本文整理汇总了Python中matplotlib.pyplot.xlim函数的典型用法代码示例。如果您正苦于以下问题:Python xlim函数的具体用法?Python xlim怎么用?Python xlim使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xlim函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: exec_transmissions
def exec_transmissions():
IP,IP_AP,files=parser_reduce()
plt.figure("GRAPHE_D'EVOLUTION_DES_TRANSMISSIONS")
ENS_TEMPS_, TRANSMISSION_ = transmissions(files)
plt.plot(ENS_TEMPS_, TRANSMISSION_,"r.", label="Transmissions: ")
lot = map(inet_aton, IP)
lot.sort()
iplist1 = map(inet_ntoa, lot)
for i in iplist1: #ici j'affiche les annotations et vérifie si j'ai des @ip de longueur 9 ou 8 pour connaitre la taille de la fenetre du graphe
if len(i)==9:
maxim_=i[-2:] #Sera utilisé pour la taille de la fenetre du graphe
plt.annotate(' Machine: '+ i ,horizontalalignment='left', xy=(1, float(i[-2:])), xytext=(1, float(i[-2:])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
else:
maxim_=i[-1:] #Sera utilisé pour la taille de la fenetre du graphe
plt.annotate(' Machine: '+ i ,horizontalalignment='left', xy=(1, float(i[7])), xytext=(1, float(i[7])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
for i in IP_AP: #ACCESS POINT ( cas spécial )
if i[-2:]:
plt.annotate(' access point: '+ i , xy=(1, i[7]), xytext=(1, float(i[7])-0.4),arrowprops=dict(facecolor='black', shrink=0.05),)
plt.ylim(0, (float(maxim_))+1) #C'est à ça que sert le tri
plt.xlim(1, 1.1)
plt.legend(loc='best',prop={'size':10})
plt.xlabel('Temps (s)')
plt.ylabel('IP machines transmettrices')
plt.grid(True)
plt.title("GRAPHE_D'EVOLUTION_DES_TRANSMISSIONS")
plt.legend(loc='best')
plt.show()
开发者ID:Belkacem200,项目名称:PROGRES-PROJET2_MODULE1,代码行数:30,代码来源:projet+Progres_2_.py
示例2: plot_scenario
def plot_scenario(strategies, names, scenario_id=1):
probabilities = get_scenario(scenario_id)
plt.figure(figsize=(6, 4.5))
ax = plt.subplot(111)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.yticks(fontsize=14)
plt.xticks(fontsize=14)
plt.xlim((0, 1300))
# Remove the tick marks; they are unnecessary with the tick lines we just plotted.
plt.tick_params(axis="both", which="both", bottom="on", top="off",
labelbottom="on", left="off", right="off", labelleft="on")
for rank, (strategy, name) in enumerate(zip(strategies, names)):
plot_strategy(probabilities, strategy, name, rank)
plt.title("Bandits: " + str(probabilities), fontweight='bold')
plt.xlabel('Number of Trials', fontsize=14)
plt.ylabel('Cumulative Regret', fontsize=14)
plt.legend(names)
plt.show()
开发者ID:finartist,项目名称:CG1,代码行数:30,代码来源:plotbandits.py
示例3: scree_plot
def scree_plot(pca_obj, fname=None):
'''
Scree plot for variance & cumulative variance by component from PCA.
Arguments:
- pca_obj: a fitted sklearn PCA instance
- fname: path to write plot to file
Output:
- scree plot
'''
components = pca_obj.n_components_
variance = pca.explained_variance_ratio_
plt.figure()
plt.plot(np.arange(1, components + 1), np.cumsum(variance), label='Cumulative Variance')
plt.plot(np.arange(1, components + 1), variance, label='Variance')
plt.xlim([0.8, components]); plt.ylim([0.0, 1.01])
plt.xlabel('No. Components', labelpad=11); plt.ylabel('Variance Explained', labelpad=11)
plt.legend(loc='best')
plt.tight_layout()
if fname is not None:
plt.savefig(fname)
plt.close()
else:
plt.show()
return
开发者ID:thomasbrawner,项目名称:python_tools,代码行数:26,代码来源:scree_plot.py
示例4: tuning
def tuning(x, y, err=None, smooth=None, ylabel=None, pal=None):
"""
Plot a tuning curve
"""
if smooth is not None:
xs, ys = smoothfit(x, y, smooth)
plt.plot(xs, ys, linewidth=4, color="black", zorder=1)
else:
ys = asarray([0])
if pal is None:
pal = sns.color_palette("husl", n_colors=len(x) + 6)
pal = pal[2 : 2 + len(x)][::-1]
plt.scatter(x, y, s=300, linewidth=0, color=pal, zorder=2)
if err is not None:
plt.errorbar(x, y, yerr=err, linestyle="None", ecolor="black", zorder=1)
plt.xlabel("Wall distance (mm)")
plt.ylabel(ylabel)
plt.xlim([-2.5, 32.5])
errTmp = err
errTmp[isnan(err)] = 0
rng = max([nanmax(ys), nanmax(y + errTmp)])
plt.ylim([0 - rng * 0.1, rng + rng * 0.1])
plt.yticks(linspace(0, rng, 3))
plt.xticks(range(0, 40, 10))
sns.despine()
return rng
开发者ID:speron,项目名称:sofroniew-vlasov-2015,代码行数:26,代码来源:plots.py
示例5: draw
def draw(data, classes, model, resolution=100):
mycm = mpl.cm.get_cmap('Paired')
one_min, one_max = data[:, 0].min()-0.1, data[:, 0].max()+0.1
two_min, two_max = data[:, 1].min()-0.1, data[:, 1].max()+0.1
xx1, xx2 = np.meshgrid(np.arange(one_min, one_max, (one_max-one_min)/resolution),
np.arange(two_min, two_max, (two_max-two_min)/resolution))
inputs = np.c_[xx1.ravel(), xx2.ravel()]
z = []
for i in range(len(inputs)):
z.append(predict(model, inputs[i])[0])
result = np.array(z).reshape(xx1.shape)
plt.contourf(xx1, xx2, result, cmap=mycm)
plt.scatter(data[:, 0], data[:, 1], s=50, c=classes, cmap=mycm)
t = np.zeros(15)
for i in range(15):
if i < 5:
t[i] = 0
elif i < 10:
t[i] = 1
else:
t[i] = 2
plt.scatter(model[:, 0], model[:, 1], s=150, c=t, cmap=mycm)
plt.xlim([0, 10])
plt.ylim([0, 10])
plt.show()
开发者ID:jayshonzs,项目名称:ESL,代码行数:31,代码来源:LVQ.py
示例6: plot_wav_fft
def plot_wav_fft(wav_filename, desc=None):
plt.clf()
plt.figure(num=None, figsize=(6, 4))
sample_rate, X = scipy.io.wavfile.read(wav_filename)
spectrum = np.fft.fft(X)
freq = np.fft.fftfreq(len(X), 1.0 / sample_rate)
plt.subplot(211)
num_samples = 200.0
plt.xlim(0, num_samples / sample_rate)
plt.xlabel("time [s]")
plt.title(desc or wav_filename)
plt.plot(np.arange(num_samples) / sample_rate, X[:num_samples])
plt.grid(True)
plt.subplot(212)
plt.xlim(0, 5000)
plt.xlabel("frequency [Hz]")
plt.xticks(np.arange(5) * 1000)
if desc:
desc = desc.strip()
fft_desc = desc[0].lower() + desc[1:]
else:
fft_desc = wav_filename
plt.title("FFT of %s" % fft_desc)
plt.plot(freq, abs(spectrum), linewidth=5)
plt.grid(True)
plt.tight_layout()
rel_filename = os.path.split(wav_filename)[1]
plt.savefig("%s_wav_fft.png" % os.path.splitext(rel_filename)[0],
bbox_inches='tight')
开发者ID:haisland0909,项目名称:python_practice,代码行数:33,代码来源:fft.py
示例7: roc_plot
def roc_plot(y_true, y_pred):
"""Plots a receiver operating characteristic.
Parameters
----------
y_true : array_like
Observed labels, either 0 or 1.
y_pred : array_like
Predicted probabilities, floats on [0, 1].
Notes
-----
.. plot:: pyplots/roc_plot.py
References
----------
.. [1] Pedregosa, F. et al. "Scikit-learn: Machine Learning in Python."
*Journal of Machine Learning Research* 12 (2011): 2825–2830.
.. [2] scikit-learn developers. "Receiver operating characteristic (ROC)."
Last modified August 2013.
http://scikit-learn.org/stable/auto_examples/plot_roc.html.
"""
fpr, tpr, __ = roc_curve(y_true, y_pred)
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, label='ROC curve (area = {:0.2f})'.format(roc_auc))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc='lower right')
开发者ID:grivescorbett,项目名称:verhulst,代码行数:33,代码来源:plots.py
示例8: plot_dens_par_comp_single_obs
def plot_dens_par_comp_single_obs(obs, pars, comps, ax = None, legend = False, loc = 2, vline = None, xlim = None):
"""Density plot of results from both partitions and compositions with value from a single observation.
"""
if not ax:
fig = plt.figure(figsize = (3.5, 3.5))
ax = plt.subplot(111)
full_values = list(pars) + list(comps) + list([obs])
min_plot = 0.9 * min(full_values)
max_plot = 1.1 * max(full_values)
xs = np.linspace(min_plot, max_plot, 200)
cov_factor = 0.2
dens_par = comp_dens(pars, cov_factor)
dens_comp = comp_dens(comps, cov_factor)
par_plot, = plt.plot(xs, dens_par(xs), c = '#228B22', linewidth=2)
comp_plot, = plt.plot(xs, dens_comp(xs), c = '#CD69C9', linewidth=2)
ymax = 1.1 * max([max(dens_par(xs)), max(dens_comp(xs))])
plt.plot((obs, obs), (0, ymax), 'k-', linewidth = 2)
if legend:
plt.legend([par_plot, comp_plot], ['Partitions', 'Compositions'], loc = loc, prop = {'size': 10})
ax.tick_params(axis = 'both', which = 'major', labelsize = 8)
if xlim != None:
plt.xlim(xlim)
else: plt.xlim((0.9 * min(full_values), 1.1 * max(full_values)))
return ax
开发者ID:ethanwhite,项目名称:TL,代码行数:26,代码来源:TL_functions.py
示例9: plot_per_min_debate
def plot_per_min_debate(tweets, cands, interval, \
start = DEBATE_START // 60, end = DEBATE_END // 60, tic_inc = 15, save_to = None):
'''
Plots data from beg of debate to end. For Task 4a.
Note: start and end should be in minutes, not seconds
'''
fig = plt.figure(figsize = (FIGWIDTH, FIGHEIGHT))
period = range(start, end, interval)
c_dict = tweets.get_candidate_mentions_per_minute(cands, interval, period)
y = np.row_stack()
for candidate in c_dict:
plt.plot(period, c_dict[candidate], label = CANDIDATE_NAMES[candidate])
if interval == 1:
plt.title("Mentions per Minute During Debate")
else:
plt.title("Mentions per {} minutes before, during, and after debate".\
format(interval))
plt.xlabel("Time")
plt.ylabel("Number of Tweets")
plt.legend()
ticks_range = range(start, end, tic_inc)
labels = list(map(lambda x: str(x - start) + " min", ticks_range))
plt.xticks(ticks_range, labels, rotation = 'vertical')
plt.xlim( (start, end) )
if save_to:
fig.savefig(save_to)
plt.show()
开发者ID:karljiangster,项目名称:Python-Fun-Stuff,代码行数:33,代码来源:debate_tweets.py
示例10: plot_dens
def plot_dens(obs, expc, obs_type, ax = None, legend = False, loc = 2, vline = None, xlim = None):
"""Plot the density of observed and expected values, with spatial and temporal observations
distinguished by color.
"""
if not ax:
fig = plt.figure(figsize = (3.5, 3.5))
ax = plt.subplot(111)
obs_spatial = [obs[i] for i in range(len(obs)) if obs_type[i] == 'spatial']
obs_temporal = [obs[i] for i in range(len(obs)) if obs_type[i] == 'temporal']
full_values = list(obs) + list(expc)
min_plot = 0.9 * min(full_values)
max_plot = 1.1 * max(full_values)
xs = np.linspace(min_plot, max_plot, 200)
cov_factor = 0.2
dens_obs_spatial = comp_dens(obs_spatial, cov_factor)
dens_obs_temporal = comp_dens(obs_temporal, cov_factor)
dens_expc = comp_dens(expc, cov_factor)
spat, = plt.plot(xs, dens_obs_spatial(xs), c = '#EE4000', linewidth=2)
temp, = plt.plot(xs, dens_obs_temporal(xs), c = '#1C86EE', linewidth=2)
feas, = plt.plot(xs, dens_expc(xs), 'k-', linewidth=2)
if vline != None:
ymax = 1.1 * max([max(dens_obs_spatial(xs)), max(dens_obs_temporal(xs)), max(dens_expc(xs))])
plt.plot((vline, vline), (0, ymax), 'k--')
if legend:
plt.legend([spat, temp, feas], ['Spatial', 'Temporal', 'Feasible Set'], loc = loc, prop = {'size': 8})
ax.tick_params(axis = 'both', which = 'major', labelsize = 6)
if xlim != None:
plt.xlim(xlim)
return ax
开发者ID:ethanwhite,项目名称:TL,代码行数:32,代码来源:TL_functions.py
示例11: plot_dens_par_comp
def plot_dens_par_comp(obs, pars, comps, ax = None, legend = False, loc = 2, vline = None, xlim = None):
"""Density plot of the spatial and temporal data pooled together, and results from both partitions and compositions.
"""
if not ax:
fig = plt.figure(figsize = (3.5, 3.5))
ax = plt.subplot(111)
full_values = list(obs) + list(pars) + list(comps)
min_plot = 0.9 * min(full_values)
max_plot = 1.1 * max(full_values)
xs = np.linspace(min_plot, max_plot, 200)
cov_factor = 0.2
dens_obs = comp_dens(obs, cov_factor)
dens_par = comp_dens(pars, cov_factor)
dens_comp = comp_dens(comps, cov_factor)
obs_plot, = plt.plot(xs, dens_obs(xs), 'k-', linewidth=2)
par_plot, = plt.plot(xs, dens_par(xs), c = '#228B22', linewidth=2)
comp_plot, = plt.plot(xs, dens_comp(xs), c = '#CD69C9', linewidth=2)
if vline != None:
ymax = 1.1 * max([max(dens_obs(xs)), max(dens_par(xs)), max(dens_comp(xs))])
plt.plot((vline, vline), (0, ymax), 'k--')
if legend:
plt.legend([obs_plot, par_plot, comp_plot], ['Empirical', 'Partitions', 'Compositions'], loc = loc, prop = {'size': 8})
ax.tick_params(axis = 'both', which = 'major', labelsize = 6)
if xlim != None:
plt.xlim(xlim)
return ax
开发者ID:ethanwhite,项目名称:TL,代码行数:28,代码来源:TL_functions.py
示例12: plot_obs_expc_new
def plot_obs_expc_new(obs, expc, expc_upper, expc_lower, analysis, log, ax = None):
"""Modified version of obs-expc plot suggested by R2. The points are separated by whether their CIs are above, below,
or overlapping the empirical value
Input:
obs - list of observed values
expc_mean - list of mean simulated values for the corresponding observed values
expc_upper - list of the 97.5% quantile of the simulated vlaues
expc_lower - list of the 2.5% quantile of the simulated values
analysis - whether it is patitions or compositions
log - whether the y axis is to be transformed. If True, expc/obs is plotted. If Flase, expc - obs is plotted.
ax - whether the plot is generated on a given figure, or a new plot object is to be created
"""
obs, expc, expc_upper, expc_lower = list(obs), list(expc), list(expc_upper), list(expc_lower)
if not ax:
fig = plt.figure(figsize = (3.5, 3.5))
ax = plt.subplot(111)
ind_above = [i for i in range(len(obs)) if expc_lower[i] > obs[i]]
ind_below = [i for i in range(len(obs)) if expc_upper[i] < obs[i]]
ind_overlap = [i for i in range(len(obs)) if expc_lower[i] <= obs[i] <= expc_upper[i]]
if log:
expc_standardize = [expc[i] / obs[i] for i in range(len(obs))]
expc_upper_standardize = [expc_upper[i] / obs[i] for i in range(len(obs))]
expc_lower_standardize = [expc_lower[i] / obs[i] for i in range(len(obs))]
axis_min = 0.9 * min([expc_lower_standardize[i] for i in range(len(expc_lower_standardize)) if expc_lower_standardize[i] != 0])
axis_max = 1.5 * max(expc_upper_standardize)
else:
expc_standardize = [expc[i] - obs[i] for i in range(len(obs))]
expc_upper_standardize = [expc_upper[i] - obs[i] for i in range(len(obs))]
expc_lower_standardize = [expc_lower[i] - obs[i] for i in range(len(obs))]
axis_min = 1.1 * min(expc_lower_standardize)
axis_max = 1.1 * max(expc_upper_standardize)
if analysis == 'partition': col = '#228B22'
else: col = '#CD69C9'
ind_full = []
for index in [ind_below, ind_overlap, ind_above]:
expc_standardize_ind = [expc_standardize[i] for i in index]
sort_ind_ind = sorted(range(len(expc_standardize_ind)), key = lambda i: expc_standardize_ind[i])
sorted_index = [index[i] for i in sort_ind_ind]
ind_full.extend(sorted_index)
xaxis_max = len(ind_full)
for i, ind in enumerate(ind_full):
plt.plot([i, i],[expc_lower_standardize[ind], expc_upper_standardize[ind]], '-', c = col, linewidth = 0.4)
plt.scatter(range(len(ind_full)), [expc_standardize[i] for i in ind_full], c = col, edgecolors='none', s = 8)
if log:
plt.plot([0, xaxis_max + 1], [1, 1], 'k-', linewidth = 1.5)
ax.set_yscale('log')
else: plt.plot([0, xaxis_max + 1], [0, 0], 'k-', linewidth = 1.5)
plt.plot([len(ind_below) - 0.5, len(ind_below) - 0.5], [axis_min, axis_max], 'k--')
plt.plot([len(ind_below) + len(ind_overlap) - 0.5, len(ind_below) + len(ind_overlap) - 0.5], [axis_min, axis_max], 'k--')
plt.xlim(0, xaxis_max)
plt.ylim(axis_min, axis_max)
plt.tick_params(axis = 'y', which = 'major', labelsize = 8, labelleft = 'on')
plt.tick_params(axis = 'x', which = 'major', top = 'off', bottom = 'off', labelbottom = 'off')
return ax
开发者ID:ethanwhite,项目名称:TL,代码行数:60,代码来源:TL_functions.py
示例13: plot_convergence
def plot_convergence():
data = np.loadtxt("smooth-error.out")
nx = data[:,0]
aerr = data[:,1]
ax = plt.subplot(111)
ax.set_xscale('log')
ax.set_yscale('log')
plt.scatter(nx, aerr, marker="x", color="r")
plt.plot(nx, aerr[0]*(nx[0]/nx)**2, "--", color="k")
plt.xlabel("number of zones")
plt.ylabel("L2 norm of abs error")
plt.title(r"convergence for smooth advection problem", fontsize=11)
f = plt.gcf()
f.set_size_inches(5.0,5.0)
plt.xlim(8,256)
plt.savefig("smooth_converge.eps", bbox_inches="tight")
开发者ID:MrHelloBye,项目名称:pyro2,代码行数:25,代码来源:convergence_plot.py
示例14: plt_data
def plt_data():
t = [[0,1], [1,0], [1, 1], [0, 0]]
t2 = [1, 1, 1, 0]
X = np.array(t)
Y = np.array(t2)
h = .02 # step size in the mesh
logreg = linear_model.LogisticRegression(C=1e5)
# we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, Y)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
开发者ID:robsonfgomes,项目名称:Redes-Neurais,代码行数:35,代码来源:main.py
示例15: make_entity_plot
def make_entity_plot(filename, title, fixed_noip, fixed_ip, dynamic_noip, dynamic_ip):
plt.figure(figsize=(12,5))
plt.title("Settings comparison - " + title)
plt.xlabel('Time (ms)', fontsize=12)
plt.xlim([0,62000])
x = 0
barwidth = 0.5
bargroupspacing = 1.5
fixed_noip_mean,fixed_noip_conf = conf_stats(fixed_noip)
fixed_ip_mean,fixed_ip_conf = conf_stats(fixed_ip)
dynamic_noip_mean,dynamic_noip_conf = conf_stats(dynamic_noip)
dynamic_ip_mean,dynamic_ip_conf = conf_stats(dynamic_ip)
values = [fixed_noip_mean,fixed_ip_mean,dynamic_noip_mean, dynamic_ip_mean]
errs = [fixed_noip_conf,fixed_ip_conf,dynamic_noip_conf, dynamic_ip_conf]
y_pos = numpy.arange(len(values))
plt.barh(y_pos, values, xerr=errs, align='center', color=['r', 'b', 'r', 'b'], ecolor='black', alpha=0.7)
plt.yticks(y_pos, ["Fixed | no I.P.", "Fixed | I.P.", "Dynamic | no I.P.", "Dynamic | I.P."])
plt.savefig(output_file(filename))
plt.clf()
开发者ID:SuperV1234,项目名称:bcs_thesis,代码行数:25,代码来源:plot_ip.py
示例16: plot_stack_candidates
def plot_stack_candidates(tweets, cands, interval, start = 0, \
end = MAX_TIME // 60, tic_inc = 120, save_to = None):
'''
Plots stackplot for the candidates in list cands over the time interval
'''
period = range(start, end, interval)
percent_dict = tweets.mention_minute_percent(cands, interval, period)
y = []
fig = plt.figure(figsize = (FIGWIDTH, FIGHEIGHT))
legends = []
for candidate in percent_dict:
y.append(percent_dict[candidate])
legends.append(CANDIDATE_NAMES[candidate])
plt.stackplot(period, y)
plt.title("Percentage of Mentions per {} minutes before, during, \
and after debate".format(interval))
plt.xlabel("Time")
plt.ylabel("Number of Tweets")
plt.legend(y, legends)
ticks_range = range(start, end, tic_inc)
labels = list(map(lambda x: str(x - start) + " min", ticks_range))
plt.xticks(ticks_range, labels, rotation = 'vertical')
plt.xlim( (start, end) )
plt.ylim( (0.0, 1.0))
if save_to:
fig.savefig(save_to)
plt.show()
开发者ID:karljiangster,项目名称:Python-Fun-Stuff,代码行数:32,代码来源:debate_tweets.py
示例17: entries_histogram
def entries_histogram(turnstile_weather):
'''
Before we perform any analysis, it might be useful to take a
look at the data we're hoping to analyze. More specifically, lets
examine the hourly entries in our NYC subway data and determine what
distribution the data follows. This data is stored in a dataframe
called turnstile_weather under the ['ENTRIESn_hourly'] column.
Why don't you plot two histograms on the same axes, showing hourly
entries when raining vs. when not raining. Here's an example on how
to plot histograms with pandas and matplotlib:
turnstile_weather['column_to_graph'].hist()
Your histograph may look similar to the following graph:
http://i.imgur.com/9TrkKal.png
You can read a bit about using matplotlib and pandas to plot
histograms:
http://pandas.pydata.org/pandas-docs/stable/visualization.html#histograms
You can look at the information contained within the turnstile weather data at the link below:
https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv
'''
plt.figure()
(turnstile_weather[turnstile_weather.rain==0].ENTRIESn_hourly).hist(bins=175) # your code here to plot a historgram for hourly entries when it is not raining
(turnstile_weather[turnstile_weather.rain==1].ENTRIESn_hourly).hist(bins=175) # your code here to plot a historgram for hourly entries when it is raining
plt.ylim(ymax = 45000, ymin = 0)
plt.xlim(xmax = 6000, xmin = 0)
return plt
开发者ID:ricaenriquez,项目名称:intro_to_ds,代码行数:29,代码来源:plot_histogram.py
示例18: plotFFT
def plotFFT(self):
# Generates plot of the FFT output. To view, run plotFFT.py in a separate terminal
figure1 = plt.figure(num= None, figsize=(12,12), dpi=80, facecolor='w', edgecolor='w')
plot1 = figure1.add_subplot(111)
line1, = plot1.plot( np.arange(0,512,0.5), np.zeros(1024), 'g-')
plt.xlabel('freq (MHz)',fontsize = 12)
plt.ylabel('Amplitude',fontsize = 12)
plt.title('Pre-mixer FFT',fontsize = 12)
plt.xticks(np.arange(0,512,50))
plt.xlim((0,512))
plt.grid()
plt.show(block = False)
count = 0
stop = 1.0e6
while(count < stop):
overflow = np.fromstring(self.fpga.read('overflow', 4), dtype = '>B')
print overflow
self.fpga.write_int('fft_snap_ctrl',0)
self.fpga.write_int('fft_snap_ctrl',1)
fft_snap = (np.fromstring(self.fpga.read('fft_snap_bram',(2**9)*8),dtype='>i2')).astype('float')
I0 = fft_snap[0::4]
Q0 = fft_snap[1::4]
I1 = fft_snap[2::4]
Q1 = fft_snap[3::4]
mag0 = np.sqrt(I0**2 + Q0**2)
mag1 = np.sqrt(I1**2 + Q1**2)
fft_mags = np.hstack(zip(mag0,mag1))
plt.ylim((0,np.max(fft_mags) + 300.))
line1.set_ydata((fft_mags))
plt.draw()
count += 1
开发者ID:braddober,项目名称:blastfirmware,代码行数:31,代码来源:blastfirmware_dirfile.py
示例19: predicted_probabilities
def predicted_probabilities(y_true, y_pred, n_groups=30):
"""Plots the distribution of predicted probabilities.
Parameters
----------
y_true : array_like
Observed labels, either 0 or 1.
y_pred : array_like
Predicted probabilities, floats on [0, 1].
n_groups : int, optional
The number of groups to create. The default value is 30.
Notes
-----
.. plot:: pyplots/predicted_probabilities.py
"""
plt.hist(y_pred, n_groups)
plt.xlim([0, 1])
plt.xlabel('Predicted Probability')
plt.ylabel('Count')
title = 'Distribution of Predicted Probabilities (n = {})'
plt.title(title.format(len(y_pred)))
plt.tight_layout()
开发者ID:grivescorbett,项目名称:verhulst,代码行数:25,代码来源:plots.py
示例20: plot_fidelity_lorentzian
def plot_fidelity_lorentzian(constants):
"""
Plots the Fidelity vs FSS curve with and without decoherence.
"""
qd = QuantumDot(constants.xtau, constants.xxtau, constants.ptau, constants.FSS, constants.crosstau)
fss = np.linspace(-10., 10., 500)*1e-6
qd.crosstau = 0.
no_decoherence = np.array([qd.ideal_fidelity_lorentzian(f)[0] for f in fss])
qd.crosstau = 1.
with_decoherence = np.array([qd.ideal_fidelity_lorentzian(f)[0] for f in fss])
fss = fss/1e-6
decoherence = qd.ideal_fidelity_lorentzian(1e-6)[1]
plt.figure(figsize = (16./1.3, 9./1.3))
plt.plot(fss, no_decoherence, 'r--', fss, with_decoherence, 'b--')
plt.xlim([-10, 10]) ; plt.ylim([0.45, 1])
plt.xlabel('Fine structure splitting $eV$') ; plt.ylabel('Fidelity')
plt.xticks(np.linspace(-10, 10, 11))
plt.legend(['No decoherence', 'With $1^{st}$ coherence: ' + np.array(decoherence).astype('|S3').tostring()])
plt.show()
开发者ID:eoinmurray,项目名称:icarus2,代码行数:26,代码来源:QuantumDotTest.py
注:本文中的matplotlib.pyplot.xlim函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论