本文整理汇总了Python中matplotlib.pyplot.locator_params函数的典型用法代码示例。如果您正苦于以下问题:Python locator_params函数的具体用法?Python locator_params怎么用?Python locator_params使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了locator_params函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: plot3D
def plot3D(data_3d, name='3D Plot'):
X = [point[0] for point in data_3d]
Y = [point[1] for point in data_3d]
Z = [point[2] for point in data_3d]
fig = plt.figure(name)
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X, Y, Z, marker='o', c='b', zdir='y')
# Create cubic bounding box to simulate equal aspect ratio
max_range = np.array(
[max(X) - min(X), max(Y) - min(Y), max(Z) - min(Z)]).max()
Xb = 0.5 * max_range * \
np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten() + 0.5 * (max(X) + min(X))
Yb = 0.5 * max_range * \
np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten() + 0.5 * (max(Y) + min(Y))
Zb = 0.5 * max_range * \
np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten() + 0.5 * (max(Z) + min(Z))
# Comment or uncomment following both lines to test the fake bounding box:
for xb, yb, zb in zip(Xb, Yb, Zb):
ax.plot([xb], [yb], [zb], 'w')
ax.set_xlabel('X (m)')
ax.set_ylabel('Z (m)')
ax.set_zlabel('Y (m)')
plt.locator_params(nbins=4)
plt.show()
开发者ID:s-low,项目名称:squawkFly,代码行数:30,代码来源:plotting.py
示例2: plot_diff
def plot_diff(self, x=None, ax=None, kwargs={}, offset = 0.):
"""
Plots the difference between the Feature fit and the original Spectrum
on an axis.
If x is undefined, x is taken as inside the window region.
If ax is undefined, a new axis is generated
Kwargs must be a dictionary of legal matplotlib keywords
"""
if x == None:
x = self.x
if not ax:
fig = plt.figure()
ax = fig.add_subplot(111)
kill_label = False
if 'label' not in kwargs.keys():
kwargs['label'] = 'Difference'
kill_label = True
y = self(x) + offset
window = self.window
self.set_window([x.min(),x.max()])
y -= self.y
ax.plot(x,y,**kwargs)
plt.locator_params(axis = 'y', nbins = 4)
self.set_window(window)
if kill_label:
del kwargs['label']
开发者ID:ZachariahNorman,项目名称:SpecTools,代码行数:32,代码来源:spectrum.py
示例3: show_trand_chart
def show_trand_chart(stats):
try:
import matplotlib.pyplot as plt
except ImportError:
sys.exit(0)
# prepare data
net_lines = 0
xlabels, axisx, axisy = [], [], []
for stat in stats.items():
weeks_ago, added, deleted = stat[0], stat[1]['add'], stat[1]['del']
net_lines += added - deleted
if net_lines == 0:
continue
xlabels.append(date_of_weeks_ago(weeks_ago))
axisx.append(weeks_ago)
axisy.append(net_lines)
# start to plot
plt.locator_params(axis = 'x', nbins = 4)
plt.grid(True)
plt.xlabel('weeks ago')
plt.ylabel('LoC')
plt.title('LineOfCode trend')
plt.xticks(axisx, xlabels)
plt.plot(axisx, axisy)
plt.show()
开发者ID:funkygao,项目名称:toolbox,代码行数:28,代码来源:locTrend.py
示例4: plot_diagnostics
def plot_diagnostics(image,data_filtered,pl_image,smooth_pl,inter_image,inter_pl,final_image,vgridsize,lg,ilng,flng,IV,output_file):
fig3 = plt.figure(figsize=(8,vgridsize*2))
gs3 = gridspec.GridSpec(vgridsize,2)
for i in range(0,vgridsize):
pl = np.power(lg,abs(IV[i,1]))
ax1 = fig3.add_subplot(gs3[i,0])
[a,b,c,d] = ax1.plot(lg,np.multiply(pl,image[i,:]),lg,np.multiply(pl,data_filtered[i,:]),lg,np.multiply(pl,pl_image[i,:]),lg,np.multiply(pl,smooth_pl[i,:]))
plt.setp(ax1.get_xticklabels(), visible=False)
ax1.set_ylim([min(np.multiply(pl,image[i,:])),max(np.multiply(pl,image[i,:]))])
plt.locator_params(axis='y',nbins=5)
if i < 1:
ax1.set_title('Raw Images')
plt.legend([a,b,c,d], ['Data', 'Data boxcar', 'Power Law','Power Law boxcar'],bbox_to_anchor=(0, 2.0, 1., .102),loc=9,
borderaxespad=0.)
ax2 = fig3.add_subplot(gs3[i,1],sharex=ax1)
[e,f,g] = ax2.plot(lg,inter_image[i,:],lg,inter_pl[i,:],lg,final_image[i,:])
plt.setp(ax2.get_xticklabels(), visible=False)
ax2.set_xlim([ilng+3,flng-3])
ax2.set_ylim([min(inter_image[i,:]),max(final_image[i,:])])
ax2.hlines(0,ilng,flng,linestyles='dashed',color='0.75')
#plt.locator_params(axis='y',nbins=5)
if i <1 :
ax2.set_title('Subtracted Images')
plt.legend([e,f,g], ['Subtracted Image', 'Subtracted Power Law', 'Final Image'],bbox_to_anchor=(0, 1.8, 1., .102),loc=9,
borderaxespad=0.)
plt.setp(ax1.get_xticklabels(),visible=True)
plt.setp(ax2.get_xticklabels(),visible=True)
plt.savefig(output_file+'_diagnostics.png')
plt.close()
开发者ID:y-chachan,项目名称:venus,代码行数:29,代码来源:functions.py
示例5: main
def main():
#The url is made up of the prefix, day, and suffix:
prefix = "http://www.wunderground.com/history/airport/KLGA/2016/1/"
suffix = "/DailyHistory"
days = []
depths = []
mins = [36,34,36,15,13,26,32,34,41,42,28,26,24,24,34,42,31,20,18,30,27,22,25,24,30,35,34,29,32,30,37] #min temps for January 2016
# days = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] #Sets up a list to store days
# depths = [] #Sets up a list so store snow depths
for day in range(1,32): #For each day
days.append(day) #Add the day to the list
url = prefix+str(day)+suffix #Make the url
M = getDepthFromWeb(url) #Call the function to extract Snow Depth
depths.append(M) #Add the temp to the list
print day, M
# depths = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,27,20,15,9,6,4,3,2]
depthScale = [(8)*((n*(n*.09))+1) for n in depths]
plt.scatter(days, mins, s = depthScale, color = 'r', alpha=0.5)
plt.title("Minimum Temps in January with Snow Depths as Point Size", y=1.02) #Title for plot
plt.xlabel('Days', fontsize=16).set_color("white") #Label for x-axis
plt.ylabel('Minimum Temperature of the Day', fontsize=16).set_color("white") #Label for the y-axis
plt.axis([0,32,10,50])
plt.locator_params(axis = 'x', nbins = 16)
plt.locator_params(axis = 'y', nbins = 20)
l1 = plt.scatter([],[], s=8, edgecolors='none', color = 'r')
labels = [" = 0 in. or Trace Amounts of Snow"]
leg = plt.legend([l1], labels, ncol=4, frameon=True, fontsize=12,
handlelength=1, loc = 'upper left', borderpad = .5,
handletextpad=1, title='Size of Points Corresponds to Snow Depth', scatterpoints = 1)
plt.show()
开发者ID:niqwilk,项目名称:Data-Science,代码行数:31,代码来源:HW2.py
示例6: plot_kmeans_components
def plot_kmeans_components(self, fig1, gs, kmeans_clusters, clrs, plot_title='Hb', num_subplots=1,
flag_separate=1, gridspecs=[0, 0]):
with sns.axes_style('darkgrid'):
if flag_separate:
ax1 = fig1.add_subplot(2, 1, num_subplots)
else:
ax1 = eval('fig1.add_subplot(gs' + gridspecs + ')')
plt.gca().set_color_cycle(clrs)
for ii in xrange(0, size(kmeans_clusters, 1)):
plt.plot(kmeans_clusters[:, ii], lw=4, label=str(ii))
plt.locator_params(axis='y', nbins=4)
sns.axlabel("Time (seconds)", "a.u")
ax1.legend(prop={'size': 14}, loc='center left', bbox_to_anchor=(1, 0.5), ncol=1, fancybox=True,
shadow=True)
plt.title(plot_title, fontsize=14)
plt.ylim((min(kmeans_clusters) - 0.0001,
max(kmeans_clusters) + 0.0001))
plt.xlim((0, size(kmeans_clusters, 0)))
plt.axhline(y=0, linestyle='-', color='k', linewidth=1)
self.plot_vertical_lines_onset()
self.plot_vertical_lines_offset()
开发者ID:seethakris,项目名称:Habenula_Variation_NewScripts2016,代码行数:25,代码来源:functions_for_kmeans.py
示例7: main
def main():
global algorithms
global datadir
global history
global legend_location
args = argparser.parse_args()
algorithms = set(algorithms) - set(args.exclude_algorithm)
datadir = args.datadir
history = args.history
legend_location = args.legend_location
plt.rc('font', size=5)
plt.rc('axes', color_cycle=['r','g','b','y'])
plt.figure(figsize=(2,2))
plt.locator_params(axis='x', nbins=5)
if args.plot_all or args.steps_frequency:
plot_steps_frequency()
if args.plot_all or args.stepssum_vs_opcount:
plot_stepssum_vs_opcount()
if args.plot_all or args.nodesmax_vs_opcount:
plot_nodesmax_vs_opcount()
if args.plot_all or args.stepssum_vs_history:
plot_stepssum_vs_history()
if args.plot_all or args.nodesmax_vs_history:
plot_nodesmax_vs_history()
if args.plot_all or args.stepsavg_vs_history:
plot_stepsavg_vs_history()
if args.plot_all or args.stepsmed_vs_history:
plot_stepsmed_vs_history()
if args.plot_all or args.stepsavgdev_vs_history:
plot_stepsavgdev_vs_history()
if args.plot_all or args.stepsmedmax_vs_history:
plot_stepsmedmax_vs_history()
开发者ID:rgrig,项目名称:treebuffers,代码行数:32,代码来源:make_plots.py
示例8: init_plotting
def init_plotting():
plt.rcParams['figure.figsize'] = (16, 9)
plt.rcParams['figure.dpi'] = 75
plt.rcParams['font.size'] = 16
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['axes.labelsize'] = 18
plt.rcParams['axes.titlesize'] = 20
plt.rcParams['legend.fontsize'] = plt.rcParams['font.size']
plt.rcParams['xtick.labelsize'] = plt.rcParams['font.size']
plt.rcParams['ytick.labelsize'] = plt.rcParams['font.size']
plt.rcParams['xtick.major.size'] = 3
plt.rcParams['xtick.minor.size'] = 3
plt.rcParams['xtick.major.width'] = 1
plt.rcParams['xtick.minor.width'] = 1
plt.rcParams['ytick.major.size'] = 3
plt.rcParams['ytick.minor.size'] = 3
plt.rcParams['ytick.major.width'] = 1
plt.rcParams['ytick.minor.width'] = 1
plt.rcParams['legend.frameon'] = True
plt.rcParams['legend.shadow'] = True
plt.rcParams['legend.loc'] = 'lower left'
plt.rcParams['legend.numpoints'] = 1
plt.rcParams['legend.scatterpoints'] = 1
plt.rcParams['axes.linewidth'] = 1
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['xtick.minor.visible'] = 'False'
plt.rcParams['ytick.minor.visible'] = 'False'
plt.gca().xaxis.set_ticks_position('bottom')
plt.gca().yaxis.set_ticks_position('left')
plt.locator_params(nticks=4)
开发者ID:saeedsltm,项目名称:PyVelest,代码行数:31,代码来源:initial_mpl.py
示例9: plot_posterior_hist
def plot_posterior_hist(ax, variable, samples, validation_data=None):
pyplot.locator_params(axis = 'x', nbins = 4)
histogram = ax.hist(samples, bins=12)
if validation_data:
axvline(x=validation_data[variable])
ax.set_xlabel(variable)
ax.set_ylim(0, max(histogram[0])*1.1)
开发者ID:bwallin,项目名称:thesis-code,代码行数:7,代码来源:vis_lib.py
示例10: plot
def plot(self, fig=None):
import matplotlib.pyplot as plt
if fig == None and not isinstance(self.fig, plt.Figure):
self.fig = plt.figure()
else:
self.fig = fig
# plt.gcf(self.fig)
plt.figure(self.fig.number)
plt.hold(True)
from numpy import max as npmax
mode = "logpow"
if mode == "logpow":
gdata = self.get_logpow()
plt.ylabel("power [db]")
plt.plot(self.get_xdata() / 1000., gdata)
ymax = int(npmax(gdata[1:]) / 10.) * 10 + 10
ymin = ymax - 80
plt.ylim(ymin, ymax)
plt.xlabel('Frequency [kHz]')
plt.locator_params(nbins=20, axis='x', tight=True)
# plt.locator_params(nbins=15, axis='y', tight=True, fontsize=1)
plt.grid()
plt.title(self.name)
return self
开发者ID:peace098beat,项目名称:fisig2,代码行数:30,代码来源:spectrum.py
示例11: graph_drugs_line
def graph_drugs_line(items,nic):
months = Config.filenames
months = [x.strip('.csv') for x in months]
months.reverse()
for drug in items.keys():
items_list = []
nics=[]
for month in months:
try:
items_list.append(items[drug][month])
nics.append(nic[drug][month])
except KeyError:
print drug + ' not all information available'
break
else:
index = numpy.arange(len(months))
graph = plt.plot(index, items_list, 'r.-', index, nics, 'g.-')
lessMonths = [months[int(i)] for i in numpy.linspace(0,len(months)-1,num=6)]
ax = plt.gca()
plt.locator_params(nbins=len(lessMonths))
ax.set_xticklabels(lessMonths)
ax.set_ylabel('Branded/Generic')
ax.set_title('Percent branded for chemical: '+drug)
ax.legend( ('items', 'nic') )
plt.savefig('Time_ChemPercents_figures/' + drug)
plt.clf()
开发者ID:rachelboy,项目名称:NHSDataScience,代码行数:33,代码来源:DrugPairFigures.py
示例12: main
def main():
#The url is made up of the prefix, day, and suffix:
prefix = "http://www.wunderground.com/history/airport/KLGA/2016/1/"
suffix = "/DailyHistory"
days = [] #Sets up a list to store days
mins = [] #Sets up a list so store min values
for day in range(1,32): #For each day
days.append(day) #Add the day to the list
url = prefix+str(day)+suffix #Make the url
M = getTempFromWeb("Min",url) #Call the function to extract temp
mins.append(M) #Add the temp to the list
print day, M
## days = [i for i in range(1,32)] Used for debugging programin
## mins = [36,34,36,15,13,26,32,34,41,42,28,26,24,24,34,42,31,20,18,30,27,22,25,24,30,35,34,29,32,30,37]
ave = float(sum(mins))/ len(mins)
print ave
print len(mins)
scaled= [i*100/ave-100 for i in mins]
plt.plot(days, scaled, color='r', label="Variation of Temp") #Plot max as red
plt.axhline(y=0,color='b')
plt.legend(['% Difference From Avg'], loc='upper left',prop={'size':10})
plt.title("Variation of January Min Temps from Average Min", y=1.02) #Title for plot
plt.xlabel('Days', fontsize=16).set_color("white") #Label for x-axis
plt.ylabel('% Fluctuation from Average', fontsize=16).set_color("white") #Label for the y-axis
plt.axis([0,32,-60,60])
plt.locator_params(axis = 'x', nbins = 16)
plt.locator_params(axis = 'y', nbins = 20)
plt.show()
开发者ID:niqwilk,项目名称:Data-Science,代码行数:35,代码来源:HW2+part+1.py
示例13: plot_dshift
def plot_dshift(data, sample, fout, dshift_ind=0, close=True):
"""
PLOT THE POSTERIOR FOR THE DOPPLER SHIFT
"""
fig = plt.figure(figsize=(12,9))
plt.locator_params(axis = 'x', nbins = 6)
# Plot a historgram and kernel density estimate
ax = fig.add_subplot(111)
sns.distplot(sample[:,11+dshift_ind], hist_kws={"histtype":"stepfilled"}, ax=ax)
plt.xticks(rotation=45)
_, ymax = ax.get_ylim()
ax.vlines(data["dshift"], 0, ymax, lw=3, color="black")
ax.set_xlabel(r"Doppler shift $d=v/c$")
ax.set_ylabel("$N_{\mathrm{samples}}$")
plt.tight_layout()
plt.savefig(fout+"_dshift%i.png"%dshift_ind, format="png")
if close:
plt.close()
return
开发者ID:dhuppenkothen,项目名称:ShiftyLines,代码行数:25,代码来源:plot_figures.py
示例14: main
def main(plot_type):
per_size = 5
nrow, ncol = len(graphs), len(params)
fig = plt.figure(figsize=(ncol * per_size, nrow * per_size))
if plot_type.startswith('dist'):
angle = (10, 45)
else:
angle = (15, 210)
for i, gname in enumerate(graphs):
for j, param in enumerate(params):
idx = i * ncol + j + 1
ax = fig.add_subplot(nrow, ncol, idx, projection='3d')
plot_surface(gname, param, plot_type,
fig, ax=ax,
dirname=dirname,
angle=angle,
use_colorbar=False)
ax.set_title('{}({})'.format(gname, param))
plt.locator_params(axis='y', nbins=5)
plt.locator_params(axis='x', nbins=5)
fig_dir = 'figs/{}'.format(fig_dirname)
if not os.path.exists(fig_dir):
os.makedirs(fig_dir)
figpath = '{}/{}.pdf'.format(fig_dir, plot_type)
print(figpath)
fig.savefig(figpath)
开发者ID:xiaohan2012,项目名称:active-infection-source-finding,代码行数:29,代码来源:plot_source_likelihood_modeling_by_graphs_and_sizes.py
示例15: save_records_plot
def save_records_plot(file_path, ls_monitors, name, n_train_batches, legend_loc="upper right"):
"""
Save a plot of a list of monitors' history.
Args:
file_path (string): the folder path where to save the plot
ls_monitors: the list of statistics to plot
name: name of file to be saved
n_train_batches: the total number of training batches
"""
lines = ["--", "-", "-.",":"]
linecycler = cycle(lines)
plt.figure()
for m in ls_monitors:
X = [i/float(n_train_batches) for i in m.history_minibatch]
Y = m.history_value
a, b = zip(*sorted(zip(X, Y)))
plt.plot(a, b, next(linecycler), label=m.name)
plt.xlabel('Training epoch')
plt.ylabel(ls_monitors[0].type)
plt.legend(loc=legend_loc)
plt.locator_params(axis='y', nbins=7)
plt.locator_params(axis='x', nbins=10)
plt.savefig(file_path + name + ".png")
tikz_save(file_path + name + ".tikz", figureheight = '\\figureheighttik', figurewidth = '\\figurewidthtik')
开发者ID:adbrebs,项目名称:spynet,代码行数:27,代码来源:monitor.py
示例16: plot_rejection_sampling
def plot_rejection_sampling(thetas, posteriors, x_accepts, bins):
""" Plot analytical solution and rejection sampling solution on same graph """
fig, ax = plt.subplots()
plt.plot(thetas, posteriors, linewidth=3)
#Rejection sampling plot
hist, bin_edges = numpy.histogram(x_accepts, bins)
bin_width = bin_edges[1] - bin_edges[0]
hist = hist / max(hist)
ax.bar(bin_edges[:-1], hist, bin_width, color='green')
ax.tick_params(axis='both', which='major', labelsize=30)
# Create strings to show numerical mean and standard deviation on graphs
mean = numpy.mean(x_accepts)
stdev = numpy.std(x_accepts)
display_string = ('$\mu_{{MC}} = {0:.3f} $\n$\sigma_{{MC}} = {1:.3f}$').format(mean, stdev)
plt.xlabel(r'$\theta$', fontsize=30)
plt.ylabel(r'$\propto P(\theta|x)$', fontsize=30)
plt.text(0.6, 0.8, display_string, transform=ax.transAxes, fontsize=30)
plt.locator_params(axis='x', nbins=5)
plt.savefig('rejection.png', bbox_inches='tight')
# Plot log
fig, ax = plt.subplots()
plt.plot(thetas, -numpy.log(posteriors), linewidth=3)
ax.bar(bin_edges[:-1], -numpy.log(hist), bin_width, color='green')
ax.tick_params(axis='both', which='major', labelsize=30)
plt.xlabel(r'$\theta$', fontsize=30)
plt.ylabel(r'$\propto log(P(\theta|x))$', fontsize=30)
plt.locator_params(axis='x', nbins=5)
plt.text(0.3, 0.5, display_string, transform=ax.transAxes, fontsize=30)
plt.savefig('rejlog.png', bbox_inches='tight')
开发者ID:dangerdak,项目名称:MCMC,代码行数:35,代码来源:one_d.py
示例17: plot_results
def plot_results(dists):
for i, d in enumerate(dists):
ax = plt.subplot(3,3,(4*i)+1)
N, bins, patches = plt.hist(d.data, color="b",ec="k", bins=30, \
range=tuple(d.lims), normed=True, \
edgecolor="k", histtype='bar',linewidth=1.)
fracs = N.astype(float)/N.max()
norm = Normalize(-.2* fracs.max(), 1.5 * fracs.max())
for thisfrac, thispatch in zip(fracs, patches):
color = cm.gray_r(norm(thisfrac))
thispatch.set_facecolor(color)
thispatch.set_edgecolor("w")
x = np.linspace(d.data.min(), d.data.max(), 100)
ylim = ax.get_ylim()
plt.plot(x, d.best.pdf(x), "-r", lw=1.5, alpha=0.7)
ax.set_ylim(ylim)
plt.axvline(d.best.MAPP, c="r", ls="--", lw=1.5)
plt.tick_params(labelright=True, labelleft=False, labelsize=10)
plt.xlim(d.lims)
plt.locator_params(axis='x',nbins=10)
if i < 2:
plt.setp(ax.get_xticklabels(), visible=False)
else:
plt.xlabel(r"[$\mathregular{\alpha}$ / Fe]")
plt.minorticks_on()
def hist2D(dist1, dist2):
""" Plot distribution and confidence contours. """
X, Y = np.mgrid[dist1.lims[0] : dist1.lims[1] : 20j,
dist2.lims[0] : dist2.lims[1] : 20j]
extent = [dist1.lims[0], dist1.lims[1], dist2.lims[0], dist2.lims[1]]
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([dist1.data, dist2.data])
kernel = stats.gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)
ax.imshow(np.rot90(Z), cmap="gray_r", extent=extent, aspect="auto",
interpolation="spline16")
plt.axvline(dist1.best.MAPP, c="r", ls="--", lw=1.5)
plt.axhline(dist2.best.MAPP, c="r", ls="--", lw=1.5)
plt.tick_params(labelsize=10)
ax.minorticks_on()
plt.locator_params(axis='x',nbins=10)
return
ax = plt.subplot(3,3,4)
hist2D(dists[0], dists[1])
plt.setp(ax.get_xticklabels(), visible=False)
plt.ylabel("[Z/H]")
plt.xlim(dists[0].lims)
plt.ylim(dists[1].lims)
ax = plt.subplot(3,3,7)
hist2D(dists[0], dists[2])
plt.ylabel(r"[$\mathregular{\alpha}$ / Fe]")
plt.xlabel("log Age (yr)")
plt.xlim(dists[0].lims)
plt.ylim(dists[2].lims)
ax = plt.subplot(3,3,8)
plt.xlabel("[Z/H]")
hist2D(dists[1], dists[2])
plt.xlim(dists[1].lims)
plt.ylim(dists[2].lims)
return
开发者ID:kadubarbosa,项目名称:groups,代码行数:60,代码来源:run_mcmc.py
示例18: main
def main():
dir='/Users/ph290/Public/mo_data/ostia/' # on ELD140
filename = dir + '*.nc'
cube = iris.load_cube(filename,'sea_surface_temperature',callback=my_callback)
#reads in data using a special callback, because it is a nasty netcdf file
cube.data=cube.data-273.15
sst_mean = cube.collapsed('time', iris.analysis.MEAN)
#average all 12 months together
sst_stdev=cube.collapsed('time', iris.analysis.STD_DEV)
caribbean = iris.Constraint(
longitude=lambda v: 260 <= v <= 320,
latitude=lambda v: 0 <= v <= 40,
name='sea_surface_temperature'
)
caribbean_sst_mean = sst_mean.extract(caribbean)
caribbean_sst_stdev = sst_stdev.extract(caribbean)
#extract the Caribbean region
fig = plt.figure()
ax = plt.axes(projection=ccrs.PlateCarree())
data=caribbean_sst_mean.data
data2=caribbean_sst_stdev.data
lons = caribbean_sst_mean.coord('longitude').points
lats = caribbean_sst_mean.coord('latitude').points
lo = np.floor(data.min())
hi = np.ceil(data.max())
levels = np.linspace(lo,hi,100)
lo2 = np.floor(data2.min())
hi2 = np.ceil(data2.max())
levels2 = np.linspace(lo2,5,10)
cube_label = 'latitude: %s' % caribbean_sst_mean.coord('latitude').points
contour=plt.contourf(lons, lats, data,transform=ccrs.PlateCarree(),levels=levels,xlabel=cube_label)
#filled contour the annually averaged temperature
contour2=plt.contour(lons, lats, data2,transform=ccrs.PlateCarree(),levels=levels2,colors='k')
#contour the standard deviations
plt.clabel(contour2, inline=0.5, fontsize=12,fmt='%1.1f' )
ax.add_feature(cartopy.feature.LAND)
ax.coastlines()
ax.add_feature(cartopy.feature.RIVERS)
ax.add_feature(cartopy.feature.BORDERS, linestyle=':')
#ax.add_feature(cartopy.feature.LAKES, alpha=0.5)
cbar = plt.colorbar(contour, ticks=np.linspace(lo,hi,7), orientation='horizontal')
cbar.set_label('Sea Surface Temperature ($^\circ$C)')
# enable axis ticks
ax.xaxis.set_visible(True)
ax.yaxis.set_visible(True)
# fix 10-degree increments and don't clip range
plt.locator_params(steps=(1,10), tight=False)
# add gridlines
plt.grid(True)
# add axis labels
plt.xlabel('longitude')
plt.ylabel('latitude')
#plt.show()
plt.savefig('/home/h04/hador/public_html/twiki_figures/carib_sst_and_stdev.png')
开发者ID:PaulHalloran,项目名称:macbook_pythion_scipts,代码行数:60,代码来源:ostia_plot_caribbean.py
示例19: plot_KDE
def plot_KDE(sol, var1, var2, fig=None, ax=None, draw=True, save=False, save_as_png=False, dpi=None):
"""
Like the hexbin plot but a 2D KDE
Pass mcmcinv object and 2 variable names as strings
"""
ext = ['png' if save_as_png else 'pdf'][0]
if fig == None or ax == None:
fig, ax = plt.subplots(figsize=(3,3))
MDL = sol.MDL
if var1 == "R0":
stoc1 = "R0"
else:
stoc1 = ''.join([i for i in var1 if not i.isdigit()])
stoc_num1 = [int(i) for i in var1 if i.isdigit()]
try:
x = MDL.trace(stoc1)[:,stoc_num1[0]-1]
except:
x = MDL.trace(stoc1)[:]
if var2 == "R0":
stoc2 = "R0"
else:
stoc2 = ''.join([i for i in var2 if not i.isdigit()])
stoc_num2 = [int(i) for i in var2 if i.isdigit()]
try:
y = MDL.trace(stoc2)[:,stoc_num2[0]-1]
except:
y = MDL.trace(stoc2)[:]
xmin, xmax = min(x), max(x)
ymin, ymax = min(y), max(y)
# Peform the kernel density estimate
xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
positions = np.vstack([xx.ravel(), yy.ravel()])
values = np.vstack([x, y])
kernel = gaussian_kde(values)
kernel.set_bandwidth(bw_method='silverman')
# kernel.set_bandwidth(bw_method=kernel.factor * 2.)
f = np.reshape(kernel(positions).T, xx.shape)
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
plt.sca(ax)
# Contourf plot
plt.grid(None)
plt.ticklabel_format(style='sci', axis='both', scilimits=(0,0))
plt.xticks(rotation=90)
plt.locator_params(axis = 'y', nbins = 7)
plt.locator_params(axis = 'x', nbins = 7)
ax.contourf(xx, yy, f, cmap=plt.cm.viridis, alpha=0.8)
ax.scatter(x, y, color='k', s=1, zorder=2)
plt.ylabel("%s" %var2)
plt.xlabel("%s" %var1)
if save:
fn = 'KDE-%s-%s.%s'%(sol.model_type_str,sol.filename,ext)
save_figure(fig, subfolder='2D-KDE', fname=fn, dpi=dpi)
plt.close(fig)
if draw: return fig
else: return None
开发者ID:clberube,项目名称:BISIP,代码行数:60,代码来源:invResults.py
示例20: triangular_wave_plot
def triangular_wave_plot(ax=None):
"""Plot of a triangular wave function.
"""
import numpy as np
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=(9, 3))
t = np.array([-3, -2, -1, 0, 1, 2, 3])*np.pi
x = np.array([0, 1, 0, 1, 0, 1, 0])
ax.plot(t, x, linewidth=3, label=r'Square wave')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.tick_params(axis='both', direction='inout', which='both', length=5)
ax.set_xlim((-3*np.pi, 3*np.pi))
ax.set_ylim((-0.1, 1.1))
ax.set_xticks(np.linspace(-3*np.pi-0.1, 3*np.pi+0.1, 7))
ax.set_xticklabels(['$-3\pi$', '$-2\pi$', '$-\pi$', '$0$', '$\pi$', '$2\pi$', '$3\pi$'],
fontsize=16)
plt.locator_params(axis='y', nbins=3)
ax.annotate(r'$t$', xy=(3*np.pi, 0.1), xycoords = 'data', xytext=(0, 0),
textcoords = 'offset points', size=18, color='k')
ax.annotate(r'$x[t]$', xy=(.1, 1.03), xycoords = 'data', xytext=(0, 0),
textcoords = 'offset points', size=18, color='k')
ax.grid()
fig.tight_layout()
return ax
开发者ID:FlaviaRodriguesGabriel,项目名称:BMC,代码行数:32,代码来源:triangular_wave_plot.py
注:本文中的matplotlib.pyplot.locator_params函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论