本文整理汇总了Python中matplotlib.pyplot.matshow函数的典型用法代码示例。如果您正苦于以下问题:Python matshow函数的具体用法?Python matshow怎么用?Python matshow使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了matshow函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: classifykNN
def classifykNN():
print 'Classify kNN'
target_names = ['unacc', 'acc','good','v-good']
df = pd.read_csv("data/cars-cleaned.txt", delimiter=",");
print df
print df.dtypes
df_y = df['accept']
df_x = df.ix[:,:-1]
#print df_y
#print df_x
train_y, test_y, train_x, test_x = train_test_split(df_y, df_x, test_size = 0.3, random_state=33)
clf = KNeighborsClassifier(n_neighbors=3)
tstart=time.time()
model = clf.fit(train_x, train_y)
print "training time:", round(time.time()-tstart, 3), "seconds"
y_predictions = model.predict(test_x)
print "Accuracy : " , model.score(test_x, test_y)
#print y_predictions
c_matrix = confusion_matrix(test_y,y_predictions)
print "confusion matrix:"
print c_matrix
print "Nearest Neighbors probabilities"
print model.predict_proba(test_x)
plt.matshow(c_matrix)
plt.colorbar();
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
plt.ylabel('true label')
plt.xlabel('predicted label')
plt.show()
开发者ID:venukanaparthy,项目名称:MachineLearning,代码行数:35,代码来源:knn_classify.py
示例2: classify
def classify():
print 'Classify SVM'
target_names = ['unacc', 'acc','good','v-good']
df = pd.read_csv("data/cars-cleaned.txt", delimiter=",");
print df
print df.dtypes
df_y = df['accept']
df_x = df.ix[:,:-1]
train_y, test_y, train_x, test_x = train_test_split(df_y, df_x, test_size = 0.3, random_state=33)
clf = svm.SVC(kernel="linear", C=0.01)
tstart=time.time()
model = clf.fit(train_x, train_y)
print "training time:", round(time.time()-tstart, 3), "seconds"
y_predictions = model.predict(test_x)
print "Accuracy : " , model.score(test_x, test_y)
c_matrix = confusion_matrix(test_y,y_predictions)
print "confusion matrix:"
print c_matrix
plt.matshow(c_matrix)
plt.colorbar();
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
plt.ylabel('true label')
plt.xlabel('predicted label')
plt.show()
开发者ID:venukanaparthy,项目名称:MachineLearning,代码行数:29,代码来源:svm_classify.py
示例3: export_pdf
def export_pdf(data, output, gradient=True):
"""Exports the data as a heatmap to the file specified by output (.pdf). The gradient
marker specifies if the color in the heatmap should be a gradient that shows the
fold change score, or as binary red/white colors with a cutoff for maximum fold-change
score to be considered a hit.
"""
bacteria = sorted(data.values()[0].keys())
matrix = np.zeros((len(data), len(bacteria)))
rows = sorted(
data.keys(),
key=lambda w: np.sum([d ** 3 for d in data[w].values()]) / (len([d for d in data[w].values() if d < 0.3]) + 1),
)
for wind, well in enumerate(rows):
for bind, bacterium in enumerate(bacteria):
if gradient:
matrix[(wind, bind)] = data[well][bacterium]
else:
matrix[(wind, bind)] = 0 if data[well][bacterium] < 0.3 else 0.5
plt.matshow(matrix, cmap=plt.get_cmap("RdYlGn"), vmin=0, vmax=1)
plt.xticks(range(len(bacteria)), bacteria, rotation=90)
plt.yticks(range(len(rows)), rows)
ax = plt.gca()
for posi in ax.spines:
ax.spines[posi].set_color("none")
ax.tick_params(labelcolor="k", top="off", bottom="off", left="off", right="off")
fig = plt.gcf()
fig.set_size_inches(10, 100)
plt.savefig(output + ".pdf", bbox_inches="tight", dpi=200)
plt.close()
开发者ID:kenjsc,项目名称:CAMpping,代码行数:29,代码来源:biomap_crude.py
示例4: plot_confusion_matrix
def plot_confusion_matrix(cm):
pl.matshow(cm)
pl.title('Confusion matrix')
pl.colorbar()
pl.ylabel('True label')
pl.xlabel('Predicted label')
pl.show()
开发者ID:mCalde,项目名称:marsupio,代码行数:7,代码来源:plotting.py
示例5: generate_single_funnel_test_data
def generate_single_funnel_test_data( excitation_angles, emission_angles, \
md_ex=0, md_fu=1, \
phase_ex=0, phase_fu=0, \
gr=1.0, et=1.0 ):
ex, em = np.meshgrid( excitation_angles, emission_angles )
alpha = 0.5 * np.arccos( .5*(((gr+2)*md_ex)-gr) )
ph_ii_minus = phase_ex - alpha
ph_ii_plus = phase_ex + alpha
print ph_ii_minus
print ph_ii_plus
Fnoet = np.cos( ex-ph_ii_minus )**2 * np.cos( em-ph_ii_minus )**2
Fnoet += gr*np.cos( ex-phase_ex )**2 * np.cos( em-phase_ex )**2
Fnoet += np.cos( ex-ph_ii_plus )**2 * np.cos( em-ph_ii_plus )**2
Fnoet /= (2+gr)
Fet = .25 * (1+md_ex*np.cos(2*(ex-phase_ex))) \
* (1+md_fu*np.cos(2*(em-phase_fu-phase_ex)))
Fem = et*Fet + (1-et)*Fnoet
import matplotlib.pyplot as plt
plt.interactive(True)
plt.matshow( Fem, origin='bottom' )
plt.colorbar()
开发者ID:kiwimatto,项目名称:2dpolim-analysis,代码行数:32,代码来源:util_misc.py
示例6: test_initialize_at_truth
def test_initialize_at_truth():
global alpha, beta, num_topics, num_vocab, document_lengths, \
doc_topic, topic_word, docs, model
alpha = 5.
beta = 20.
num_topics = 20
num_vocab = 1000
document_lengths = [100]*1000
doc_topic, topic_word, docs = generate_synthetic(alpha,beta,
num_topics,num_vocab,document_lengths)
model = lda.CollapsedSampler(alpha,beta,num_topics,num_vocab)
model.add_documents_spmat(docs)
# initialize at truth
model.document_topic_counts = (model.document_topic_counts.sum(1)[:,None] * doc_topic).round()
model.topic_word_counts = (model.topic_word_counts.sum(1)[:,None] * topic_word).round()
model.resample(1000)
plt.matshow(topic_word[:20,:20])
plt.title('true topic_word on first 20 words')
plt.matshow(model.topic_word_counts[:20,:20])
plt.title('topic_word counts on first 20 words')
开发者ID:mattjj,项目名称:yaldapy,代码行数:25,代码来源:test.py
示例7: TestSVM
def TestSVM(features, labels, silence=True):
X_train = features[0:1600,:]
Y_train = labels[0:1600]
X_test = features[1600:,:]
Y_test = labels[1600:]
clf = SVM.SVC()
clf.fit(X_train, Y_train)
predictions = clf.predict(X_test)
error = np.mean(abs(predictions-Y_test))
cm = confusion_matrix(Y_test, predictions)
cm_sum = np.sum(cm, axis=1)
cm_mean = cm.T / cm_sum
cm_mean = cm_mean.T
if silence==False:
plt.matshow(cm_mean)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
return error, cm_mean
开发者ID:IreneFidone,项目名称:TUC-Team,代码行数:30,代码来源:TestSVM.py
示例8: compare_autoencoder_outputs
def compare_autoencoder_outputs(imgs, model, indices=[0], img_dim=(28, 28)):
pred = model.predict(imgs)
for i in indices:
tup = (imgs[i].reshape(img_dim), pred[i].reshape(img_dim))
plt.matshow(tup[0])
plt.matshow(tup[1])
plt.show()
开发者ID:imauser,项目名称:Autoencoders-with-keras,代码行数:7,代码来源:main.py
示例9: makeConfusionMatrix
def makeConfusionMatrix(n=100):
# import some data to play with
trainingdata = sio.loadmat('train.mat')
X = np.swapaxes(trainingdata['train_images'].reshape(784,60000), 0, 1)
y = np.array(trainingdata['train_labels']).transpose()[0]
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n/60000.0)
# Run classifier
classifier = svm.SVC(kernel='linear')
y_pred = classifier.fit(X_train, y_train).predict(X_test)
# Compute confusion matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Show confusion matrix in a separate window
plt.matshow(cm)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.savefig('matrix'+str(n))
plt.show()
return
开发者ID:kevinchau321,项目名称:189,代码行数:25,代码来源:digitSVM.py
示例10: verify_gradient
def verify_gradient(f, x, eps=1e-4, tol=1e-6, **kwargs):
"""
Compares the numerical and analytical gradients.
"""
# print
fval, fgrad = f(x=x, **kwargs)
# print fval, fgrad.shape
# bbbbbbbb
ngrad = numerical_gradient(f=f, x=x, eps=eps, tol=tol, **kwargs)
fgradnorm = numpy.sqrt(numpy.sum(fgrad**2))
ngradnorm = numpy.sqrt(numpy.sum(ngrad**2))
diffnorm = numpy.sqrt(numpy.sum((fgrad-ngrad)**2))
# print fval.shape
plt.matshow(fgrad)
plt.show()
plt.matshow(ngrad)
plt.show()
if fgradnorm > 0 or ngradnorm > 0:
norm = numpy.maximum(fgradnorm, ngradnorm)
if not (diffnorm < tol or diffnorm/norm < tol):
raise Exception("Numerical and analytical gradients "
"are different: %s != %s!" % (ngrad, fgrad))
else:
if not (diffnorm < tol):
raise Exception("Numerical and analytical gradients "
"are different: %s != %s!" % (ngrad, fgrad))
return True
开发者ID:franciscovargas,项目名称:MLPHonoursExtension,代码行数:28,代码来源:utils.py
示例11: coloc
def coloc(dataR, dataG):
#returns heatmap for colocalization based on the angle in the red- green value plot
#regions with low intensity are filterd out
if dataR.shape != dataG.shape:
print('images must have same shape')
return 0
tol=0.02
dataB = np.zeros(dataR.shape)
dataB[...,0]=np.tan(dataR[...,2]/dataG[...,1])
dataB[...,0]=np.where((dataB[...,0]-np.pi/2.)**2>tol,0,dataB[...,0])
maskG=np.where(dataG[...,1]<np.mean(dataG[...,1]),0,dataG[...,1])
maskR=np.where(dataR[...,2]<np.mean(dataR[...,2]),0,dataR[...,2])
from matplotlib import pyplot
#pyplot.matshow(maskR)
#pyplot.show()
#pyplot.matshow(maskG)
#pyplot.show()
dataB[...,0]=dataB[...,0]*maskG*maskR
dataB=dataB*255/np.max(dataB)
dataB = np.array(dataB, dtype=np.uint8)
print(np.mean(dataB[...,0]))
plot.matshow(dataB[...,0])
plot.show()
return dataB
开发者ID:ukoethe,项目名称:simple-STORM,代码行数:30,代码来源:colocalizationDetection.py
示例12: test
def test(training_file, testing_file):
X,y = train.process_training_examples(training_file)
X_test, y_test = train.process_training_examples(testing_file)
lin_svm = train.train_linear_svm(X, y)
linear_svm_accuracy = test_with(lin_svm, X_test, y_test)
print("LinearSVM has classification accuracy of {}%".format(100 * linear_svm_accuracy))
rbf_svm = train.train_rbf_svm(X, y)
rbf_svm_accuracy = test_with(rbf_svm, X_test, y_test)
print("RBF-SVM has classification accuracy of {}%".format(100 * rbf_svm_accuracy))
nbc = train.train_naive_bayes(X, y)
nb_accuracy = test_with(nbc, X_test, y_test)
print("Multinomial Naive Bayes has classification accuracy of {}%".format(100 * nb_accuracy))
lda = train.train_lda(X, y)
lda_accuracy = test_with(lda, X_test, y_test)
print("LDA has classification accuracy of {}%".format(100 * lda_accuracy))
#Print SVM confusion matrix
y_pred = lin_svm.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
plt.matshow(cm)
plt.title('Confusion matrix for SVM Classification of File Fragment Types')
#plt.colorbar()
plt.ylabel('True File Type')
plt.xlabel('Predicted File Type')
plt.show()
开发者ID:andreweduffy,项目名称:carveml,代码行数:29,代码来源:test.py
示例13: show_confusion_matrix
def show_confusion_matrix(X, y):
"""docstring for show_confusion_matrix"""
print "show matrix..."
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=.1)
print "running classifier...."
# Run classifier
classifier = svm.SVC()
y_pred = classifier.fit(X_train, y_train).predict(X_test)
print "compute confusion matrix..."
# Compute confusion matrix
cm = confusion_matrix(y_test, y_pred)
cm_sum = np.sum(cm, axis=1).T
cm_ratio = cm / cm_sum.astype(float)[:, np.newaxis]
print(cm_ratio)
print cm
print cm_sum
print "plot matrix..."
# Show confusion matrix in a separate window
plt.matshow(cm_ratio)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
开发者ID:ymnliu,项目名称:cyto_lib,代码行数:32,代码来源:train_test.py
示例14: calc_field_OneDistance
def calc_field_OneDistance(self, distance, n_z_points, temp_field=None,
plot_matrix=False):
if temp_field is not None:
old_field = [self.do_static, self.do_induction, self.do_radiation]
self.set_fields(temp_field)
Z_array, dz = np.linspace(0, self.channel_height, n_z_points,
retstep=True)
min_t = self.min_starttime + distance/C
max_t = self.max_endtime + np.sqrt(distance*distance +
self.channel_height*self.channel_height)/C
n_t_points = int((max_t-min_t)/self.dt)+1
T_array = min_t + np.arange(n_t_points)*self.dt
field_matrix=np.zeros((n_t_points,n_z_points))
for z_i in range(n_z_points):
self.integrand(Z_array[z_i], distance, min_t, field_matrix[:,z_i])
Es=-simps(field_matrix, dx=dz)/two_pi_e0
if temp_field!=None:
self.do_static, self.do_induction, self.do_radiation=old_field
if plot_matrix:
plt.matshow(-field_matrix/two_pi_e0)
plt.colorbar()
plt.show()
return T_array, Es
开发者ID:EdwardBetts,项目名称:iclrt_tools,代码行数:32,代码来源:wave_model.py
示例15: marg_mult
def marg_mult(model, db, samples, burn=0, filename=None, n5=False):
"""
generates histogram for marginal distribution of posterior multiplicities.
:param model: TorsionFitModel
:param db: pymc.database for model
:param samples: length of trace
:param burn: int. number of steps to skip
:param filename: filename for plot to save
"""
if n5:
multiplicities = tuple(range(1, 7))
else:
multiplicities = (1, 2, 3, 4, 6)
mult_bitstring = []
for i in model.pymc_parameters.keys():
if i.split('_')[-1] == 'bitstring':
mult_bitstring.append(i)
if n5:
histogram = np.zeros((len(mult_bitstring), samples, 5))
else:
histogram = np.zeros((len(mult_bitstring), samples, 5))
for m, torsion in enumerate(mult_bitstring):
for i, j in enumerate(db.trace('%s' % torsion)[burn:]):
for k, l in enumerate(multiplicities):
if 2**(l-1) & int(j):
histogram[m][i][k] = 1
plt.matshow(histogram.sum(1), cmap='Blues', extent=[0, 5, 0, 20]), plt.colorbar()
plt.yticks([])
plt.xlabel('multiplicity term')
plt.ylabel('torsion')
if filename:
plt.savefig(filename)
开发者ID:ChayaSt,项目名称:torsionfit,代码行数:35,代码来源:plots.py
示例16: confusion
def confusion(y,y_auto,l,set,method,plot=False,output=False):
"""
Computes the confusion matrix
"""
from sklearn.metrics import confusion_matrix
cmat = confusion_matrix(y.values[:,0],y_auto)
cmat = np.array(cmat,dtype=float)
for i in range(cmat.shape[0]):
cmat[i,:] = cmat[i,:]*100./len(np.where(y.values[:,0]==i)[0])
if plot:
plt.matshow(cmat,cmap=plt.cm.gray_r)
for i in range(cmat.shape[0]):
for j in range(cmat.shape[0]):
if cmat[j,i] >= np.max(cmat)/2. or cmat[j,i] > 50:
col = 'w'
else:
col = 'k'
if cmat.shape[0] <= 4:
plt.text(i,j,"%.2f"%cmat[j,i],color=col)
else:
plt.text(i,j,"%d"%np.around(cmat[j,i]),color=col)
plt.title('%s set - %s'%(set,method.upper()))
plt.xlabel('Prediction')
plt.ylabel('Observation')
if len(l) <= 4:
plt.xticks(range(len(l)),l)
plt.yticks(range(len(l)),l)
if output:
return cmat
开发者ID:amaggi,项目名称:discrimination,代码行数:30,代码来源:do_classification.py
示例17: main
def main():
np.set_printoptions(threshold=np.nan)
testPixelRow = 24
testPixelCol = 17
#obs_20120919-131142.h5,obs_20120919-131346.h5
#create a cal file from a twilight flat
cal = FlatCal('../../params/flatCal.dict')
#open another twilight flat as an observation and apply a wavelength cal and the new flat cal
# run='LICK2012'
# obsFileName = FileName(run=run,date='20120918',tstamp='20120919-131142').flat()
# flatCalFileName = FileName(run=run,date='20120918',tstamp='20120919-131448').flatSoln()
# wvlCalFileName = FileName(run=run,date='20120916',tstamp='20120917-072537').calSoln()
run = 'PAL2012'
obsFileName = FileName(run=run,date='20121211',tstamp='20121212-140003').obs()
flatCalFileName = FileName(run=run,date='20121210',tstamp='').flatSoln()
wvlCalFileName = FileName(run=run,date='20121210',tstamp='20121211-133056').calSoln()
flatCalPath = os.path.dirname(flatCalFileName)
ob = ObsFile(obsFileName)#('obs_20120919-131142.h5')
ob.loadWvlCalFile(wvlCalFileName)#('calsol_20120917-072537.h5')
ob.loadFlatCalFile(flatCalFileName)#('flatsol_20120919-131142.h5')
#plot some uncalibrated and calibrated spectra for one pixel
fig = plt.figure()
ax = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
print ob.getPixelCount(testPixelRow,testPixelCol)
#flatSpectrum,wvlBinEdges = ob.getPixelSpectrum(testPixelRow,testPixelCol,weighted=False)
spectrum,wvlBinEdges = ob.getPixelSpectrum(testPixelRow,testPixelCol,wvlStart=cal.wvlStart,wvlStop=cal.wvlStop,wvlBinWidth=cal.wvlBinWidth,weighted=False,firstSec=0,integrationTime=-1)
weightedSpectrum,wvlBinEdges = ob.getPixelSpectrum(testPixelRow,testPixelCol,weighted=True)
#flatSpectrum,wvlBinEdges = cal.flatFile.getPixelSpectrum(testPixelRow,testPixelCol,wvlStart=cal.wvlStart,wvlStop=cal.wvlStop,wvlBinWidth=cal.wvlBinWidth,weighted=False,firstSec=0,integrationTime=-1)
flatSpectrum = cal.spectra[testPixelRow,testPixelCol]
x = wvlBinEdges[0:-1]
ax.plot(x,cal.wvlMedians,label='median spectrum',alpha=.5)
ax2.plot(x,cal.flatFactors[testPixelRow,testPixelCol,:],label='pixel weights',alpha=.5)
ax2.set_title('flat weights for pixel %d,%d'%(testPixelRow,testPixelCol))
ax.plot(x,spectrum+20,label='unweighted spectrum for pixel %d,%d'%(testPixelRow,testPixelCol),alpha=.5)
ax.plot(x,weightedSpectrum+10,label='weighted %d,%d'%(testPixelRow,testPixelCol),alpha=.5)
ax.plot(x,flatSpectrum+30,label='flatFile %d,%d'%(testPixelRow,testPixelCol),alpha=.5)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.3),fancybox=True,ncol=3)
plt.show()
#display a time-flattened image of the twilight flat as it is and after using itself as it's flat cal
#cal.flatFile.loadFlatCalFile(flatCalFileName)#('flatsol_20120919-131142.h5')
#cal.flatFile.displaySec(weighted=True,integrationTime=-1)
#ob.displaySec(integrationTime=-1)
#ob.displaySec(weighted=True,integrationTime=-1)
for idx in range(0,100,20):
factors10 = cal.flatFactors[:,:,idx]
plt.matshow(factors10,vmax=np.mean(factors10)+1.5*np.std(factors10))
plt.title('Flat weights at %d'%cal.wvlBinEdges[idx])
plt.colorbar()
plt.savefig('plots/factors%d.png'%idx)
plt.show()
开发者ID:RupertDodkins,项目名称:ARCONS-pipeline-1,代码行数:60,代码来源:testFlatCal.py
示例18: on_slic_superpixels
def on_slic_superpixels():
data = load_data('train', independent=True)
probs = get_kraehenbuehl_pot_sp(data)
results = eval_on_pixels(data, [np.argmax(prob, axis=-1) for prob in
probs])
plt.matshow(results['confusion'])
plt.show()
开发者ID:amueller,项目名称:segmentation,代码行数:7,代码来源:kraehenbuehl_potentials.py
示例19: benchmark
def benchmark(clf_class, params, name):
print("parameters:", params)
t0 = time()
clf = clf_class(**params).fit(X_train, y_train)
print("done in %fs" % (time() - t0))
if hasattr(clf, 'coef_'):
print("Percentage of non zeros coef: %f"
% (np.mean(clf.coef_ != 0) * 100))
print("Predicting the outcomes of the testing set")
t0 = time()
pred = clf.predict(X_test)
print("done in %fs" % (time() - t0))
print("Classification report on test set for classifier:")
print(clf)
print()
print(classification_report(y_test, pred,
target_names=news_test.target_names))
cm = confusion_matrix(y_test, pred)
print("Confusion matrix:")
print(cm)
# Show confusion matrix
plt.matshow(cm)
plt.title('Confusion matrix of the %s classifier' % name)
plt.colorbar()
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:28,代码来源:mlcomp_sparse_document_classification.py
示例20: makeConfMat
def makeConfMat(estClasses, gtClasses, outFilename, numClasses = None, plotLabels = False):
#If not defined, find number of unique numbers in gtClasses
if numClasses == None:
numClasses = len(np.unique(gtClasses))
#X axis is est, y axis is gt
#First index is y, second is x
confMat = np.zeros((numClasses, numClasses))
numInstances = len(estClasses)
for (gtIdx, estIdx) in zip(gtClasses.astype(int), estClasses.astype(int)):
confMat[gtIdx, estIdx] += 1
plt.matshow(confMat)
plt.colorbar()
plt.xlabel("Est class")
plt.ylabel("True class")
plt.title("Confusion matrix")
ax = plt.gca()
ax.xaxis.set_ticks_position('bottom')
#Plot labels for each field
if plotLabels:
for i in range(numClasses):
for j in range(numClasses):
labelStr = generateStatString(confMat, i, j)
#text receives x, y coord of plot
ax.text(j, i, labelStr, fontweight='bold',
horizontalalignment='center', verticalalignment='center',
bbox={'facecolor':'white'})
#plt.show()
plt.savefig(outFilename)
开发者ID:slundqui,项目名称:mlearning_homework,代码行数:32,代码来源:naive_bayes.py
注:本文中的matplotlib.pyplot.matshow函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论