• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pyplot.yticks函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中matplotlib.pyplot.yticks函数的典型用法代码示例。如果您正苦于以下问题:Python yticks函数的具体用法?Python yticks怎么用?Python yticks使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了yticks函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: plot_jobs_by_skills

def plot_jobs_by_skills(cur, skills):

    skill_jobs = {}
    
    for skill in skills:
        cur.execute('''select count(j.id) amount from jobs j where j.id in
                    (select js.job_id from job_skills js where js.skill=?)''',
                    (skill,))
        res = cur.fetchone()
        skill_jobs[skill] = res[0]
    
    sorted_skill_jobs = zip(*sorted(skill_jobs.items(),
                            key=operator.itemgetter(1), reverse=False))

    fig = plt.figure()
    
    y_pos = np.arange(len(skill_jobs))
    print y_pos
    
    ax = plt.barh(y_pos, sorted_skill_jobs[1], align='center', alpha=0.3)
    plt.yticks(y_pos, ['\n'.join(wrap(x, 10)) for x in sorted_skill_jobs[0]])
    plt.ylabel('Skill')
    plt.xlabel('Amount of jobs')
    autolabel_h(ax)
    
    plt.gcf().subplots_adjust(left=0.20)
    
    return fig
开发者ID:mdmitr,项目名称:upworkStat,代码行数:28,代码来源:create_plots.py


示例2: filterFunc

def filterFunc():
    rects = []
    hsv_planes = [[[]]]
    if os.path.isfile(Image_File):
        BGR=cv2.imread(Image_File)
        gray = cv2.cvtColor(BGR, cv2.COLOR_BGR2GRAY)
        img = gray
        f = np.fft.fft2(img)
        fshift = np.fft.fftshift(f)
        magnitude_spectrum = 20*np.log(np.abs(fshift))
        
        plt.subplot(221),plt.imshow(img, cmap = 'gray')
        plt.title('Input Image'), plt.xticks([]), plt.yticks([])
        
        plt.subplot(222),plt.imshow(magnitude_spectrum, cmap = 'gray')
        plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
        
        FiltzeredFFT = HighPassFilter(fshift, 60)
        plt.subplot(223),plt.imshow(np.abs(FiltzeredFFT), cmap = 'gray')
        plt.title('Filtered'), plt.xticks([]), plt.yticks([])
        
		
        f_ishift = np.fft.ifftshift(FiltzeredFFT)
        img_back = np.fft.ifft2(f_ishift)
        img_back = np.abs(img_back)
        plt.subplot(224),plt.imshow(np.abs(img_back), cmap = 'gray')
        plt.title('Filtered Image'), plt.xticks([]), plt.yticks([])
        plt.show()
开发者ID:mhhm2005eg,项目名称:FaceDetection,代码行数:28,代码来源:Filters.py


示例3: showOverlapTable

def showOverlapTable(modes_x, modes_y, **kwargs):
    """Show overlap table using :func:`~matplotlib.pyplot.pcolor`.  *modes_x*
    and *modes_y* are sets of normal modes, and correspond to x and y axes of
    the plot.  Note that mode indices are incremented by 1.  List of modes
    is assumed to contain a set of contiguous modes from the same model.

    Default arguments for :func:`~matplotlib.pyplot.pcolor`:

      * ``cmap=plt.cm.jet``
      * ``norm=plt.normalize(0, 1)``"""

    import matplotlib.pyplot as plt

    overlap = abs(calcOverlap(modes_y, modes_x))
    if overlap.ndim == 0:
        overlap = np.array([[overlap]])
    elif overlap.ndim == 1:
        overlap = overlap.reshape((modes_y.numModes(), modes_x.numModes()))

    cmap = kwargs.pop('cmap', plt.cm.jet)
    norm = kwargs.pop('norm', plt.normalize(0, 1))
    show = (plt.pcolor(overlap, cmap=cmap, norm=norm, **kwargs),
            plt.colorbar())
    x_range = np.arange(1, modes_x.numModes() + 1)
    plt.xticks(x_range-0.5, x_range)
    plt.xlabel(str(modes_x))
    y_range = np.arange(1, modes_y.numModes() + 1)
    plt.yticks(y_range-0.5, y_range)
    plt.ylabel(str(modes_y))
    plt.axis([0, modes_x.numModes(), 0, modes_y.numModes()])
    if SETTINGS['auto_show']:
        showFigure()
    return show
开发者ID:karolamik13,项目名称:ProDy,代码行数:33,代码来源:plotting.py


示例4: tuning

def tuning(x, y, err=None, smooth=None, ylabel=None, pal=None):
    """
    Plot a tuning curve
    """
    if smooth is not None:
        xs, ys = smoothfit(x, y, smooth)
        plt.plot(xs, ys, linewidth=4, color="black", zorder=1)
    else:
        ys = asarray([0])
    if pal is None:
        pal = sns.color_palette("husl", n_colors=len(x) + 6)
        pal = pal[2 : 2 + len(x)][::-1]
    plt.scatter(x, y, s=300, linewidth=0, color=pal, zorder=2)
    if err is not None:
        plt.errorbar(x, y, yerr=err, linestyle="None", ecolor="black", zorder=1)
    plt.xlabel("Wall distance (mm)")
    plt.ylabel(ylabel)
    plt.xlim([-2.5, 32.5])
    errTmp = err
    errTmp[isnan(err)] = 0
    rng = max([nanmax(ys), nanmax(y + errTmp)])
    plt.ylim([0 - rng * 0.1, rng + rng * 0.1])
    plt.yticks(linspace(0, rng, 3))
    plt.xticks(range(0, 40, 10))
    sns.despine()
    return rng
开发者ID:speron,项目名称:sofroniew-vlasov-2015,代码行数:26,代码来源:plots.py


示例5: as_pyplot_figure

    def as_pyplot_figure(self, label=1, **kwargs):
        """Returns the explanation as a pyplot figure.

        Will throw an error if you don't have matplotlib installed
        Args:
            label: desired label. If you ask for a label for which an
                   explanation wasn't computed, will throw an exception.
            kwargs: keyword arguments, passed to domain_mapper

        Returns:
            pyplot figure (barchart).
        """
        import matplotlib.pyplot as plt
        exp = self.as_list(label, **kwargs)
        fig = plt.figure()
        vals = [x[1] for x in exp]
        names = [x[0] for x in exp]
        vals.reverse()
        names.reverse()
        colors = ['green' if x > 0 else 'red' for x in vals]
        pos = np.arange(len(exp)) + .5
        plt.barh(pos, vals, align='center', color=colors)
        plt.yticks(pos, names)
        plt.title('Local explanation for class %s' % self.class_names[label])
        return fig
开发者ID:eb777ez,项目名称:lime,代码行数:25,代码来源:explanation.py


示例6: make_entity_plot

def make_entity_plot(filename, title, fixed_noip, fixed_ip, dynamic_noip, dynamic_ip):
    plt.figure(figsize=(12,5))

    plt.title("Settings comparison - " + title)
    
    plt.xlabel('Time (ms)', fontsize=12)
    plt.xlim([0,62000])

    x = 0
    barwidth = 0.5
    bargroupspacing = 1.5

    fixed_noip_mean,fixed_noip_conf = conf_stats(fixed_noip)
    fixed_ip_mean,fixed_ip_conf = conf_stats(fixed_ip)
    dynamic_noip_mean,dynamic_noip_conf = conf_stats(dynamic_noip)
    dynamic_ip_mean,dynamic_ip_conf = conf_stats(dynamic_ip)

    values = [fixed_noip_mean,fixed_ip_mean,dynamic_noip_mean, dynamic_ip_mean]
    errs = [fixed_noip_conf,fixed_ip_conf,dynamic_noip_conf, dynamic_ip_conf]

    y_pos = numpy.arange(len(values))
    plt.barh(y_pos, values, xerr=errs, align='center', color=['r', 'b', 'r', 'b'],  ecolor='black', alpha=0.7)
    plt.yticks(y_pos, ["Fixed | no I.P.", "Fixed | I.P.", "Dynamic | no I.P.", "Dynamic | I.P."])
    plt.savefig(output_file(filename))
    plt.clf()
开发者ID:SuperV1234,项目名称:bcs_thesis,代码行数:25,代码来源:plot_ip.py


示例7: make_bar

    def make_bar(
        x,
        y,
        f_name,
        title=None,
        legend=None,
        x_label=None,
        y_label=None,
        x_ticks=None,
        y_ticks=None,
    ):
        fig = plt.figure()

        if title is not None:
            plt.title(title, fontsize=16)
        if x_label is not None:
            plt.ylabel(x_label)
        if y_label is not None:
            plt.xlabel(y_label)
        if x_ticks is not None:
            plt.xticks(x, x_ticks)
        if y_ticks is not None:
            plt.yticks(y_ticks)

        plt.bar(x, y, align="center")

        if legend is not None:
            plt.legend(legend)

        plt.savefig(f_name)
        plt.close(fig)
开发者ID:DongjunLee,项目名称:stalker-bot,代码行数:31,代码来源:plot.py


示例8: nodeplot

def nodeplot(xnode,figtitle):
    fig = demo.figure(figtitle,'', '',[-0.0001, 1.0001], [-0.05, 0.05],figsize=[6,1.5])
    plt.plot(xnode, np.zeros_like(xnode),'bo',ms=8)
    plt.xticks([0,1])
    plt.yticks([])
    
    figures.append(fig)
开发者ID:randall-romero,项目名称:CompEcon-python,代码行数:7,代码来源:demapp03.py


示例9: streamlineBxz_dens

def streamlineBxz_dens():
    fig=plt.figure()
    ppy=yt.ProjectionPlot(ds, "y", "Bxz", weight_field="density") #Project X-component of B-field from z-direction
    By=ppy._frb["density"]
    ax=fig.add_subplot(111)
    plt.xticks(tick_locs,tick_lbls)
    plt.yticks(tick_locs,tick_lbls)
    Bymag=ax.pcolormesh(np.log10(By), cmap="YlGn")
    cbar_m=plt.colorbar(Bymag)
    cbar_m.set_label("density")
    res=800

    #densxy=Density2D(0,1) #integrated density along given axis
    U=Flattenx(0,1) #X-magnetic field integrated along given axis
    V=Flattenz(0,1) #Z-magnetic field
    #U=np.asarray(zip(*x2)[::-1]) #rotate the matrix 90 degrees to correct orientation to match projected plots
    #V=np.asarray(zip(*y2)[::-1])
    norm=np.sqrt(U**2+V**2) #magnitude of the vector
    Unorm=U/norm #normalise vectors 
    Vnorm=V/norm
    #mask_Unorm=np.ma.masked_where(densxy<np.mean(densxy),Unorm) #create a masked array of Unorm values only in high density regions
    #mask_Vnorm=np.ma.masked_where(densxy<np.mean(densxy),Vnorm)
    X,Y=np.meshgrid(np.linspace(0,res,64, endpoint=True),np.linspace(0,res,64,endpoint=True))
    streams=plt.streamplot(X,Y,Unorm,Vnorm,color=norm*1e6,density=(3,3),cmap=plt.cm.autumn)
    cbar=plt.colorbar(orientation="horizontal")
    cbar.set_label('Bxz streamlines (uG)')
    plt.title("Bxz streamlines on weighted density projection")
    plt.xlabel("(1e4 AU)")
    plt.ylabel("(1e4 AU)")
开发者ID:jwyl,项目名称:joycesoft,代码行数:29,代码来源:testfunctions.py


示例10: _plot

def _plot(_df, fig, ax):
    """
    """

    _df = pd.DataFrame(_df)
    df = _df.sort('ratio')
    df['color'] = 'grey'
    df.color[(df.lower > 1) & (df.upper > 1)] = 'blue'
    df.color[(df.lower < 1) & (df.upper < 1)] = 'red'

    df.index = range(len(df))  # reset the index to reflect order

    if fig is None and ax is None:
        fig, ax = plt.subplots(figsize=(8, 12))

    ax.set_aspect('auto')
    ax.set_xlabel('Odds ratio')
    ax.grid(False)
    ax.set_ylim(-.5, len(df) - .5)
    plt.yticks(df.index)

    ax.scatter(df.ratio, df.index, c=df.color, s=50)
    for pos in range(len(df)):
        ax.fill_between([df.lower[pos], df.upper[pos]], pos-.01, pos+.01, color='grey', alpha=.3)

    ax.set_yticklabels(df.names)
    ax.vlines(x=1, ymin=-.5, ymax=len(df)-.5, colors='grey', linestyles='--')

    return fig, ax
开发者ID:Rrookie,项目名称:epipy,代码行数:29,代码来源:or_plot.py


示例11: plot_heat_net

def plot_heat_net(net_mat, sectors):
    """Plot a heat map of the net relations.

    Parameters
    ----------
    net_mat: np.ndarray
        the net represented in a matrix way.
    sectors: list
        the name of the elements of the adjacency matrix network.

    Returns
    -------
    fig: matplotlib.pyplot.figure
        the figure of the matrix heatmap.

    """
    vmax = np.sort([np.abs(net_mat.max()), np.abs(net_mat.min())])[::-1][0]
    n_sectors = len(sectors)
    assert(net_mat.shape[0] == net_mat.shape[1])
    assert(n_sectors == len(net_mat))

    fig = plt.figure()
    plt.imshow(net_mat, interpolation='none', cmap=plt.cm.RdYlGn,
               vmin=-vmax, vmax=vmax)
    plt.xticks(range(n_sectors), sectors)
    plt.yticks(range(n_sectors), sectors)
    plt.xticks(rotation=90)
    plt.colorbar()
    return fig
开发者ID:tgquintela,项目名称:pythonUtils,代码行数:29,代码来源:net_plotting.py


示例12: tiCarryPlot

def tiCarryPlot(getTIresult):
    conCarry = getTIresult.ix[:,0]*getTIresult.ix[:,1]
    disCarry = getTIresult.ix[:,0]*getTIresult.ix[:,2]
    cumBetas = np.cumprod(getTIresult.ix[:,0]/100+1)-1
    cumConBetas = np.cumprod(conCarry/100+1)-1
    cumDisBetas = np.cumprod(disCarry/100+1)-1

    fig = plt.figure()

    ax1 = fig.add_subplot(311)
    ax1.set_title('Cumulative Betas')
    cumBetas.plot(style='r',label='Original Beta')
    cumConBetas.plot(style='b', label='Discrete Weights')
    cumDisBetas.plot(style='g', label='Digital Weights')
    plt.legend(loc=2)

    ax2 = fig.add_subplot(312)
    ax2.set_title('Discrete Weights')
    getTIresult.ix[:,1].plot(style='b')
    plt.ylim([0, 1.2])
    plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2])

    ax3 = fig.add_subplot(313)
    ax3.set_title('Digital Weights')
    getTIresult.ix[:,2].plot(style='g')
    plt.ylim([-0.1, 1.1])
    plt.yticks([-0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1])

    fig.tight_layout()
    plt.show()
开发者ID:J12D,项目名称:qf-final-project,代码行数:30,代码来源:tiBeta.py


示例13: makePlot

def makePlot(
                k,
                counts,
                yaxis=[],
                width=0.8,
                figsize=[14.0,8.0],
                title="",
                ylabel='tmpylabel',
                xlabel='tmpxlabel',
                labels=[],
                show=False,
                grid=True,
                xticks=[],
                yticks=[],
                steps=5,
                save=False
            ):
    '''
    '''
    if not list(yaxis):
        yaxis = np.arange(len(counts))
    if not labels:
        labels = yaxis
    index = np.arange(len(yaxis))

    fig, ax = plt.subplots()
    fig.set_size_inches(figsize[0],figsize[1])
    plt.bar(index, counts, width)

    plt.title(title)
    if not xticks:
        print ('Making xticks')
        ticks = makeTicks(yMax=len(yaxis),steps=steps)
        xticks.append(ticks+width/2.)
        xticks.append(labels)
        print ('Done making xticks')

    if yticks:
        print ('Making yticks')
        # plt.yticks([1,2000],[0,100])
        plt.yticks(yticks[0],yticks[1])
        # ax.set_yticks(np.arange(0,100,10))
        print ('Done making yticks')

    plt.xticks(xticks[0]+width/2., xticks[1])
    plt.ylabel(ylabel)
    plt.xlabel(xlabel)
    # ax.set_xticks(range(0,len(counts)+2))

    fig.autofmt_xdate()
    # ax.set_xticklabels(ks)

    plt.axis([0, len(yaxis), 0, max(counts) + (max(counts)/100)])
    plt.grid(grid)
    location = ROOT_FOLDER + "/../muchBazar/src/image/" + k + "distribution.png"
    if save:
        plt.savefig(location)
        print ('Distribution written to: %s' % location)
    if show:
        plt.show()
开发者ID:mcmhav,项目名称:suchBazar,代码行数:60,代码来源:helpers.py


示例14: plotresult

def plotresult(i=0, j=101, step=1):
    import matplotlib.pyplot as mpl
    from numpy import arange

    res = getevaluation(i, j, step)
    x = [k / 100.0 for k in range(i, j, step)]
    nbcurve = len(res[0])
    nres = [[] for i in xrange(nbcurve)]
    mres = []
    maxofmin = -1, 0.01
    for kindex, kres in enumerate(res):
        minv = min(kres.values())
        if minv > maxofmin[1]:
            maxofmin = kindex, minv
        lres = [(i, j) for i, j in kres.items()]
        lres.sort(lambda x, y: cmp(x[0], y[0]))
        for i, v in enumerate(lres):
            nres[i].append(v[1])
        mres.append(sum([j for i, j in lres]) / nbcurve)
    print maxofmin
    for y in nres:
        mpl.plot(x, y)
    mpl.plot(x, mres, linewidth=2)
    mpl.ylim(0.5, 1)
    mpl.xlim(0, 1)
    mpl.axhline(0.8)
    mpl.axvline(0.77)
    mpl.xticks(arange(0, 1.1, 0.1))
    mpl.yticks(arange(0.5, 1.04, 0.05))
    mpl.show()
开发者ID:openalea,项目名称:lpy,代码行数:30,代码来源:evalrange.py


示例15: fig

def fig(data, target):
    #FIXME
    plt.scatter(data, target,  color='black')
    plt.xticks(())
    plt.yticks(())

    plt.show()
开发者ID:ZaneMuir,项目名称:Psychopy4Lab,代码行数:7,代码来源:skl_angle.py


示例16: plot_confusion_matrix

def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
开发者ID:KenAhon,项目名称:own_data_cnn_implementation_keras,代码行数:32,代码来源:updated_custom_data_cnn.py


示例17: plotPath

    def plotPath(self, seq, poses_gt, poses_result):
        plot_keys = ["Ground Truth", "Ours"]
        fontsize_ = 20
        plot_num = -1

        poses_dict = {}
        poses_dict["Ground Truth"] = poses_gt
        poses_dict["Ours"] = poses_result

        fig = plt.figure()
        ax = plt.gca()
        ax.set_aspect('equal')

        for key in plot_keys:
            pos_xz = []
            # for pose in poses_dict[key]:
            for frame_idx in sorted(poses_dict[key].keys()):
                pose = poses_dict[key][frame_idx]
                pos_xz.append([pose[0, 3], pose[2, 3]])
            pos_xz = np.asarray(pos_xz)
            plt.plot(pos_xz[:, 0], pos_xz[:, 1], label=key)

        plt.legend(loc="upper right", prop={'size': fontsize_})
        plt.xticks(fontsize=fontsize_)
        plt.yticks(fontsize=fontsize_)
        plt.xlabel('x (m)', fontsize=fontsize_)
        plt.ylabel('z (m)', fontsize=fontsize_)
        fig.set_size_inches(10, 10)
        png_title = "sequence_{:02}".format(seq)
        plt.savefig(self.plot_path_dir + "/" + png_title + ".pdf", bbox_inches='tight', pad_inches=0)
开发者ID:liyang1991c,项目名称:trajectory,代码行数:30,代码来源:kitti_eval_odom.py


示例18: tagcloud

def tagcloud(worddict, n=10, minsize=25, maxsize=50, minalpha=0.5, maxalpha=1.0):
    from matplotlib import pyplot as plt
    import random

    worddict = wordfreq_to_weightsize(worddict, minsize, maxsize, minalpha, maxalpha)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_position([0.0,0.0,1.0,1.0])
    plt.xticks([])
    plt.yticks([])

    words = worddict.keys()
    alphas = [v[0] for v in worddict.values()]
    sizes = [v[1] for v in worddict.values()]
    items = zip(alphas, sizes, words)
    items.sort(reverse=True)
    for alpha, size, word in items[:n]:
        # xpos = random.normalvariate(0.5, 0.3)
        # ypos = random.normalvariate(0.5, 0.3)
        xpos = random.uniform(0.0,1.0)
        ypos = random.uniform(0.0,1.0)
        ax.text(xpos, ypos, word.lower(), alpha=alpha, fontsize=size)
    ax.autoscale_view()
    return ax
开发者ID:AminJamalzadeh,项目名称:ipyparallel,代码行数:25,代码来源:wordfreq.py


示例19: plot_jacobian

def plot_jacobian(A, name, cmap= plt.cm.coolwarm, normalize=True, precision=1e-6):

    """
    Customized visualization of jacobian matrices for observing
    sparsity patterns
    """
    
    plt.figure()
    fig, ax = plt.subplots()
    
    if normalize is True:
        plt.imshow(A, interpolation='none', cmap=cmap,
                   norm = mpl.colors.Normalize(vmin=-1.,vmax=1.))
    else:
        plt.imshow(A, interpolation='none', cmap=cmap)        
    plt.colorbar(format=ticker.FuncFormatter(fmt))
    
    ax.spy(A, marker='.', markersize=0,  precision=precision)
    
    ax.spines['right'].set_visible(True)
    ax.spines['bottom'].set_visible(True)
    ax.xaxis.set_ticks_position('top')
    ax.yaxis.set_ticks_position('left')

    xlabels = np.linspace(0, A.shape[0], 5, True, dtype=int)
    ylabels = np.linspace(0, A.shape[1], 5, True, dtype=int)

    plt.xticks(xlabels)
    plt.yticks(ylabels)

    plt.savefig(name, bbox_inches='tight', pad_inches=0.05)
    
    plt.close()

    return
开发者ID:komahanb,项目名称:pchaos,代码行数:35,代码来源:plotter.py


示例20: plt_data

def plt_data():
    t = [[0,1], [1,0], [1, 1], [0, 0]]
    t2 = [1, 1, 1, 0]
    X = np.array(t)
    Y = np.array(t2)

    h = .02  # step size in the mesh

    logreg = linear_model.LogisticRegression(C=1e5)

    # we create an instance of Neighbours Classifier and fit the data.
    logreg.fit(X, Y)
    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, m_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(4, 3))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
    plt.xlabel('Sepal length')
    plt.ylabel('Sepal width')

    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())

    plt.show()
开发者ID:robsonfgomes,项目名称:Redes-Neurais,代码行数:35,代码来源:main.py



注:本文中的matplotlib.pyplot.yticks函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python cm.rainbow函数代码示例发布时间:2022-05-27
下一篇:
Python pyplot.yscale函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap