本文整理汇总了Python中matplotlib.pyplot.interactive函数的典型用法代码示例。如果您正苦于以下问题:Python interactive函数的具体用法?Python interactive怎么用?Python interactive使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了interactive函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: plotResults
def plotResults(results):
plt.interactive(True)
plt.subplot(131)
plt.plot(results.xpos, color='b',label='X Position')
plt.plot(results.ypos, linestyle='--', color='r', label='Y Position')
plt.plot(results.zpos, linestyle='-', color='y', label='Z Position')
plt.xlabel('Time')
plt.ylabel('Distance')
plt.title('Distance Traveled')
plt.legend()
plt.show()
ts = range(0,len(results),6)
plt.subplot(131)
pt = plt.plot(0,results.zpos[0], 'ro', markersize=4)
for t in ts:
plt.subplot(131)
pt[0].set_ydata(results.zpos[t])
pt[0].set_xdata(t)
ax1 = plt.subplot(132)
ax1.clear()
plt.bar(range(6), results[t].lowerleglinearmag)
ax2 = plt.subplot(133)
ax2.clear()
plt.bar(range(6), results[t].upperleglinearmag)
plt.draw()
time.sleep(0.01)
开发者ID:henryeherman,项目名称:BulletXcodeDemos,代码行数:27,代码来源:demoarr.py
示例2: print_all
def print_all(fnames, freq, spec1, spec2, rms1, rms2, bw=(0,1600)):
'''
Print all power spectra to PDF files
'''
# Construct path for saving figures and notify
base_dir = os.path.join(os.getcwd(), 'figures')
if not os.path.exists(base_dir):
os.mkdir(base_dir)
print('\nsaving figures to {s} ... '.format(s=base_dir), flush=True)
# Plot and save figures for each channel's spectrum
on = plt.isinteractive()
plt.ioff()
for chan in range(spec1.shape[-1]):
fig = comp_spectra(freq, spec1, spec2, channel=chan, bw=bw)
plt.title('Channel {0:d}'.format(chan))
plt.xlabel('Frequency (Hz)')
plt.ylabel('Power')
plt.legend(('Before', 'After'))
print('figure {:02d}'.format(chan), flush=True)
plt.savefig(os.path.join(base_dir, 'channel{0:02d}.png'.format(chan)), format='png')
plt.close(fig)
# Plot and save figure showing RMS ratio
fig = plt.figure()
plt.plot(rms2 / rms1, 'o')
plt.title('RMS ratio (after / before)')
plt.xlabel('Channel')
plt.savefig(os.path.join(base_dir, 'rms_ratio.png'), format='png')
plt.close(fig)
# Notify
plt.interactive(on)
print('done.')
开发者ID:baccuslab,项目名称:plat,代码行数:34,代码来源:plat.py
示例3: lvmTwoDPlot
def lvmTwoDPlot(X, lbl=None, symbol=None):
"""Helper function for plotting the labels in 2-D.
Description:
lvmTwoDPlot(X, lbl, symbol) helper function for plotting an
embedding in 2-D with symbols.
Arguments:
X - the data to plot.
lbl - the labels of the data point.
symbol - the symbols to use for the different labels.
See also
lvmScatterPlot, lvmVisualise
Copyright (c) 2004, 2005, 2006, 2008, 2009 Neil D. Lawrence
"""
if lbl=='connect':
connect = True
lbl = None
else:
connect = False
if symbol is None:
if lbl is None:
symbol = ndlutil.getSymbols(1)
else:
symbol = ndlutil.getSymbols(lbl.shape[1])
axisHand = pp.gca()
returnVal = []
holdState = axisHand.ishold()
intState = pp.isinteractive()
pp.interactive(False)
for i in range(X.shape[0]):
if i == 1:
axisHand.hold(True)
if lbl is not None:
labelNo = np.flatnonzero(lbl[i])
else:
labelNo = 0
try:
returnVal.append(axisHand.plot([X[i, 0]], [X[i, 1]], symbol[labelNo], markersize=10, linewidth=2))
if connect:
if i>0:
axisHand.plot([X[i-1, 0], X[i, 0]], [X[i-1, 1], X[i, 1]], 'r')
except(NotImplementedError):
raise NotImplementedError('Only '+ str(len(symbol)) + ' labels supported (it''s easy to add more!)')
axisHand.hold(holdState)
if intState:
pp.show()
pp.interactive(intState)
return returnVal
开发者ID:lawrennd,项目名称:mltools,代码行数:60,代码来源:mltools.py
示例4: plot_gamma_1_storage
def plot_gamma_1_storage():
plt.figure()
ts=get_mismatch(1.0)
dummy,storage_capacity,storage_level=get_policy_2_storage(ts,return_storage_filling_time_series=True)
plt.plot(storage_level)
plt.interactive(1)
plt.show()
开发者ID:TueVJ,项目名称:stBaCU,代码行数:7,代码来源:tplot.py
示例5: plot_path2d
def plot_path2d(data1, data2, data3, data4):
x1=[x for [x, y, z] in data1]
y1=[y for [x, y, z] in data1]
z1=[z for [x, y, z] in data1]
x2=[x for [x, y, z] in data2]
y2=[y for [x, y, z] in data2]
z2=[z for [x, y, z] in data2]
mx1=[x for [x, y, z] in data3]
my1=[y for [x, y, z] in data3]
mz1=[z for [x, y, z] in data3]
mx2=[x for [x, y, z] in data4]
my2=[y for [x, y, z] in data4]
mz2=[z for [x, y, z] in data4]
pltxy=plt.plot(x1,y1, 'ro-',label='xy')
pltuv=plt.plot(x2,y2, 'bs-',label='uv')
mpltxy=plt.plot(mx1,my1, 'go-',label='cut_xy')
mpltuv=plt.plot(mx2,my2, 'ks-',label='cut_uv')
plt.legend()
plt.axis('equal')
plt.axis([min([min(x1),min(x2),min(mx1),min(mx2)]),\
max([max(x1),max(x2),max(mx1),max(mx2)]),\
min([min(y1),min(y2),min(my1),min(my2)]),\
max([max(y1),max(y2),max(my1),max(my2)])])
plt.grid(True)
plt.interactive(True)
plt.show(block=False)
# plt.show()
plt.hold(True)
开发者ID:FoamWorkshop,项目名称:cncfc,代码行数:34,代码来源:knots2plot.py
示例6: cosp_plot_column_2D
def cosp_plot_column_2D(fnc, varname='equivalent_reflectivity_factor', level=0, column = 0, time = 0):
"""
Function that plots one column of lat/lon data.
"""
plt.interactive(True)
fig=plt.figure()
ax = fig.add_subplot(111)
# Read cube
z=iris.load(fnc)
z=z[0]
# Get coords
c = z.coord('column')
t = z.coord('time')
# Select time and column
y=z.extract(iris.Constraint(column=c.points[column]))
y=y.extract(iris.Constraint(time=t.points[time]))
# Select level. Not managed to make constrain with 'atmospheric model level'
y=y[level]
color_map = mpl_cm.get_cmap('Paired')
qplt.pcolormesh(y,cmap=color_map,vmin=-20,vmax=20)
plt.gca().coastlines()
return
开发者ID:CFMIP,项目名称:COSPv1,代码行数:27,代码来源:COSP_plots.py
示例7: plot_data_dict
def plot_data_dict(data_dict, plots = None, mode = 'static', hang = True, figure = None, size = None, **plot_preference_kwargs):
"""
Make a plot of data in the format defined in data_dict
:param data_dict: dict<str: plottable_data>
:param plots: Optionally, a dict of <key: IPlot> identifying the plot objects to use (keys should
be the same as those in data_dict).
:return: The plots (same ones you provided if you provided them)
"""
assert mode in ('live', 'static')
if isinstance(data_dict, list):
assert all(len(d) == 2 for d in data_dict), "You can provide data as a list of 2 tuples of (plot_name, plot_data)"
data_dict = OrderedDict(data_dict)
if plots is None:
plots = {k: get_plot_from_data(v, mode = mode, **plot_preference_kwargs) for k, v in data_dict.items()}
if figure is None:
if size is not None:
from pylab import rcParams
rcParams['figure.figsize'] = size
figure = plt.figure()
n_rows, n_cols = vector_length_to_tile_dims(len(data_dict))
for i, (k, v) in enumerate(data_dict.items()):
plt.subplot(n_rows, n_cols, i + 1)
plots[k].update(v)
plots[k].plot()
plt.title(k, fontdict = {'fontsize': 8})
oldhang = plt.isinteractive()
plt.interactive(not hang)
plt.show()
plt.interactive(oldhang)
return figure, plots
开发者ID:QUVA-Lab,项目名称:artemis,代码行数:33,代码来源:easy_plotting.py
示例8: plot_paths
def plot_paths(results, which_to_label=None):
import matplotlib
import matplotlib.pyplot as plt
plt.clf()
interactive_state = plt.isinteractive()
xvalues = -np.log(results.lambdas[1:])
for index, path in enumerate(results.coefficients):
if which_to_label and results.indices[index] in which_to_label:
if which_to_label[results.indices[index]] is None:
label = "$x_{%d}$" % results.indices[index]
else:
label = which_to_label[results.indices[index]]
else:
label = None
if which_to_label and label is None:
plt.plot(xvalues, path[1:], ':')
else:
plt.plot(xvalues, path[1:], label=label)
plt.xlim(np.amin(xvalues), np.amax(xvalues))
if which_to_label is not None:
plt.legend(loc='upper left')
plt.title('Regularization paths ($\\rho$ = %.2f)' % results.balance)
plt.xlabel('$-\log(\lambda)$')
plt.ylabel('Value of regression coefficient $\hat{\\beta}_i$')
plt.show()
plt.interactive(interactive_state)
开发者ID:samuelstjean,项目名称:glmnet-python,代码行数:30,代码来源:glmnet.py
示例9: get_windows
def get_windows(image):
"""Display the given image and record user selected points.
Parameters
----------
image : M,N,3 ndarray
The image to be displayed.
Returns
-------
array : n_points,2
An array of coordinates in the image. Each row corresponds to the x, y
coordinates of one point. If an odd number of points are specified, the
last one will be discarded.
"""
plt.interactive(True)
plt.imshow(image)
plt.show()
crop = plt.ginput(0)
plt.close()
plt.interactive(False)
# remove last point if an odd number selected
crop = crop[:-1] if np.mod(len(crop), 2) else crop
return np.vstack(crop).astype('int')[:, [1, 0]]
开发者ID:SamHames,项目名称:aperturesynth,代码行数:27,代码来源:gui.py
示例10: draw_2D_slice_interactive
def draw_2D_slice_interactive(self, p_vals, x_variable, y_variable,
range_x, range_y, slider_ranges,
**kwargs):
previous = plt.isinteractive()
plt.ioff()
number_of_sliders = len(slider_ranges)
slider_block = 0.03*number_of_sliders
fig = plt.figure()
plt.clf()
ax = plt.axes([0.1, 0.2+slider_block, 0.8, 0.7-slider_block])
c_axs = list()
cdict = dict()
if 'color_dict' in kwargs:
cdict.update(kwargs['color_dict'])
j = 0
sliders = dict()
for i in slider_ranges:
slider_ax = plt.axes([0.1, 0.1+j*0.03, 0.8, 0.02])
slider = Slider(slider_ax, i,
log10(slider_ranges[i][0]), log10(slider_ranges[i][1]),
valinit=log10(p_vals[i]), color='#AAAAAA'
)
j += 1
sliders[i] = slider
update = SliderCallback(self, sliders, c_axs, cdict,
ax, p_vals, x_variable, y_variable, range_x, range_y,
**kwargs)
update(1)
for i in sliders:
sliders[i].on_changed(update)
plt.show()
plt.interactive(previous)
开发者ID:jlomnitz,项目名称:python-design-space-interface,代码行数:32,代码来源:designspace_plot.py
示例11: train_agent
def train_agent(mdp, agent, max_episodes, epsilon_decay=0.9, plot=False):
'''
Trains an agent on the given MDP for the specified number of episodes.
:param mdp: The mdp which implements the domain
:param agent: The RL agent to train
:param max_episodes: The maximum number of episodes to run
:param epsilon_decay: The per-episode decay rate of the epsilon parameter
:param plot: If true, plot the reward results online.
'''
episode_rewards = []
for i in range(max_episodes):
episode_rewards.append(run_episode(mdp, agent, kbd_ctl=False))
if i % 1 == 0:
agent.epsilon *= epsilon_decay
if plot:
plt.interactive(True)
plt.clf()
plt.ylabel('Reward per episodes')
plt.xlabel('Episodes')
plt.plot(episode_rewards)
plt.draw()
print "[episode %d] episode reward: %f. Epsilon now: %f" %\
(i, episode_rewards[-1], agent.epsilon)
return episode_rewards
开发者ID:jscholz,项目名称:rl_tutorial,代码行数:28,代码来源:experiments.py
示例12: main
def main(argv=None):
# Permit interactive use
if argv is None:
argv = sys.argv
# Parse and check incoming command line arguments
outsuffix = None
try:
try:
opts, args = getopt.getopt(argv[1:], "h", ["help"])
except getopt.error as msg:
raise Usage(msg)
for o, a in opts:
if o in ("-h", "--help"):
print(__doc__)
return 0
elif o == "-o":
outsuffix = a
except Usage as err:
print(err.msg, file=sys.stderr)
return 2
# Push interactive mode off (in case we get used from IPython)
was_interactive = plt.isinteractive()
plt.interactive(False)
# If not saving, then display.
if not outsuffix:
plt.show()
# Pop interactive mode
plt.interactive(was_interactive)
开发者ID:RhysU,项目名称:suzerain,代码行数:33,代码来源:perfect.py
示例13: __init__
def __init__(self, client_pars=None, plot_template=None, interactive=True, **kwargs):
self.client=Client(client_pars)
self.connect()
# initialize data containers
self.pr=u.Param()
self.ob=u.Param()
self.err=[]
self.ferr=None
# initialize the plotter
from matplotlib import pyplot
self.interactive = interactive
self.pp = pyplot
pyplot.interactive(interactive)
#self.template_default = default_template
self.templates = templates
#self.template = u.Param()
self.p = u.Param(DEFAULT)
#self.update_plot_layout(plot_template=plot_template)
# save as 'cmd': tuple(ticket,buffer,key)
# will call get cmds with 'cmd', save the ticket in <ticket> and
# save the resulting data in buffer[key]
self.cmd_dct = {}
self.server_dcts={}
开发者ID:aglowacki,项目名称:ptypy,代码行数:26,代码来源:plot_client_20140517.py
示例14: generate_single_funnel_test_data
def generate_single_funnel_test_data( excitation_angles, emission_angles, \
md_ex=0, md_fu=1, \
phase_ex=0, phase_fu=0, \
gr=1.0, et=1.0 ):
ex, em = np.meshgrid( excitation_angles, emission_angles )
alpha = 0.5 * np.arccos( .5*(((gr+2)*md_ex)-gr) )
ph_ii_minus = phase_ex - alpha
ph_ii_plus = phase_ex + alpha
print ph_ii_minus
print ph_ii_plus
Fnoet = np.cos( ex-ph_ii_minus )**2 * np.cos( em-ph_ii_minus )**2
Fnoet += gr*np.cos( ex-phase_ex )**2 * np.cos( em-phase_ex )**2
Fnoet += np.cos( ex-ph_ii_plus )**2 * np.cos( em-ph_ii_plus )**2
Fnoet /= (2+gr)
Fet = .25 * (1+md_ex*np.cos(2*(ex-phase_ex))) \
* (1+md_fu*np.cos(2*(em-phase_fu-phase_ex)))
Fem = et*Fet + (1-et)*Fnoet
import matplotlib.pyplot as plt
plt.interactive(True)
plt.matshow( Fem, origin='bottom' )
plt.colorbar()
开发者ID:kiwimatto,项目名称:2dpolim-analysis,代码行数:32,代码来源:util_misc.py
示例15: interactive
def interactive(b):
b_prev = plt.isinteractive()
plt.interactive(b)
try:
yield
finally:
plt.interactive(b_prev)
开发者ID:ronniemaor,项目名称:timefit,代码行数:7,代码来源:misc.py
示例16: createHistogramOfOrientedGradientFeatures
def createHistogramOfOrientedGradientFeatures(sourceImage, numOrientations, pixelsPerCell):
# Returns an nxd matrix, n pixels and d the HOG vector length.
# H is a matrix NBLOCKS_Y x NBLOCKS_X x CPB_Y x CPB_X x ORIENTATIONS
# Here CPB == 1
H,Himg = myhog.hog( sourceImage, numOrientations, pixelsPerCell, cells_per_block=(1,1), flatten=False, visualise=True )
hog_image_rescaled = skimage.exposure.rescale_intensity( Himg )#, in_range=(0, 0.2))
plt.interactive(True)
plt.figure()
plt.subplot(1,2,1)
plt.imshow(sourceImage)
plt.subplot(1,2,2)
plt.imshow( hog_image_rescaled, cmap=plt.cm.gray )
plt.title('HOG')
plt.waitforbuttonpress()
# Reduce to non-singleton dimensions, BY x BX x ORIENT
H = H.squeeze()
assert H.ndim == 3
assert H.max() <= 1.0
# resize to image pixels rather than grid blocks
hogImg = np.zeros( ( sourceImage.shape[0], sourceImage.shape[1], numOrientations ), dtype=float )
for o in range(numOrientations):
hogPerOrient = H[:,:,o].astype(np.float32)
hpoAsPil = pil.fromarray( hogPerOrient, mode='F' )
hogImg[:,:,o] = np.array( hpoAsPil.resize( (sourceImage.shape[1], sourceImage.shape[0]), pil.NEAREST ) )
return hogImg.reshape( ( sourceImage.shape[0]*sourceImage.shape[1], numOrientations ) )
开发者ID:RockStarCoders,项目名称:alienMarkovNetworks,代码行数:27,代码来源:FeatureGenerator.py
示例17: plot_patches
def plot_patches(patches, fignum=None, low=0, high=0):
"""
Given a stack of 2D patches indexed by the first dimension, plot the
patches in subplots.
'low' and 'high' are optional arguments to control which patches
actually get plotted. 'fignum' chooses the figure to plot in.
"""
try:
istate = plt.isinteractive()
plt.ioff()
if fignum is None:
fig = plt.gcf()
else:
fig = plt.figure(fignum)
if high == 0:
high = len(patches)
pmin, pmax = patches.min(), patches.max()
dims = np.ceil(np.sqrt(high - low))
for idx in xrange(high - low):
spl = plt.subplot(dims, dims, idx + 1)
ax = plt.axis('off')
im = plt.imshow(patches[idx], cmap=matplotlib.cm.gray)
cl = plt.clim(pmin, pmax)
plt.show()
finally:
plt.interactive(istate)
开发者ID:fred1234,项目名称:BigData,代码行数:27,代码来源:patches.py
示例18: show_result
def show_result(lr, title):
fig, axarr = plt.subplots(2, 1)
fig.suptitle(title, fontsize=16)
# Draw line
num_samples = 1000
x = lr.features[:, :-1]
min_val_x, max_val_x = np.floor(np.amin(x)), np.ceil(np.amax(x))
x_continue = np.linspace(min_val_x, max_val_x, num_samples).reshape(num_samples, 1)
features = np.hstack((x_continue, np.ones((num_samples, 1))))
y_continue = lr.hypothesise(features)
axarr[0].set_title("Draw line.")
axarr[0].plot(lr.features[:, :-1], lr.labels, 'bo')
axarr[0].plot(x_continue, y_continue, 'r-')
axarr[0].axis([min_val_x, max_val_x, np.amin(y_continue), np.amax(y_continue)])
# History of the Cost
num_iters = len(lr.loss_history)
axarr[1].set_title("History of the Cost")
axarr[1].plot(np.linspace(1, num_iters, num_iters), lr.loss_history, 'b-')
axarr[1].axis([0, num_iters, 0, np.max(lr.loss_history)])
plt.interactive(False)
plt.show(block=True)
plt.show()
开发者ID:NoNeil,项目名称:MachineLearningInPython,代码行数:25,代码来源:LinearRegressionImpl.py
示例19: __init__
def __init__(self, i):
#TO-DO: work the i argument
plt.interactive(True)
self._figure = plt.figure()
ax = f.add_subplot() #<- TO-DO: depending on intended axes and geometries
'''
开发者ID:asrbrr,项目名称:datacleaning,代码行数:8,代码来源:plots.py
示例20: main
def main():
plt.interactive(False)
#analyseSimpleBatchGradientDescent()
#analyseSimpleBatchGradientDescentRegularization()
#analyseSimpleBatchGradientDescentMNIST()
analyseBatchVersusMiniBatch()
#analyseOneVersusAll()
return
开发者ID:JonasSejr,项目名称:MLAU,代码行数:8,代码来源:logisticregression.py
注:本文中的matplotlib.pyplot.interactive函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论