[Q_diag_idx, Q_diag_idx] += r
#solve for weights
w = self._refcast(numx_linalg.solve(Q , numx.ones(k)))
w /= w.sum()
W[row, nbrs] = w
#multiply weights by result of SVD from training
return numx.dot(W, self.training_projection)
开发者ID:Debilski,项目名称:mdp-toolkit,代码行数:35,代码来源:lle_nodes.py
示例18: _execute
def _execute(self, x, n=None):
"""Project the input on the first 'n' principal components.
:param x: The input that is to project.
:type x: numpy.ndarray
:param n: The number of first principle components to project on.
If 'n' is not set, use all available components.
:type n: int
:return: The projected input.
:rtype: numpy.ndarray
"""
if n is not None:
return mult(x, self.v[:, :n])
return mult(x, self.v)
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:16,代码来源:mca_nodes_online.py
示例19: get_quadratic_form
def get_quadratic_form(self, nr):
"""
Return the matrix H, the vector f and the constant c of the
quadratic form 1/2 x'Hx + f'x + c that defines the output
of the component 'nr' of the SFA node.
"""
if self.sf is None:
self._if_training_stop_training()
sf = self.sf[:, nr]
c = -mult(self.avg, sf)
n = self.input_dim
f = sf[:n]
h = numx.zeros((n, n), dtype=self.dtype)
k = n
for i in range(n):
for j in range(n):
if j > i:
h[i, j] = sf[k]
k = k+1
elif j == i:
h[i, j] = 2*sf[k]
k = k+1
else:
h[i, j] = h[j, i]
return QuadraticForm(h, f, c, dtype=self.dtype)
开发者ID:Debilski,项目名称:mdp-toolkit,代码行数:27,代码来源:sfa_nodes.py
示例20: _execute
def _execute(self, x):
"""Return slow feature response.
:return: Slow feature response.
"""
if self.remove_mean:
x = self.avgnode._execute(x)
return mult(x, self.sf)
开发者ID:AlbertoEsc,项目名称:mdp-toolkit,代码行数:8,代码来源:sfa_nodes_online.py
注:本文中的mdp.utils.mult函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论