本文整理汇总了Python中matplotlib.pyplot.hold函数的典型用法代码示例。如果您正苦于以下问题:Python hold函数的具体用法?Python hold怎么用?Python hold使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了hold函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: marking_init
def marking_init(enhanced_img, mep, mbp):
# mark initially extracted minutiae points
img_thin = np.array(enhanced_img[:]) # convert image to array for marking points
fig = plt.figure(figsize=(10,8),dpi=30000)
num1 = len(mep)
num2 = len(mbp)
figure, imshow(img_thin, cmap = cm.Greys_r)
title('mark extracted points')
plt.hold(True)
for i in range(num1):
xy = mep[i,:]
u = xy[0]
v = xy[1]
if (u != 0.0) & (v != 0.0):
plt.plot(v, u, 'r.', markersize = 7)
plt.hold(True)
for i in range(num2):
xy = mbp[i,:]
u = xy[0]
v = xy[1]
if (u != 0.0) & (v != 0.0):
plt.plot(v, u, 'c+', markersize = 7)
plt.show()
cv2.imwrite("initial_extraction.png", img_thin)
开发者ID:MonkeyPengc,项目名称:FPMR,代码行数:32,代码来源:minutiae_fingerprint.py
示例2: plotFit
def plotFit(min_x, max_x, mu, sigma, theta, p):
#PLOTFIT Plots a learned polynomial regression fit over an existing figure.
#Also works with linear regression.
# PLOTFIT(min_x, max_x, mu, sigma, theta, p) plots the learned polynomial
# fit with power p and feature normalization (mu, sigma).
# Hold on to the current figure
plt.hold(True)
# We plot a range slightly bigger than the min and max values to get
# an idea of how the fit will vary outside the range of the data points
x = np.array(np.arange(min_x - 15, max_x + 25, 0.05)) # 1D vector
# Map the X values
X_poly = pf.polyFeatures(x, p)
X_poly = X_poly - mu
X_poly = X_poly/sigma
# Add ones
X_poly = np.column_stack((np.ones((x.shape[0],1)), X_poly))
# Plot
plt.plot(x, np.dot(X_poly, theta), '--', linewidth=2)
# Hold off to the current figure
plt.hold(False)
开发者ID:arturomp,项目名称:coursera-machine-learning-in-python,代码行数:26,代码来源:plotFit.py
示例3: visualize
def visualize(u1, t1, u2, t2, U, omega):
plt.figure(1)
plt.plot(t1, u1, 'r--o')
t_fine = np.linspace(0, t1[-1], 1001) # мелкая сетка для точного решения
u_e = u_exact(t_fine, U, omega)
plt.hold('on')
plt.plot(t_fine, u_e, 'b-')
plt.legend([u'приближенное', u'точное'], loc='upper left')
plt.xlabel('$t$')
plt.ylabel('$u$')
tau = t1[1] - t1[0]
plt.title('$\\tau = $ %g' % tau)
umin = 1.2*u1.min();
umax = -umin
plt.axis([t1[0], t1[-1], umin, umax])
plt.savefig('tmp1.png'); plt.savefig('tmp1.pdf')
plt.figure(2)
plt.plot(t2, u2, 'r--o')
t_fine = np.linspace(0, t2[-1], 1001) # мелкая сетка для точного решения
u_e = u_exact(t_fine, U, omega)
plt.hold('on')
plt.plot(t_fine, u_e, 'b-')
plt.legend([u'приближенное', u'точное'], loc='upper left')
plt.xlabel('$t$')
plt.ylabel('$u$')
tau = t2[1] - t2[0]
plt.title('$\\tau = $ %g' % tau)
umin = 1.2 * u2.min();
umax = -umin
plt.axis([t2[0], t2[-1], umin, umax])
plt.savefig('tmp2.png');
plt.savefig('tmp2.pdf')
开发者ID:LemSkMMU2017,项目名称:Year3P2,代码行数:32,代码来源:vib_undamped.py
示例4: smooth_demo
def smooth_demo():
Smoother = SmoothClass()
xfile = ArrayClass("DatasetX")
#print xfile.array
xn = np.array(xfile.array)
plt.subplot(211)
#plt.plot(np.ones(ws))
windows=['blackman']
#windows=['flat', 'hanning', 'hamming', 'bartlett', 'blackman']
plt.hold(True)
plt.axis([0,30,0,1.1])
plt.legend(windows)
plt.title("The smoothing windows")
plt.subplot(212)
#plt.plot(xn)
plt.plot(xn)
plt.plot(Smoother.smooth(xn,10,'blackman'))
开发者ID:easyNav,项目名称:easyNav-gears,代码行数:27,代码来源:cookb_signalsmooth.py
示例5: test_prop
def test_prop(self):
N = 800.0
V = linspace(5.0,51.0,50)
rho = 1.2255
beta = 45.0
J = list()
CT = list()
CP = list()
effy = list()
for v in V:
data = self.analyze_prop(beta,N,v,rho)
J.append(data[2])
CT.append(data[3])
CP.append(data[4])
effy.append(data[5])
plt.figure(1)
plt.grid(True)
plt.hold(True)
plt.plot(J,CT,'o-')
plt.xlabel('J')
plt.plot(J,CP,'ro-')
plt.axis([0,2.5,0,0.15])
plt.figure(2)
plt.plot(J,effy,'gs-')
plt.hold(True)
plt.grid(True)
plt.axis([0,2.5,0,1.0])
plt.xlabel('advance ratio')
plt.ylabel('efficiency')
plt.show()
开发者ID:maximtyan,项目名称:actools,代码行数:30,代码来源:propeller.py
示例6: plot_categorical_scatter_with_mean
def plot_categorical_scatter_with_mean(vals, categoryLabels, jitter=True, colours=None, xlabel=None, ylabel=None, title=None):
import matplotlib.colors
import scipy.stats
import pdb
numCategories = len(vals)
plt.hold(True)
if colours is None:
colours = plt.cm.gist_rainbow(np.linspace(0,1,numCategories))
for category in range(numCategories):
edgeColour = matplotlib.colors.colorConverter.to_rgba(colours[category], alpha=0.5)
xval = (category+1)*np.ones(len(vals[category]))
if jitter:
jitterAmt = np.random.random(len(xval))
xval = xval + (0.3 * jitterAmt) - 0.15
#pdb.set_trace()
plt.plot(xval, vals[category], 'o', mec=edgeColour, mew = 4, mfc='none', ms=16)
mean = np.mean(vals[category])
sem = scipy.stats.sem(vals[category])
print mean, sem
plt.plot(category+1, mean, 'o', color='k', mec=colours[category], ms=20)
plt.errorbar(category+1, mean, yerr = sem, color=colours[category])
plt.xlim(0,numCategories+1)
plt.ylim(0,1)
ax = plt.gca()
ax.set_xticks(range(1,numCategories+1))
ax.set_xticklabels(categoryLabels, fontsize=16)
if xlabel is not None:
plt.xlabel(xlabel, fontsize=20)
if ylabel is not None:
plt.ylabel(ylabel, fontsize=20)
if title is not None:
plt.title(title)
plt.show()
开发者ID:sjara,项目名称:jaratest,代码行数:33,代码来源:compute_cell_stats.py
示例7: createResponsePlot
def createResponsePlot(dataframe,plotdir):
mag = dataframe['MAGPDE'].as_matrix()
response = (dataframe['TFIRSTPUB'].as_matrix())/60.0
response[response > 60] = 60 #anything over 60 minutes capped at 6 minutes
imag5 = (mag >= 5.0).nonzero()[0]
imag55 = (mag >= 5.5).nonzero()[0]
fig = plt.figure(figsize=(8,6))
n,bins,patches = plt.hist(response[imag5],color='g',bins=60,range=(0,60))
plt.hold(True)
plt.hist(response[imag55],color='b',bins=60,range=(0,60))
plt.xlabel('Response Time (min)')
plt.ylabel('Number of earthquakes')
plt.xticks(np.arange(0,65,5))
ymax = text.ceilToNearest(max(n),10)
yinc = ymax/10
plt.yticks(np.arange(0,ymax+yinc,yinc))
plt.grid(True,which='both')
plt.hold(True)
x = [20,20]
y = [0,ymax]
plt.plot(x,y,'r',linewidth=2,zorder=10)
s1 = 'Magnitude 5.0, Events = %i' % (len(imag5))
s2 = 'Magnitude 5.5, Events = %i' % (len(imag55))
plt.text(35,.85*ymax,s1,color='g')
plt.text(35,.75*ymax,s2,color='b')
plt.savefig(os.path.join(plotdir,'response.pdf'))
plt.savefig(os.path.join(plotdir,'response.png'))
plt.close()
print 'Saving response.pdf'
开发者ID:mhearne-usgs,项目名称:neicq,代码行数:29,代码来源:neicq.py
示例8: plot_meth_and_twobeds
def plot_meth_and_twobeds(coverage, methylated, mod):
l1 = len(mod.bed_list_gt)
l2 = len(mod.bed_list_h)
n_cells = np.shape(coverage)[0]
plt.figure()
# Get current size
fig_size_temp = plt.rcParams["figure.figsize"]
fig_size = fig_size_temp
fig_size[0] = 500
fig_size[1] = 40
plt.rcParams["figure.figsize"] = fig_size
fig, axarr = plt.subplots(n_cells+l1+l2+1, 1, sharex=True)
plt.hold(True)
plot_meth(axarr[:n_cells], coverage, methylated)
for i in range(0, l1):
axn = n_cells+i
plot_bed([axarr[axn]], [mod.bed_list_gt[i]])
axarr[axn].set_ylabel(mod.state_name_gt[i])
for i in range(0, l2):
axn = n_cells+l1+1+i
plot_bed([axarr[axn]], [mod.bed_list_h[i]])
axarr[axn].set_ylabel(mod.state_name_h[i])
fig.savefig(mod.path_name + mod.bed_title + 'l1 = ' + str(l1) + 'l2 = ' + str(l2) + 'n_cells = ' + str(n_cells)+'_l='+str(mod.l)+'_l_test='+str(mod.l_test) + '.pdf')
plt.hold(False)
plt.rcParams["figure.figsize"] = fig_size_temp
plt.close(fig)
开发者ID:anapophenic,项目名称:knb,代码行数:31,代码来源:visualize.py
示例9: plot_filter_characteristics
def plot_filter_characteristics(self):
w, h = freqz(self.freq_filter.num, self.freq_filter.denom)
plt.figure(1)
plt.subplot(2,1,1)
plt.hold(True)
powa = plt.plot((self.filter_parameters.sample_rate*0.5/pi)*w, abs(h),'b-', label = 'Char. amplitudowa')
plt.title('Charakterystyki filtru')
plt.xlabel('Czestotliwosc [Hz]')
plt.ylabel('Amplituda')
plt.twinx(ax=None)
angles = unwrap(angle(h))
plt.znie = plot((self.filter_parameters.sample_rate*0.5/pi)*w,angles, 'g-', label = 'Char. fazowa')
plt.ylabel('Faza')
plt.grid()
tekst = powa + znie
wybierz = [l.get_label() for l in tekst]
plt.legend(tekst, wybierz, loc='best')
########################################################################################################################
plt.subplot(2,1,2)
w2, gd = group_delay((num, denom))
plt.plot((sample_rate*0.5/pi)*w2, gd)
plt.grid()
plt.xlabel('Czestotliwosc [Hz]')
plt.ylabel('Opoznienie grupowe [probki]')
plt.title('Opoznienie grupowe filtru')
plt.show()
开发者ID:EwaMarek,项目名称:filtracja_eeg,代码行数:33,代码来源:filtracja2.py
示例10: plot
def plot(x, dict_res, plot_func):
colors = ['#e41a1c', '#377eb8', '#4daf4a', '#984ea3']
plt.hold(True)
k = 0
for (alg, dtype) in dict_res.keys():
for comp in dict_res[(alg, dtype)]:
if len(alg) < 4:
label = '{0:4s}'.format(alg.upper()) + ' - '
else:
label = '{0:4s}'.format(alg.upper()) + ' - '
if comp:
label += '{0:5s} - '.format('comp.')
linestyle = '-'
else:
label += '{0:5s} - '.format('QR')
linestyle = '--'
label += dtype
y = dict_res[(alg, dtype)][comp]
valid = np.isfinite(y).flatten()
if not np.any(valid):
continue
plot_func(x[valid], y[valid], label=label,
linestyle=linestyle, linewidth=2,
marker='o', markeredgecolor='none', color=colors[k])
k += 1
plt.hold(False)
开发者ID:charut,项目名称:csnmf,代码行数:29,代码来源:test_climate.py
示例11: band_select
def band_select(spikeTimeStamps, eventOnsetTimes, amplitudes, bandwidths, timeRange, fullRange = [0.0, 2.0]):
numBands = np.unique(bandwidths)
numAmps = np.unique(amplitudes)
spikeArray = np.zeros((len(numBands), len(numAmps)))
errorArray = np.zeros_like(spikeArray)
trialsEachCond = behavioranalysis.find_trials_each_combination(bandwidths,
numBands,
amplitudes,
numAmps)
spikeTimesFromEventOnset, trialIndexForEachSpike, indexLimitsEachTrial = spikesanalysis.eventlocked_spiketimes(
spikeTimeStamps,
eventOnsetTimes,
fullRange)
spikeCountMat = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnset, indexLimitsEachTrial, timeRange)
baseTimeRange = [timeRange[1]+0.5, fullRange[1]]
baseSpikeCountMat = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnset, indexLimitsEachTrial, baseTimeRange)
baselineSpikeRate = np.mean(baseSpikeCountMat)/(baseTimeRange[1]-baseTimeRange[0])
plt.hold(True)
for amp in range(len(numAmps)):
trialsThisAmp = trialsEachCond[:,:,amp]
for band in range(len(numBands)):
trialsThisBand = trialsThisAmp[:,band]
if spikeCountMat.shape[0] != len(trialsThisBand):
spikeCountMat = spikeCountMat[:-1,:]
print "FIXME: Using bad hack to make event onset times equal number of trials"
thisBandCounts = spikeCountMat[trialsThisBand].flatten()
spikeArray[band, amp] = np.mean(thisBandCounts)
errorArray[band,amp] = stats.sem(thisBandCounts)
return spikeArray, errorArray, baselineSpikeRate
开发者ID:sjara,项目名称:jaratest,代码行数:29,代码来源:bandwidths_analysis_v2.py
示例12: showResults
def showResults(challenger_data, model):
''' Show the original data, and the resulting logit-fit'''
temperature = challenger_data[:,0]
failures = challenger_data[:,1]
# First plot the original data
plt.figure()
setFonts()
sns.set_style('darkgrid')
np.set_printoptions(precision=3, suppress=True)
plt.scatter(temperature, failures, s=200, color="k", alpha=0.5)
plt.yticks([0, 1])
plt.ylabel("Damage Incident?")
plt.xlabel("Outside Temperature [F]")
plt.title("Defects of the Space Shuttle O-Rings vs temperature")
plt.tight_layout
# Plot the fit
x = np.arange(50, 85)
alpha = model.params[0]
beta = model.params[1]
y = logistic(x, beta, alpha)
plt.hold(True)
plt.plot(x,y,'r')
plt.xlim([50, 85])
outFile = 'ChallengerPlain.png'
showData(outFile)
开发者ID:sativa,项目名称:statsintro_python,代码行数:31,代码来源:ISP_logisticRegression.py
示例13: iterer_los_plot
def iterer_los_plot(x0,max_error,max_iter,f):
# For aa visualisere iterasjonsprosessen tar vi vare paa punktene underveis
X=array(x0)
F=array(0.0)
# Setter startverdi for feilen lik 1.0 slik at while-lokken garantert starter
error = 1.0
j = 0
while error > max_error and j < max_iter:
x1=f(x0)
X=append(X,[x0,x0])
F=append(F,[x0,x1])
error = abs(x1-x0)
x0 = x1
j = j+1
# Gi beskjed dersom vi har brukt opp max antall iterasjoner
# uten at feilen har blitt mindre enn max_error
if j == max_iter:
print('Max antall iterasjoner brukt opp.\n')
else:
print('Losning funnet: x=%3.12f' % (x0))
# Plotter x, f(x) og iterasjonsprosessen(stiplet)
x = arange(0,1,0.001)
figure('Iterasjoner')
hold(True)
plot(x,f(x),'b',label=r'$f(x)$')
plot(X,F,'k--',label='iterasjoner')
plot(x,x,'g',label=r'$y=x$')
legend(loc='best')
show()
# Returner losningen
return x0
开发者ID:JakobGM,项目名称:kokekunster.no,代码行数:31,代码来源:klessnor.py
示例14: write_final
def write_final(newmep, newmbp, enhanced_img):
eminutiae_array = removezero(newmep)
bminutiae_array = removezero(newmbp)
num1 = len(eminutiae_array)
num2 = len(bminutiae_array)
img_thin = np.array(enhanced_img[:])
fig = plt.figure(figsize=(15,12),dpi=30000)
figure, imshow(img_thin, cmap = cm.Greys_r)
title('minutiae marking')
plt.hold(True)
for i in range(num1):
xy = eminutiae_array[i,:]
u = xy[0]
v = xy[1]
plt.plot(v, u, 'r.', markersize = 10)
plt.hold(True)
for i in range(num2):
xy = bminutiae_array[i,:]
u = xy[0]
v = xy[1]
plt.plot(v, u, 'c+', markersize = 15)
plt.show()
cv2.imwrite("final_minutiae_image.png", img_thin)
开发者ID:MonkeyPengc,项目名称:FPMR,代码行数:30,代码来源:minutiae_fingerprint.py
示例15: internal_surf_afteraxes
def internal_surf_afteraxes(cd):
plt.hold(True)
plt.title('')
plt.ylabel('m')
plt.subplots_adjust(hspace=0.05)
plt.plot([multilayer_data.bathy_location,multilayer_data.bathy_location],bottom_surf_zoomed,'--k')
plt.hold(False)
开发者ID:mandli,项目名称:storm_surge,代码行数:7,代码来源:setplot.py
示例16: plot_conv
def plot_conv(all_JSD,all_JSDs,rest_type):
fold = len(all_JSD)
rounds = len(all_JSDs[0])
n_rest = len(rest_type)
new_JSD = [[] for i in range(n_rest)]
for i in range(len(all_JSD)):
for j in range(n_rest):
new_JSD[j].append(all_JSD[i][j])
JSD_dist = [[] for i in range(n_rest)]
JSD_std = [[] for i in range(n_rest)]
for rest in range(n_rest):
for f in range(fold):
temp_JSD = all_JSDs[f][:,rest]
JSD_dist[rest].append(np.mean(temp_JSD))
JSD_std[rest].append(np.std(temp_JSD))
plt.figure(figsize=(10,5*n_rest))
x = np.arange(100./fold,101.,fold)
colors = ['red','blue','green','black','magenta','gold','navy']
for i in range(n_rest):
plt.subplot(n_rest,1,i+1)
plt.plot(x,new_JSD[i],'o-',color=colors[i],label=rest_type[i])
plt.hold(True)
plt.plot(x,JSD_dist[i],'o',color=colors[i],label=rest_type[i])
plt.fill_between(x,np.array(JSD_dist[i])+np.array(JSD_std[i]),np.array(JSD_dist[i])-np.array(JSD_std[i]),color=colors[i],alpha=0.2)
plt.xlabel('dataset (%)')
plt.ylabel('JSD')
plt.legend(loc='best')
plt.tight_layout()
plt.savefig('convergence.pdf')
开发者ID:vvoelz,项目名称:nmr-biceps,代码行数:29,代码来源:toolbox.py
示例17: update_figures
def update_figures(self):
plt.figure(self.figure.number)
x = np.arange(0, 256, 0.1) # artificial x-axis
# self.figure.gca().cla() # clearing the figure, just to be sure
# plt.subplot(411)
plt.plot(self.bins, self.hist, 'k')
plt.hold(True)
if self.rv_healthy and self.rv_hypo and self.rv_hyper:
healthy_y = self.rv_healthy.pdf(x)
if self.win.params['unaries_as_cdf']:
hypo_y = (1 - self.rv_hypo.cdf(x)) * self.rv_healthy.pdf(self.rv_healthy.mean())
hyper_y = self.rv_hyper.cdf(x) * self.rv_healthy.pdf(self.rv_healthy.mean())
else:
hypo_y = self.rv_hypo.pdf(x)
hyper_y = self.rv_hyper.pdf(x)
y_max = max(healthy_y.max(), hypo_y.max(), hyper_y.max())
fac = self.hist.max() / y_max
plt.plot(x, fac * healthy_y, 'g', linewidth=2)
plt.plot(x, fac * hypo_y, 'b', linewidth=2)
plt.plot(x, fac * hyper_y, 'r', linewidth=2)
plt.title('all PDFs')
ax = plt.axis()
plt.axis([0, 256, ax[2], ax[3]])
plt.hold(False)
self.canvas.draw()
开发者ID:mazoku,项目名称:lesion_editor,代码行数:28,代码来源:hist_widget_old.py
示例18: plotPaper
def plotPaper(appeared,
citedBy,
pubLabel):
hold(True)
yrange = range(appeared, curDate + 1)
months = len(yrange)
cites = [0] * months
citeVenues = {}
for citation in citedBy:
(venue, date) = citation
if venue in citeVenues:
citeVenues[venue] += 1
else:
citeVenues[venue] = 1
for i in range(date - appeared, months):
cites[i] += 1
for i in range(date - startDate, curDate - startDate + 1):
citations[i] += 1
citeAx.plot(yrange,
cites,
label = pubLabel)
logCiteAx.semilogy(yrange,
cites,
label = pubLabel)
venues[pubLabel] = citeVenues
articleCitations[pubLabel] = (appeared, cites)
开发者ID:fnothaft,项目名称:docs,代码行数:35,代码来源:citations.py
示例19: gauge_after_axes
def gauge_after_axes(cd):
if cd.gaugeno in [1,2,3,4]:
axes = plt.gca()
# # Add Kennedy gauge data
# kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]]
# axes.plot(kennedy_gauge['t'] - seconds2days(date2seconds(gauge_landfall[0])),
# kennedy_gauge['mean_water'] + kennedy_gauge['depth'], 'k-',
# label='Gauge Data')
# Add GeoClaw gauge data
geoclaw_gauge = cd.gaugesoln
axes.plot(seconds2days(geoclaw_gauge.t - date2seconds(gauge_landfall[1])),
geoclaw_gauge.q[3,:] + gauge_surface_offset[0], 'b--',
label="GeoClaw")
# Add ADCIRC gauge data
# ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']]
# axes.plot(seconds2days(ADCIRC_gauge[:,0] - gauge_landfall[2]),
# ADCIRC_gauge[:,1] + gauge_surface_offset[1], 'r-.', label="ADCIRC")
# Fix up plot
axes.set_title('Station %s' % cd.gaugeno)
axes.set_xlabel('Days relative to landfall')
axes.set_ylabel('Surface (m)')
axes.set_xlim([-2,1])
axes.set_ylim([-1,5])
axes.set_xticks([-2,-1,0,1])
axes.set_xticklabels([r"$-2$",r"$-1$",r"$0$",r"$1$"])
axes.grid(True)
axes.legend()
plt.hold(False)
开发者ID:malchera,项目名称:geoclaw,代码行数:33,代码来源:setplot.py
示例20: PlotEDepSummary
def PlotEDepSummary(gFiles,nFiles,figureName='EDepSummary.png',tParse=GetThickness,
histKey='eDepHist'):
""" PlotEDepSummary
Plotss the energy deposition summary
"""
# Extrating the average values
gT = list()
gDep = list()
gDepError = list()
nT = list()
nDep = list()
nDepError = list()
for fname in gFiles:
f = TFile(fname,'r')
hist = f.Get(histKey)
gT.append(GetThickness(fname))
gDep.append(hist.GetMean())
gDepError.append(hist.GetMeanError())
for fname in nFiles:
f = TFile(fname,'r')
hist = f.Get(histKey)
nT.append(GetThickness(fname))
nDep.append(hist.GetMean())
nDepError.append(hist.GetMeanError())
# Plotting
plt.errorbar(gT,gDep,yerr=gDepError,fmt='r+')
plt.hold(True)
plt.errorbar(nT,nDep,yerr=nDepError,fmt='go')
plt.xlabel("Thickness (mm)")
plt.ylabel("Average Energy Deposition (MeV)")
plt.legend(["Co-60","Cf-252"])
plt.xscale("log")
plt.yscale("log")
plt.grid(True)
plt.savefig(figureName)
开发者ID:architkumar02,项目名称:murphs-code-repository,代码行数:35,代码来源:analysis.py
注:本文中的matplotlib.pyplot.hold函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论