本文整理汇总了Python中matplotlib.pyplot.register_cmap函数的典型用法代码示例。如果您正苦于以下问题:Python register_cmap函数的具体用法?Python register_cmap怎么用?Python register_cmap使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了register_cmap函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: myblues
def myblues(self):
cdict={'red': ((0.0,1.0,1.0),(1.0,0.0,0.0)),
'green': ((0.0,1.0,1.0),(1.0,0.0,0.0)),
'blue': ((0.0,1.0,1.0),(1.0,1.0,1.0))}
myblues=LinearSegmentedColormap('MyBlues',cdict)
plot.register_cmap(cmap=myblues)
self.cmap='MyBlues'
开发者ID:zyh329,项目名称:o2scl,代码行数:7,代码来源:o2py.py
示例2: custom_cmap
def custom_cmap(_sample, _reverse=False):
midpoint = .5
from scipy.ndimage import imread
im = imread(_sample, mode='RGBA')
im = im[10:-10,20:-20,:]
im = im/im.max()
if _reverse:
im = np.rot90(im,2)
nx,ny,nz = im.shape
my_index = np.linspace(0,ny,257, endpoint=False)
cdict = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
shift_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129, endpoint=True)
])
for i, si in zip(my_index, shift_index):
i = int(i)
r,g,b,a = (im[0,i,0],
im[0,i,1],
im[0,i,2],
im[0,i,3])
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
mycmap = matplotlib.colors.LinearSegmentedColormap('custom', cdict)
plt.register_cmap(cmap=mycmap)
return mycmap
开发者ID:fhorta,项目名称:palette2colormap,代码行数:33,代码来源:palette2colormap.py
示例3: shifted_cmap
def shifted_cmap(cmap,vmin,vmax,start=0.0,stop=1.0,name='new_cmap'):
""" This code comes primarily from an answer to a question on stackoverflow
url as of 2016-06-30 was http://stackoverflow.com/questions/7404116/defining-the-midpoint-of-a-colormap-in-matplotlib
and the answer / code was from Paul H. http://stackoverflow.com/users/1552748/paul-h
"""
mid = 1.0-vmax/(vmax + np.absolute(vmin))
colors = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
reg_index = np.linspace(start,stop,257)
shift_index = np.hstack([
np.linspace(0.0, mid, 128, endpoint=False),
np.linspace(mid, 1.0, 129, endpoint=True)
])
for ri, si in zip(reg_index, shift_index):
r, g, b, a = cmap(ri)
colors['red'].append((si, r, r))
colors['green'].append((si, g, g))
colors['blue'].append((si, b, b))
colors['alpha'].append((si, a, a))
newcmap = matplotlib.colors.LinearSegmentedColormap(name, colors)
plt.register_cmap(cmap=newcmap)
return newcmap
开发者ID:daviddewhurst,项目名称:symbolic,代码行数:30,代码来源:plotting.py
示例4: spec_colormap
def spec_colormap():
# Makes the colormap that we like for spectrograms
cmap = np.zeros((64,3))
cmap[0,2] = 1.0
for ib in range(21):
cmap[ib+1,0] = (31.0+ib*(12.0/20.0))/60.0
cmap[ib+1,1] = (ib+1.0)/21.0
cmap[ib+1,2] = 1.0
for ig in range(21):
cmap[ig+ib+1,0] = (21.0-(ig)*(12.0/20.0))/60.0
cmap[ig+ib+1,1] = 1.0
cmap[ig+ib+1,2] = 0.5+(ig)*(0.3/20.0)
for ir in range(21):
cmap[ir+ig+ib+1,0] = (8.0-(ir)*(7.0/20.0))/60.0
cmap[ir+ig+ib+1,1] = 0.5 + (ir)*(0.5/20.0)
cmap[ir+ig+ib+1,2] = 1
for ic in range(64):
(cmap[ic,0], cmap[ic,1], cmap[ic,2]) = colorsys.hsv_to_rgb(cmap[ic,0], cmap[ic,1], cmap[ic,2])
spec_cmap = pltcolors.ListedColormap(cmap, name=u'SpectroColorMap', N=64)
plt.register_cmap(cmap=spec_cmap)
开发者ID:choldgraf,项目名称:LaSP,代码行数:26,代码来源:sound.py
示例5: compare_spectra
def compare_spectra():
import mywfc3.stgrism as st
import unicorn
### Fancy colors
import seaborn as sns
import matplotlib.pyplot as plt
cmap = sns.cubehelix_palette(as_cmap=True, light=0.95, start=0.5, hue=0.4, rot=-0.7, reverse=True)
cmap.name = 'sns_rot'
plt.register_cmap(cmap=cmap)
sns.set_style("ticks", {"ytick.major.size":3, "xtick.major.size":3})
plt.set_cmap('sns_rot')
#plt.gray()
fig = st.compare_methods(x0=787, y0=712, v=np.array([-1.5,4])*0.6, NX=180, NY=40, direct_off=100, final=True, mask_lim = 0.02)
#fig.tight_layout()
unicorn.plotting.savefig(fig, '/tmp/compare_model_star.pdf', dpi=300)
fig = st.compare_methods(x0=485, y0=332, v=np.array([-1.5,4])*0.2, NX=180, NY=40, direct_off=100, final=True, mask_lim = 0.1)
unicorn.plotting.savefig(fig, '/tmp/compare_model_galaxy.pdf', dpi=300)
fig = st.compare_methods(x0=286, y0=408, v=np.array([-1.5,4])*0.08, NX=180, NY=40, direct_off=100, final=True, mask_lim = 0.1)
unicorn.plotting.savefig(fig, '/tmp/compare_model_galaxy2.pdf', dpi=300)
fig = st.compare_methods(x0=922, y0=564, v=np.array([-1.5,4])*0.2, NX=180, NY=40, direct_off=100, final=True, mask_lim = 0.15)
unicorn.plotting.savefig(fig, '/tmp/compare_model_galaxy3.pdf', dpi=300)
开发者ID:gbrammer,项目名称:wfc3,代码行数:26,代码来源:stgrism.py
示例6: main
def main():
plt.register_cmap(name='viridis', cmap=cmaps.viridis)
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.linspace(0.1, 20, num=50)
Y = np.linspace(0.1, 20, num=50)
Z = np.array([0.]*X.shape[0]*Y.shape[0])
Z.shape = (X.shape[0], Y.shape[0])
for i in range(X.shape[0]):
for j in range(Y.shape[0]):
he = hyperexp(0.5, X[i], Y[j])
Z[i][j] = he.CoV()
X, Y = np.meshgrid(X, Y)
plt.xlabel('lambda1')
plt.ylabel('lambda2')
ax.set_zlabel('CoV')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cmaps.viridis,
linewidth=0, antialiased=False, vmin=0., vmax=6)
ax.set_zlim(0, 6)
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
return
开发者ID:pixki,项目名称:redesestocasticas,代码行数:26,代码来源:graph_cov.py
示例7: make_rainbow
def make_rainbow(a=0.75, b=0.2, name='custom_rainbow', register=False):
"""
Use a=0.7, b=0.2 for a darker end.
when 0.5<=a<=1.5, should have b >= (a-0.5)/2 or 0 <= b <= (a-1)/3
when 0<=a<=0.5, should have b >= (0.5-a)/2 or 0<= b<= -a/3
to assert the monoique
To show the parameter dependencies interactively in notebook
```
%matplotlib inline
from ipywidgets import interact
def func(a=0.75, b=0.2):
cmap = gene_rainbow(a=a, b=b)
show_cmap(cmap)
interact(func, a=(0, 1, 0.05), b=(0.1, 0.5, 0.05))
```
"""
def gfunc(a, b, c=1):
def func(x):
return c * np.exp(-0.5 * (x - a)**2 / b**2)
return func
cdict = {"red": gfunc(a, b),
"green": gfunc(0.5, b),
"blue": gfunc(1 - a, b)
}
cmap = mpl.colors.LinearSegmentedColormap(name, cdict)
if register:
plt.register_cmap(cmap=cmap)
plt.rc('image', cmap=cmap.name)
return cmap
开发者ID:syrte,项目名称:handy,代码行数:32,代码来源:cmap.py
示例8: register_colour_maps
def register_colour_maps():
cdict = {'red': ((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(1.0, 1.0, 1.0)),
'blue': ((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(1.0, 1.0, 1.0))}
plt.register_cmap(name='GreyIntensity', data=cdict)
cdict2 = {'red': ((0.0, 0.0, 0.0),
(0.5, 1.0, 0.7),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.0),
(0.5, 1.0, 0.0),
(1.0, 1.0, 1.0)),
'blue': ((0.0, 0.0, 0.0),
(0.5, 1.0, 0.0),
(1.0, 0.5, 1.0))}
plt.register_cmap(name='RedSplit', data=cdict2)
开发者ID:danmaclean,项目名称:raspberry_pi,代码行数:26,代码来源:IRCamera.py
示例9: _set_colors
def _set_colors():
HighRGB = np.array([26, 152, 80]) / 255.
MediumRGB = np.array([255, 255, 191]) / 255.
LowRGB = np.array([0, 0, 0]) / 255.
cdict = _set_cdict(HighRGB, MediumRGB, LowRGB)
plt.register_cmap(name='PyMKS', data=cdict)
plt.set_cmap('PyMKS')
开发者ID:faical-yannick-congo,项目名称:pymks,代码行数:7,代码来源:tools.py
示例10: remappedColorMap
def remappedColorMap(cmap, data=False, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
'''
Function to offset the median value of a colormap, and scale the
remaining color range. Useful for data with a negative minimum and
positive maximum where you want the middle of the colormap's dynamic
range to be at zero.
Input
-----
cmap : The matplotlib colormap to be altered
data: You can provide your data as a numpy array, and the following
operations will be computed automatically for you.
start : Offset from lowest point in the colormap's range.
Defaults to 0.0 (no lower ofset). Should be between
0.0 and 0.5; if your dataset vmax <= abs(vmin) you should leave
this at 0.0, otherwise to (vmax-abs(vmin))/(2*vmax)
midpoint : The new center of the colormap. Defaults to
0.5 (no shift). Should be between 0.0 and 1.0; usually the
optimal value is abs(vmin)/(vmax+abs(vmin))
stop : Offset from highets point in the colormap's range.
Defaults to 1.0 (no upper ofset). Should be between
0.5 and 1.0; if your dataset vmax >= abs(vmin) you should leave
this at 1.0, otherwise to (abs(vmin)-vmax)/(2*abs(vmin))
'''
if isinstance(data, np.ndarray):
start, midpoint, stop = auto_remap(data)
cdict = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
# regular index to compute the colors
reg_index = np.hstack([
np.linspace(start, 0.5, 128, endpoint=False),
np.linspace(0.5, stop, 129)
])
# shifted index to match the data
shift_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129)
])
for ri, si in zip(reg_index, shift_index):
r, g, b, a = cmap(ri)
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict)
plt.register_cmap(cmap=newcmap)
return newcmap
开发者ID:TheChymera,项目名称:chr-helpers,代码行数:59,代码来源:chr_matplotlib.py
示例11: shift_cmap
def shift_cmap(cmap, start=0, midpoint=0.5, stop=1, name='shiftedcmap'):
'''Offset the median value of a colormap.
And scale the remaining color range. Useful for data with a negative
minimum and positive maximum where you want the middle of the colormap's
dynamic range to be at zero.
Input
-----
cmap : The matplotlib colormap to be altered
start : Offset from lowest point in the colormap's range.
Defaults to 0.0 (no lower ofset). Should be between
0.0 and 0.5; if your dataset mean is negative you should leave
this at 0.0, otherwise to (vmax-abs(vmin))/(2*vmax)
midpoint : The new center of the colormap. Defaults to
0.5 (no shift). Should be between 0.0 and 1.0; usually the
optimal value is abs(vmin)/(vmax+abs(vmin))
stop : Offset from highets point in the colormap's range.
Defaults to 1.0 (no upper ofset). Should be between
0.5 and 1.0; if your dataset mean is positive you should leave
this at 1.0, otherwise to (abs(vmin)-vmax)/(2*abs(vmin))
Credits
-------
Paul H (initial version)
Horea Christian (additions/modifications)
Fernando Paolo (additions/modifications)
TODO
----
Set 'start' and 'stop' dynamically when negative/positive bounds.
'''
# if array given, find optimal value to center new cmap
if np.ndim(midpoint) != 0:
midpoint = np.asarray(midpoint)[~np.isnan(midpoint)]
midpoint = abs(midpoint.min()) / float(abs(midpoint.max()) + \
abs(midpoint.min()))
# regular index to compute the colors
reg_index = np.hstack([
np.linspace(start, 0.5, 128, endpoint=False),
np.linspace(0.5, stop, 129, endpoint=True)
])
# shifted index to match the midpoint of the data
new_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129, endpoint=True)
])
cdict = {'red': [], 'green': [], 'blue': [], 'alpha': []}
for ri, si in zip(reg_index, new_index):
r, g, b, a = cmap(ri)
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
newcmap = mpl.colors.LinearSegmentedColormap(name, cdict, 256)
plt.register_cmap(cmap=newcmap)
return newcmap
开发者ID:mohseniaref,项目名称:altimpy,代码行数:58,代码来源:viz.py
示例12: make_subplot
def make_subplot(options, ax, dplot, slicearg, data, pars, xvar, yvar, xidx, yidx, a, b):
sc = a / (a+b) / 0.5
sc2 = b / (a+b) / 0.5
anm = {
'red': [
(0., 0.0, 0.0),
(sc*0.5, 1.0, 1.0),
(sc*0.5 + (0.817460-0.5)*sc2, 1.0, 1.0),
(1.0, 0.8, 0.8)],
'green': [
(0., 0.0, 0.0),
(sc*0.4, 1.0, 1.0),
(sc*0.5, 1.0, 1.0),
(sc*0.5 + (0.626984-0.5)*sc2, 1.0, 1.0),
(sc*0.5 + (0.817460-0.5)*sc2, 0.6, 0.6),
(1.0, 0.0, 0.0)],
'blue': [
(0.0, 0.4, 0.4),
(sc*0.25, 1.0, 1.0),
(sc*0.5, 1.0, 1.0),
(sc*0.5 + (0.626984-0.5)*sc2, 0., 0.),
(1.0, 0.0, 0.0)]
}
if sc == 0.0:
for k in anm.iterkeys():
anm[k] = anm[k][1:]
# Fix color scale if only positive values are present.
elif a < 0.001:
for k in anm.iterkeys():
anm[k][0] = (0., 1.0, 1.0)
if b < 0.001:
anm['red'] = anm['red'][0:1] + [(1, 1, 1)]
anm['green'] = anm['green'][0:2] + [(1, 1, 1)]
anm['blue'] = anm['blue'][0:2] + [(1, 1 ,1)]
anm_cmap = LinearSegmentedColormap('ANM', anm)
plt.register_cmap(cmap=anm_cmap)
aspect = ((data[pars[xidx]][-1] - data[pars[xidx]][0]) /
(data[pars[yidx]][-1] - data[pars[yidx]][0])) / options.panel_aspect
im = ax.imshow(dplot[slicearg],
extent=(data[pars[xidx]][0], data[pars[xidx]][-1],
data[pars[yidx]][0], data[pars[yidx]][-1]),
aspect=aspect,
interpolation='bilinear',
# interpolation='nearest',
vmin = -a,
vmax = b,
cmap = anm_cmap,
origin='lower')
return im
开发者ID:mjanusz,项目名称:sdepy,代码行数:58,代码来源:anm_plot.py
示例13: lin_cmap_gen
def lin_cmap_gen(incolgs, regname, fractions = None):
'''
Generates a color map with the given color list (incolgs).
Accepts a list of color words (defined by the color.gs script:
http://kodama.fubuki.info/wiki/wiki.cgi/GrADS/script/color.gs?lang=en)
or a list of (r,g,b) values. The r,g,b values can be either 0<=x<=1 or 0<=x<=255
input:
incolgs: Input color map request
regname: Name for matplotlib to register color map.
fractions: Fraction for each color to take up- these values must
add to 1. If not, a ValueException is raised. (NOT YET IMPLEMENTED)
returns:
a LinearSegmentedColormap containing your colors.
'''
collists = incolgs
reds = list()
greens = list()
blues = list()
reds_prep = list()
greens_prep = list()
blues_prep = list()
if fractions != None:
raise NotImplementedError("Fractional colors are not yet implemented.")
for i, color in enumerate(collists):
try:
if (color[0] >= 0 and color[0] <= 255 and
color[1] >= 0 and color[1] <= 255 and
color[2] >= 0 and color[2] <= 255):
rgb = convert_color(color)
else:
raise ValueError("Colors need to be between 0 and 255")
except TypeError:
rgb = get_rgb(color)
reds.append(rgb[0])
greens.append(rgb[1])
blues.append(rgb[2])
for i in range(len(reds)):
rp = ((float(i)/(len(reds)-1)))
drp = ((1.0/(len(reds)-1)))
if rp+drp >=1:
drp = 0
reds_prep.append((rp, reds[i],reds[i]))
blues_prep.append((rp, blues[i], blues[i]))
greens_prep.append((rp, greens[i], greens[i]))
cdict = {'red': tuple(reds_prep), 'blue': tuple(blues_prep),
'green': tuple(greens_prep)}
#print(cdict)
ucmap = LinearSegmentedColormap(regname, cdict)
plt.register_cmap(cmap=ucmap)
return ucmap
开发者ID:freemansw1,项目名称:gen_cmap,代码行数:58,代码来源:gen_cmap.py
示例14: shift_colormap
def shift_colormap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
'''
Function to offset the "center" of a colormap. Useful for
data with a negative min and positive max and you want the
middle of the colormap's dynamic range to be at zero
Parameters
----------
cmap : The matplotlib colormap to be altered
start : Offset from lowest point in the colormap's range.
Defaults to 0.0 (no lower ofset). Should be between
0.0 and `midpoint`.
midpoint : The new center of the colormap. Defaults to
0.5 (no shift). Should be between 0.0 and 1.0. In
general, this should be 1 - vmax/(vmax + abs(vmin))
For example if your data range from -15.0 to +5.0 and
you want the center of the colormap at 0.0, `midpoint`
should be set to 1 - 5/(5 + 15)) or 0.75
stop : Offset from highets point in the colormap's range.
Defaults to 1.0 (no upper ofset). Should be between
`midpoint` and 1.0.
Returns
-------
new_cmap : A new colormap that has been shifted.
'''
import matplotlib as mpl
import matplotlib.pyplot as plt
cdict = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
# regular index to compute the colors
reg_index = np.linspace(start, stop, 257)
# shifted index to match the data
shift_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129, endpoint=True)
])
for ri, si in zip(reg_index, shift_index):
r, g, b, a = cmap(ri)
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
new_cmap = mpl.colors.LinearSegmentedColormap(name, cdict)
plt.register_cmap(cmap=new_cmap)
return new_cmap
开发者ID:jGaboardi,项目名称:pysal,代码行数:58,代码来源:utils.py
示例15: _set_colors
def _set_colors():
"""
Helper function used to set the color map.
"""
HighRGB = np.array([26, 152, 80]) / 255.
MediumRGB = np.array([255, 255, 191]) / 255.
LowRGB = np.array([0, 0, 0]) / 255.
cdict = _set_cdict(HighRGB, MediumRGB, LowRGB)
plt.register_cmap(name='PyMKS', data=cdict)
plt.set_cmap('PyMKS')
开发者ID:bodagetta,项目名称:pymks,代码行数:10,代码来源:tools.py
示例16: wrappedColorMap
def wrappedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
'''
The idea here is that after your midpoint, you start going back down to
zero. Useful for angles.
Input
-----
cmap : The matplotlib colormap to be altered
start : Offset from lowest point in the colormap's range.
Defaults to 0.0 (no lower ofset). Should be between
0.0 and `midpoint`.
midpoint : The new center of the colormap. Defaults to
0.5 (no shift). Should be between 0.0 and 1.0. In
general, this should be 1 - vmax/(vmax + abs(vmin))
For example if your data range from -15.0 to +5.0 and
you want the center of the colormap at 0.0, `midpoint`
should be set to 1 - 5/(5 + 15)) or 0.75
stop : Offset from highets point in the colormap's range.
Defaults to 1.0 (no upper ofset). Should be between
`midpoint` and 1.0.
'''
cdict = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
# regular index to compute the colors
reg_index = np.linspace(start, stop, 257)
reg_index = np.hstack([
np.linspace(start, stop, 128, endpoint=False),
np.linspace(stop, start, 129, endpoint=True)
])
# shifted index to match the data
shift_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129, endpoint=True)
])
for ri, si in zip(reg_index, shift_index):
r, g, b, a = cmap(ri)
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
newcmap = LinearSegmentedColormap(name, cdict)
plt.register_cmap(cmap=newcmap)
return newcmap
开发者ID:cpadavis,项目名称:weak_sauce,代码行数:55,代码来源:shifted_cmap.py
示例17: do_polar_bar_plot
def do_polar_bar_plot(self, plot_type, dpi=150, cmap='jet', file_format='png'):
'''
A doodle to look at different ways of presenting data.
'''
try:
muf_data, im_data, global_params = self.r533.get_p2p_plot_data(plot_type)
except LookupError:
return
#points, plot_type, lons, lats, num_pts_lon, num_pts_lat, global_params, params = dataset
#plot_dt, ssn, freq = params
# EDIT THE LINE BELOW TO MODIFY COLOURS IN THE COLORMAP
plt.clf() #Clear any existing plot data, specifically nightshade
plt.register_cmap(name='PlotlyAlt', cmap=PlotlyAlt)
fig = plt.figure()
ax = fig.add_subplot(111, projection='polar')
palette=plt.get_cmap(cmap)
rad_hour = (2 * np.pi) / 24.0
start_theta = (np.pi / 2.0) + rad_hour/2.0
theta = np.arange(start_theta, (-2.0*np.pi) + (np.pi/2.0) + (rad_hour/2.0), -rad_hour)
radii = [0.5, 0.8, .6, .3, .2, .4, .8, 1.0 ,0.5, 0.8, .6, .3, .2, .4, .8, 1.0 ,0.5, 0.8, .6, .3, .2, .4, .8, 1.0]
radii = []
indexes = []
for hour in range(0,24):
idx = np.argmax(im_data[hour,:])
radii.append(im_data[hour,idx])
indexes.append(idx)
bars = ax.bar(theta, radii, width=-rad_hour, bottom=0.0)
for r, bar, idx in zip(radii, bars, indexes):
c = palette(int((256/28)*idx))
bar.set_facecolor(c)
bar.set_edgecolor(c)
bar.set_alpha(0.75)
main_title = "{:s}".format(global_params.title)
tx_ant_str = "{:s} ({:.1f}dB)".format(global_params.tx_ant_type, global_params.tx_ant_gain)
#pythonProp subtitle
#sub_title = "{:s} - {:s} - SSN:{:.1f} - {:.3f}MHz - {:s} - {:.0f}W".format(plot_params['title'], plot_dt.strftime(ds_fmt_str), ssn, float(freq), tx_ant_str, global_params.tx_pwr)
#RSGB subtitle
sub_title = "{:s} {:s} {:.0f}W".format(self.plot_params['title'], tx_ant_str, global_params.tx_pwr)
#plt.figtext(0.5, 0.8, main_title, fontsize=18, ha='center')
#plt.figtext(0.5, 0.76,sub_title,fontsize=10, fontstyle='normal', ha='center')
#todo if we're using voacap files we can include the year in the filename
#plot_fn = "p2p_{:s}_{:s}_{:s}.{:s}".format(plot_type, "d".join(str(freq).split('.')), file_format)
plot_fn = 'test.svg'
print ("Saving file ", plot_fn)
plt.savefig(plot_fn, dpi=float(dpi), bbox_inches='tight')
开发者ID:G4FKH,项目名称:proppy,代码行数:54,代码来源:propP2PPlot.py
示例18: showbluered
def showbluered(data):
plt.register_cmap(name='BlueRed3', data=cdict3)
plt.clf()
fig = plt.figure()
ax = plt.subplot(111)
mx = np.abs(np.max(data))
mn = np.abs(np.min(data))
vmax = np.max((mx, mn))
ax.imshow(data, interpolation='nearest', vmax=vmax, vmin=-vmax)
ax.set_cmap('BlueRed3')
plt.show()
开发者ID:Venki-Kavuri,项目名称:bopy,代码行数:11,代码来源:utils.py
示例19: remappedColorMap
def remappedColorMap(self, cmap, start=0, midpoint=0.5, stop=1.0,
name='shiftedcmap'):
'''
Function to offset the median value of a colormap, and scale the
remaining color range. Useful for data with a negative minimum and
positive maximum where you want the middle of the colormap's dynamic
range to be at zero.
Input
-----
cmap : The matplotlib colormap to be altered
start : Offset from lowest point in the colormap's range.
Defaults to 0.0 (no lower ofset). Should be between
0.0 and 0.5; if your dataset mean is negative you should leave
this at 0.0, otherwise to (vmax-abs(vmin))/(2*vmax)
midpoint : The new center of the colormap. Defaults to
0.5 (no shift). Should be between 0.0 and 1.0; usually the
optimal value is abs(vmin)/(vmax+abs(vmin))
stop : Offset from highets point in the colormap's range.
Defaults to 1.0 (no upper ofset). Should be between
0.5 and 1.0; if your dataset mean is positive you should leave
this at 1.0, otherwise to (abs(vmin)-vmax)/(2*abs(vmin))
http://stackoverflow.com/questions/7404116/defining-the-midpoint-of-a-colormap-in-matplotlib
'''
cdict = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
# regular index to compute the colors
reg_index = np.hstack([
np.linspace(start, 0.5, 128, endpoint=False),
np.linspace(0.5, stop, 129)
])
# shifted index to match the data
shift_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129)
])
for ri, si in zip(reg_index, shift_index):
r, g, b, a = cmap(ri)
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
newcmap = mpl.colors.LinearSegmentedColormap(name, cdict)
plt.register_cmap(cmap=newcmap)
return newcmap
开发者ID:suryakant54321,项目名称:marmites,代码行数:53,代码来源:MARMITESutilities.py
示例20: apply_cmap
def apply_cmap(self, cmap=None):
"""
Make matplotlib use specified colourmap. By default will use
**self.cmap**
"""
if cmap is None:
cmap = self.cmap
else:
plt.set_cmap(cmap)
return
plt.register_cmap(name=cmap.name, cmap=cmap)
plt.set_cmap(cmap)
开发者ID:Phlya,项目名称:hicplotlib,代码行数:12,代码来源:HiCPlot.py
注:本文中的matplotlib.pyplot.register_cmap函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论