本文整理汇总了Python中matplotlib.pyplot.show函数的典型用法代码示例。如果您正苦于以下问题:Python show函数的具体用法?Python show怎么用?Python show使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了show函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: get_gabors
def get_gabors(self, rf):
lams = float(rf[0])/self.sfs # lambda = 1./sf #1./np.array([.1,.25,.4])
sigma = rf[0]/2./np.pi
# rf = [100,100]
gabors = np.zeros(( len(oris),len(phases),len(lams), rf[0], rf[1] ))
i = np.arange(-rf[0]/2+1,rf[0]/2+1)
#print i
j = np.arange(-rf[1]/2+1,rf[1]/2+1)
ii,jj = np.meshgrid(i,j)
for o, theta in enumerate(self.oris):
x = ii*np.cos(theta) + jj*np.sin(theta)
y = -ii*np.sin(theta) + jj*np.cos(theta)
for p, phase in enumerate(self.phases):
for s, lam in enumerate(lams):
fxx = np.cos(2*np.pi*x/lam + phase) * np.exp(-(x**2+y**2)/(2*sigma**2))
fxx -= np.mean(fxx)
fxx /= np.linalg.norm(fxx)
#if p==0:
#plt.subplot(len(oris),len(lams),count+1)
#plt.imshow(fxx,cmap=mpl.cm.gray,interpolation='bicubic')
#count+=1
gabors[o,p,s,:,:] = fxx
plt.show()
return gabors
开发者ID:Pulvinar,项目名称:psychopy_ext,代码行数:28,代码来源:models.py
示例2: plot_figure
def plot_figure(data, row_labels, col_labels, abs_val, plot_bin, labels, time, logInterval):
colors = ['#0077FF', '#FF0000', '#00FF00', 'magenta']
cmaps = []
for i in colors:
cmaps.append(mpl.colors.LinearSegmentedColormap.from_list('m1',['black',i]))
dim, rows, cols = data.shape
vmax = np.amax(data)
vmin = np.amin(data)
fig, ax = plt.subplots()
c = np.zeros([rows, cols, 4])
for i in range(dim):
c = np.add(c, cmaps[i]((data[i]-vmin)/(vmax-vmin)))
c = np.clip(c, 0, 1)
pc = ax.imshow(c, aspect='auto', interpolation='none')
#ax.set_title(labels[0])
fig.text(0.5, 0.04, 'Bin # along rod length', ha='center',
fontsize=fontsize)
fig.text(0.0, 0.5, 'Time (s)', va='center', rotation='vertical',
fontsize=fontsize)
#ax.add_patch(Rectangle((0.5, time/logInterval), cols-1, 10, edgecolor='w',
# facecolor='none'))
#ax.add_patch(Rectangle((bin_id, 0.5/logInterval), 1, rows-0.5/logInterval,
# edgecolor='w', facecolor='none'))
#plt.savefig('kymo.png', bbox_inches='tight')
plt.savefig('3rods_1long_kymo.pdf')
plt.show()
开发者ID:satya-arjunan,项目名称:spatiocyte-models,代码行数:26,代码来源:plot3rods.py
示例3: plot_predict_is
def plot_predict_is(self,h=5,**kwargs):
""" Plots forecasts with the estimated model against data
(Simulated prediction with data)
Parameters
----------
h : int (default : 5)
How many steps to forecast
Returns
----------
- Plot of the forecast against data
"""
figsize = kwargs.get('figsize',(10,7))
plt.figure(figsize=figsize)
date_index = self.index[-h:]
predictions = self.predict_is(h)
data = self.data[-h:]
t_params = self.transform_z()
plt.plot(date_index,np.abs(data-t_params[-1]),label='Data')
plt.plot(date_index,predictions,label='Predictions',c='black')
plt.title(self.data_name)
plt.legend(loc=2)
plt.show()
开发者ID:ekote,项目名称:pyflux,代码行数:28,代码来源:egarchmreg.py
示例4: plotResults
def plotResults(datasetName, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix):
"""
Plots the errors for a particular dataset on a bar graph.
"""
for k in range(len(sampleMethods)):
outfileName = outputDir + datasetName + sampleMethods[k] + fileNameSuffix + ".npz"
data = numpy.load(outfileName)
errors = data["arr_0"]
meanMeasures = numpy.mean(errors, 0)
for i in range(sampleSizes.shape[0]):
plt.figure(k*len(sampleMethods) + i)
plt.title("n="+str(sampleSizes[i]) + " " + sampleMethods[k])
for j in range(errors.shape[3]):
plt.plot(foldsSet, meanMeasures[i, :, j])
plt.xlabel("Folds")
plt.ylabel('Error')
labels = ["VFCV", "PenVF+"]
labels.extend(["VFP s=" + str(x) for x in cvScalings])
plt.legend(tuple(labels))
plt.show()
开发者ID:pierrebo,项目名称:wallhack,代码行数:25,代码来源:ProcessResults.py
示例5: main
def main():
# http://scikit-learn.org/stable/tutorial/basic/tutorial.html#loading-an-example-dataset
# "A dataset is a dictionary-like object that holds all the data and some
# metadata about the data. This data is stored in the .data member, which
# is a n_samples, n_features array. In the case of supervised problem, one
# or more response variables are stored in the .target member."
# Toy datasets
iris = datasets.load_iris() # The iris dataset (classification)
digits = datasets.load_digits() # The digits dataset (classification)
#boston = datasets.load_boston() # The boston house-prices dataset (regression)
#diabetes = datasets.load_diabetes() # The diabetes dataset (regression)
#linnerud = datasets.load_linnerud() # The linnerud dataset (multivariate regression)
print(iris.feature_names)
print(iris.data)
print(iris.target_names)
print(iris.target)
print(digits.images[0])
print(digits.target_names)
print(digits.target)
plt.imshow(digits.images[0], cmap='gray', interpolation='nearest')
plt.show()
开发者ID:jeremiedecock,项目名称:snippets,代码行数:28,代码来源:datasets.py
示例6: work
def work(self):
self.worked = True
kwargs = dict(
weights=self.weights,
mus=self.mus,
sigmas=self.sigmas,
low=self.low,
high=self.high,
q=self.q,
)
samples = GMM1(rng=self.rng,
size=(self.n_samples,),
**kwargs)
samples = np.sort(samples)
edges = samples[::self.samples_per_bin]
#print samples
pdf = np.exp(GMM1_lpdf(edges[:-1], **kwargs))
dx = edges[1:] - edges[:-1]
y = 1 / dx / len(dx)
if self.show:
plt.scatter(edges[:-1], y)
plt.plot(edges[:-1], pdf)
plt.show()
err = (pdf - y) ** 2
print np.max(err)
print np.mean(err)
print np.median(err)
if not self.show:
assert np.max(err) < .1
assert np.mean(err) < .01
assert np.median(err) < .01
开发者ID:AshBT,项目名称:hyperopt,代码行数:33,代码来源:test_tpe.py
示例7: filterFunc
def filterFunc():
rects = []
hsv_planes = [[[]]]
if os.path.isfile(Image_File):
BGR=cv2.imread(Image_File)
gray = cv2.cvtColor(BGR, cv2.COLOR_BGR2GRAY)
img = gray
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
plt.subplot(221),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
FiltzeredFFT = HighPassFilter(fshift, 60)
plt.subplot(223),plt.imshow(np.abs(FiltzeredFFT), cmap = 'gray')
plt.title('Filtered'), plt.xticks([]), plt.yticks([])
f_ishift = np.fft.ifftshift(FiltzeredFFT)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)
plt.subplot(224),plt.imshow(np.abs(img_back), cmap = 'gray')
plt.title('Filtered Image'), plt.xticks([]), plt.yticks([])
plt.show()
开发者ID:mhhm2005eg,项目名称:FaceDetection,代码行数:28,代码来源:Filters.py
示例8: plotIterationResult
def plotIterationResult(train_err_list):
x = range(1,len(train_err_list) + 1)
fig = plt.figure()
plt.plot(x,train_err_list)
plt.xlabel('iterations')
plt.ylabel('training error')
plt.show()
开发者ID:preet11,项目名称:MLProjects_FALL_McGill,代码行数:7,代码来源:part1_as1.py
示例9: draw
def draw(data, classes, model, resolution=100):
mycm = mpl.cm.get_cmap('Paired')
one_min, one_max = data[:, 0].min()-0.1, data[:, 0].max()+0.1
two_min, two_max = data[:, 1].min()-0.1, data[:, 1].max()+0.1
xx1, xx2 = np.meshgrid(np.arange(one_min, one_max, (one_max-one_min)/resolution),
np.arange(two_min, two_max, (two_max-two_min)/resolution))
inputs = np.c_[xx1.ravel(), xx2.ravel()]
z = []
for i in range(len(inputs)):
z.append(predict(model, inputs[i])[0])
result = np.array(z).reshape(xx1.shape)
plt.contourf(xx1, xx2, result, cmap=mycm)
plt.scatter(data[:, 0], data[:, 1], s=50, c=classes, cmap=mycm)
t = np.zeros(15)
for i in range(15):
if i < 5:
t[i] = 0
elif i < 10:
t[i] = 1
else:
t[i] = 2
plt.scatter(model[:, 0], model[:, 1], s=150, c=t, cmap=mycm)
plt.xlim([0, 10])
plt.ylim([0, 10])
plt.show()
开发者ID:jayshonzs,项目名称:ESL,代码行数:31,代码来源:LVQ.py
示例10: plotTestData
def plotTestData(tree):
plt.figure()
plt.axis([0,1,0,1])
plt.xlabel("X axis")
plt.ylabel("Y axis")
plt.title("Green: Class1, Red: Class2, Blue: Class3, Yellow: Class4")
for value in class1:
plt.plot(value[0],value[1],'go')
plt.hold(True)
for value in class2:
plt.plot(value[0],value[1],'ro')
plt.hold(True)
for value in class3:
plt.plot(value[0],value[1],'bo')
plt.hold(True)
for value in class4:
plt.plot(value[0],value[1],'yo')
plotRegion(tree)
for value in classPlot1:
plt.plot(value[0],value[1],'g.',ms=3.0)
plt.hold(True)
for value in classPlot2:
plt.plot(value[0],value[1],'r.', ms=3.0)
plt.hold(True)
for value in classPlot3:
plt.plot(value[0],value[1],'b.', ms=3.0)
plt.hold(True)
for value in classPlot4:
plt.plot(value[0],value[1],'y.', ms=3.0)
plt.grid(True)
plt.show()
开发者ID:swatibhartiya,项目名称:Metal-Scrap-Sorter,代码行数:31,代码来源:executeDT.py
示例11: plotJ
def plotJ(J_history,num_iters):
x = np.arange(1,num_iters+1)
plt.plot(x,J_history)
plt.xlabel(u"迭代次数",fontproperties=font) # 注意指定字体,要不然出现乱码问题
plt.ylabel(u"代价值",fontproperties=font)
plt.title(u"代价随迭代次数的变化",fontproperties=font)
plt.show()
开发者ID:FeiCat-wly,项目名称:MachineLearning_Python,代码行数:7,代码来源:LinearRegression.py
示例12: zplane
def zplane(self, title="", fontsize=18):
""" Display filter in the complex plane
Parameters
----------
"""
rb = self.z
ra = self.p
t = np.arange(0, 2 * np.pi + 0.1, 0.1)
plt.plot(np.cos(t), np.sin(t), "k")
plt.plot(np.real(ra), np.imag(ra), "x", color="r")
plt.plot(np.real(rb), np.imag(rb), "o", color="b")
M1 = -10000
M2 = -10000
if len(ra) > 0:
M1 = np.max([np.abs(np.real(ra)), np.abs(np.imag(ra))])
if len(rb) > 0:
M2 = np.max([np.abs(np.real(rb)), np.abs(np.imag(rb))])
M = 1.6 * max(1.2, M1, M2)
plt.axis([-M, M, -0.7 * M, 0.7 * M])
plt.title(title, fontsize=fontsize)
plt.show()
开发者ID:tattoxcm,项目名称:pylayers,代码行数:25,代码来源:DF.py
示例13: one_file_features
def one_file_features(self, im, demo=False):
"""
Zde je kontruován vektor příznaků pro klasfikátor
"""
# color processing
fd = np.array([])
img = skimage.color.rgb2gray(im)
# graylevel
if self.hogFeatures:
pass
if self.grayLevelFeatures:
imr = skimage.transform.resize(img, [9, 9])
glfd = imr.reshape(-1)
fd = np.append(fd, glfd)
if demo:
plt.imshow(imr)
plt.show()
#fd.append(hsvft[:])
if self.colorFeatures:
#fd = np.append(fd, colorft)
pass
#print hog_image
return fd
开发者ID:mjirik,项目名称:ZDO2014sample_solution,代码行数:28,代码来源:ZDO2014sample_solution.py
示例14: display
def display(spectrum):
template = np.ones(len(spectrum))
#Get the plot ready and label the axes
pyp.plot(spectrum)
max_range = int(math.ceil(np.amax(spectrum) / standard_deviation))
for i in range(0, max_range):
pyp.plot(template * (mean + i * standard_deviation))
pyp.xlabel('Units?')
pyp.ylabel('Amps Squared')
pyp.title('Mean Normalized Power Spectrum')
if 'V' in Options:
pyp.show()
if 'v' in Options:
tokens = sys.argv[-1].split('.')
filename = tokens[0] + ".png"
input = ''
if os.path.isfile(filename):
input = input("Error: Plot file already exists! Overwrite? (y/n)\n")
while input != 'y' and input != 'n':
input = input("Please enter either \'y\' or \'n\'.\n")
if input == 'y':
pyp.savefig(filename)
else:
print("Plot not written.")
else:
pyp.savefig(filename)
开发者ID:seadsystem,项目名称:Backend,代码行数:27,代码来源:Analysis3.py
示例15: vis_result
def vis_result(image, seg, gt, title1='Segmentation', title2='Ground truth', savefile=None):
indices = np.where(seg >= 0.5)
indices_gt = np.where(gt >= 0.5)
im_norm = image / image.max()
rgb_image = color.gray2rgb(im_norm)
multiplier = [0., 1., 1.]
multiplier_gt = [1., 1., 0.]
im_seg = rgb_image.copy()
im_gt = rgb_image.copy()
im_seg[indices[0], indices[1], :] *= multiplier
im_gt[indices_gt[0], indices_gt[1], :] *= multiplier_gt
fig = plt.figure()
a = fig.add_subplot(1, 2, 1)
plt.imshow(im_seg)
a.set_title(title1)
a = fig.add_subplot(1, 2, 2)
plt.imshow(im_gt)
a.set_title(title2)
if savefile is None:
plt.show()
else:
plt.savefig(savefile)
plt.close()
开发者ID:jhzhou1111,项目名称:CNNbasedMedicalSegmentation,代码行数:27,代码来源:demo.py
示例16: main
def main():
"""The main function."""
# Build data ################
x = np.arange(0, 10000, 500)
y = np.arange(0, 1, 0.05)
xx, yy = np.meshgrid(x, y)
z = np.power(xx,yy)
print "xx ="
print xx
print "yy ="
print yy
print "z ="
print z
# Plot data #################
fig = plt.figure()
ax = axes3d.Axes3D(fig)
surf = ax.plot_surface(xx, yy, z, cmap=cm.jet, rstride=1, cstride=1, color='b', shade=True)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
开发者ID:gandalfvn,项目名称:mcts-1,代码行数:32,代码来源:pw_func.py
示例17: main
def main():
# use sys.argv if needed
print('starting boids...')
parser = argparse.ArgumentParser(description="Implementing Craig Reynold's Boids...")
# add arguments
parser.add_argument('--num-boids', dest='N', required=False)
args = parser.parse_args()
# number of boids
N = 100
if args.N:
N = int(args.N)
# create boids
boids = Boids(N)
# setup plot
fig = plt.figure()
ax = plt.axes(xlim=(0, width), ylim=(0, height))
pts, = ax.plot([], [], markersize=10,
c='k', marker='o', ls='None')
beak, = ax.plot([], [], markersize=4,
c='r', marker='o', ls='None')
anim = animation.FuncAnimation(fig, tick, fargs=(pts, beak, boids),
interval=50)
# add a "button press" event handler
cid = fig.canvas.mpl_connect('button_press_event', boids.buttonPress)
plt.show()
开发者ID:marianodominguez,项目名称:samples,代码行数:32,代码来源:boids.py
示例18: build_hist
def build_hist(self, coverage, show=False, save=False, save_fn="max_hist_plot"):
"""
Build a histogram to determine what the maxes look & visualize match_count
Might be used to determine a resonable threshold
@param coverage: the average coverage for an single nt
@param show: Show visualization with match maxes
@param save_fn: Save to disk with this file name or else it will be the default
@return: the histogram array
"""
#import matplotlib
#matplotlib.use("Agg")
import matplotlib.pyplot as plt
maxes = self.match_count.max(1) # get maxes along 1st dim
h = plt.hist(maxes, bins=self.match_count.shape[0]) # figure out where the majority
plt.ylabel("Frequency")
plt.xlabel("Count per index")
plt.title("Frequency count histogram")
if show: plt.show()
if save: plt.savefig(save_fn, dpi=160, frameon=False)
return h[0]
开发者ID:disa-mhembere,项目名称:Guided-Assembler,代码行数:27,代码来源:reference.py
示例19: plot_scenario
def plot_scenario(strategies, names, scenario_id=1):
probabilities = get_scenario(scenario_id)
plt.figure(figsize=(6, 4.5))
ax = plt.subplot(111)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.yticks(fontsize=14)
plt.xticks(fontsize=14)
plt.xlim((0, 1300))
# Remove the tick marks; they are unnecessary with the tick lines we just plotted.
plt.tick_params(axis="both", which="both", bottom="on", top="off",
labelbottom="on", left="off", right="off", labelleft="on")
for rank, (strategy, name) in enumerate(zip(strategies, names)):
plot_strategy(probabilities, strategy, name, rank)
plt.title("Bandits: " + str(probabilities), fontweight='bold')
plt.xlabel('Number of Trials', fontsize=14)
plt.ylabel('Cumulative Regret', fontsize=14)
plt.legend(names)
plt.show()
开发者ID:finartist,项目名称:CG1,代码行数:30,代码来源:plotbandits.py
示例20: main
def main():
gw = gridworld()
a = agent(gw)
for epoch in range(20):
a.initEpoch()
while True:
rwd, stat, act = a.takeAction()
a.updateQ(rwd, stat, act)
if gw.status() == 'Goal':
break
if mod(a.counter, 10)==0:
print(gw.state())
print(gw.field())
print('Finished')
print(a.counter)
print(gw.state())
print(gw.field())
Q = transpose(a.Q(), (2,0,1))
for i in range(4):
plt.subplot(2,2,i)
plt.imshow(Q[i], interpolation='nearest')
plt.title(a.actions()[i])
plt.colorbar()
plt.show()
开发者ID:PRMLiA,项目名称:tsho,代码行数:25,代码来源:gridworld.py
注:本文中的matplotlib.pyplot.show函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论