本文整理汇总了Python中matplotlib.pyplot.hist函数的典型用法代码示例。如果您正苦于以下问题:Python hist函数的具体用法?Python hist怎么用?Python hist使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了hist函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: histogram
def histogram(A, B, nameA, nameB):
plt.hist(A, bins=255, alpha=0.5, color='b', label = nameA)
plt.hist(B, bins=255, alpha=0.5, color='r', label = nameB)
plt.xlabel('Intensity')
plt.ylabel('Number of occurrencies')
plt.legend()
plt.show()
开发者ID:giacomo21,项目名称:Image-analysis,代码行数:7,代码来源:giacomo_histograms.py
示例2: hist
def hist(fname, data, bins, xlabel, ylabel, title, facecolor='green', alpha=0.5, transparent=True, **kwargs):
plt.clf()
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.hist(x=data, bins=bins, facecolor=facecolor, alpha=alpha, **kwargs)
plt.savefig(fname, transparent=transparent)
开发者ID:markoshura,项目名称:wiki-stats,代码行数:7,代码来源:wiki_stats.py
示例3: predicted_probabilities
def predicted_probabilities(y_true, y_pred, n_groups=30):
"""Plots the distribution of predicted probabilities.
Parameters
----------
y_true : array_like
Observed labels, either 0 or 1.
y_pred : array_like
Predicted probabilities, floats on [0, 1].
n_groups : int, optional
The number of groups to create. The default value is 30.
Notes
-----
.. plot:: pyplots/predicted_probabilities.py
"""
plt.hist(y_pred, n_groups)
plt.xlim([0, 1])
plt.xlabel('Predicted Probability')
plt.ylabel('Count')
title = 'Distribution of Predicted Probabilities (n = {})'
plt.title(title.format(len(y_pred)))
plt.tight_layout()
开发者ID:grivescorbett,项目名称:verhulst,代码行数:25,代码来源:plots.py
示例4: plot_net_distribution
def plot_net_distribution(net_mat, n_bins):
"""Plot the network distribution.
Parameters
----------
net_mat: np.ndarray
the net represented in a matrix way.
n_bins: int
the number of intervals we want to use to plot the distribution.
Returns
-------
fig: matplotlib.pyplot.figure
the figure of the distribution required of the relations between
elements defined by the `net_mat`.
"""
net_mat = net_mat.reshape(-1)
fig = plt.figure()
plt.hist(net_mat, n_bins)
l1 = plt.axvline(net_mat.mean(), linewidth=2, color='k', label='Mean',
linestyle='--')
plt.legend([l1], ['Mean'])
return fig
开发者ID:tgquintela,项目名称:pythonUtils,代码行数:27,代码来源:net_plotting.py
示例5: plot_ekf_vs_mc
def plot_ekf_vs_mc():
def fx(x):
return x**3
def dfx(x):
return 3*x**2
mean = 1
var = .1
std = math.sqrt(var)
data = normal(loc=mean, scale=std, size=50000)
d_t = fx(data)
mean_ekf = fx(mean)
slope = dfx(mean)
std_ekf = abs(slope*std)
norm = scipy.stats.norm(mean_ekf, std_ekf)
xs = np.linspace(-3, 5, 200)
plt.plot(xs, norm.pdf(xs), lw=2, ls='--', color='b')
plt.hist(d_t, bins=200, normed=True, histtype='step', lw=2, color='g')
actual_mean = d_t.mean()
plt.axvline(actual_mean, lw=2, color='g', label='Monte Carlo')
plt.axvline(mean_ekf, lw=2, ls='--', color='b', label='EKF')
plt.legend()
plt.show()
print('actual mean={:.2f}, std={:.2f}'.format(d_t.mean(), d_t.std()))
print('EKF mean={:.2f}, std={:.2f}'.format(mean_ekf, std_ekf))
开发者ID:andreas-koukorinis,项目名称:Kalman-and-Bayesian-Filters-in-Python,代码行数:34,代码来源:nonlinear_plots.py
示例6: plot_scatter_with_histograms
def plot_scatter_with_histograms(xvals, yvals, colour='k', oneToOneLine=True, xlabel=None, ylabel=None, title=None):
gs = gridspec.GridSpec(5, 5)
xmin = np.floor(min(xvals))
xmax = np.ceil(max(xvals))
ymin = np.floor(min(yvals))
ymax = np.ceil(max(yvals))
plt.subplot(gs[1:, 0:4])
plt.plot(xvals, yvals, 'o', color=colour)
if xlabel is not None:
plt.xlabel(xlabel)
if ylabel is not None:
plt.ylabel(ylabel)
if oneToOneLine:
oneToOneMax = max([max(xvals),max(yvals)])
plt.plot([0,oneToOneMax],[0,oneToOneMax],'b--')
plt.xlim(xmin,xmax)
plt.ylim(ymin,ymax)
plt.subplot(gs[0, 0:4])
plt.hist(xvals, np.linspace(xmin,xmax,50))
plt.axis('off')
plt.subplot(gs[1:,4])
plt.hist(yvals, np.linspace(ymin,ymax,50), orientation='horizontal')
plt.axis('off')
if title is not None:
plt.suptitle(title)
开发者ID:sjara,项目名称:jaratest,代码行数:25,代码来源:compute_cell_stats.py
示例7: main
def main():
train = pd.DataFrame.from_csv('train.csv')
places_index = train['place_id'].values
places_loc_sqr_wei = []
for i, place_id in enumerate(train['place_id'].unique()):
if not i % 100:
print(i)
place_df = train.iloc[places_index == place_id]
place_weights_acc_sqred = 1 / (place_df['accuracy'].values ** 2)
places_loc_sqr_wei.append([place_id,
np.average(place_df['x'].values, weights=place_weights_acc_sqred),
np.std(place_df['x'].values),
np.average(place_df['y'].values, weights=place_weights_acc_sqred),
np.std(place_df['y'].values),
np.average(np.log(place_df['accuracy'].values)),
np.std(np.log(place_df['accuracy'].values)),
place_df.shape[0]])
# print(places_loc_sqr_wei[-1])
# plt.hist2d(place_df['x'].values, place_df['y'].values, bins=100)
# plt.show()
plt.hist(np.log(place_df['accuracy'].values), bins=20)
plt.show()
places_loc_sqr_wei = np.array(places_loc_sqr_wei)
column_names = ['x_mean', 'x_sd', 'y_mean', 'y_sd', 'accuracy_mean', 'accuracy_sd', 'n_persons']
places_loc_sqr_wei = pd.DataFrame(data=places_loc_sqr_wei[:, 1:], index=places_loc_sqr_wei[:, 0],
columns=column_names)
now = str(datetime.datetime.now().strftime("%Y-%m-%d-%H-%M"))
places_loc_sqr_wei.to_csv('places_loc_sqr_weights_%s.csv' % now)
开发者ID:yairbeer,项目名称:kaggle_fb5,代码行数:32,代码来源:places_calculation_v2.py
示例8: createHistogram
def createHistogram(df, pic, bins=45, rates=False):
data=mergeMatrix(df, pic)
matrix=sortMatrix(df, pic)
density = gaussian_kde(data)
xs = np.linspace(min(data), max(data), max(data))
density.covariance_factor = lambda : .25
density._compute_covariance()
#xs = np.linspace(min(data), max(data), 1000)
fig,ax1 = plt.subplots()
#plt.xlim([0, 4000])
plt.hist(data, bins=bins, range=[-500, 4000], histtype='stepfilled', color='grey', alpha=0.5)
lims = plt.ylim()
height=lims[1]-2
for i in range(0,len(matrix)):
currentRow = matrix[i][np.nonzero(matrix[i])]
plt.plot(currentRow, np.ones(len(currentRow))*height, '|', color='black')
height -= 2
plt.axvline(x=0, color='red', linestyle='dashed')
#plt.axvline(x=1000, color='black', linestyle='dashed')
#plt.axvline(x=2000, color='black', linestyle='dashed')
#plt.axvline(x=3000, color='black', linestyle='dashed')
if rates:
rates = get_rate(df, pic)
ax1.text(-250, 4, str(rates[0]), size=15, ha='center', va='center', color='green')
ax1.text(500, 4, str(rates[1]), size=15, ha='center', va='center', color='green')
ax1.text(1500, 4, str(rates[2]), size=15, ha='center', va='center', color='green')
ax1.text(2500, 4, str(rates[3]), size=15, ha='center', va='center', color='green')
ax1.text(3500, 4, str(rates[4])+ r' $\frac{\mathsf{Spikes}}{\mathsf{s}}$', size=15, ha='center', va='center', color='green')
plt.ylim([0,lims[1]+5])
plt.xlim([0, 4000])
plt.title('Histogram for ' + str(pic))
ax1.set_xticklabels([-500, 'Start\nStimulus', 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000])
plt.xlabel('Time (ms)')
plt.ylabel('Counts (Spikes)')
print lims
arr_hand = getPic(pic)
imagebox = OffsetImage(arr_hand, zoom=.3)
xy = [3200, lims[1]+5] # coordinates to position this image
ab = AnnotationBbox(imagebox, xy, xybox=(30., -30.), xycoords='data',boxcoords="offset points")
ax1.add_artist(ab)
ax2 = ax1.twinx() #Necessary for multiple y-axes
#Use ax2.plot to draw the hypnogram. Be sure your x values are in seconds
ax2.plot(xs, density(xs) , 'g', drawstyle='steps')
plt.ylim([0,0.001])
plt.yticks([0.0001,0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008, 0.0009])
ax2.set_yticklabels([1,2,3,4, 5, 6, 7, 8, 9])
plt.ylabel(r'Density ($\cdot \mathsf{10^{-4}}$)', color='green')
plt.gcf().subplots_adjust(right=0.89)
plt.gcf().subplots_adjust(bottom=0.2)
plt.savefig(pic, dpi=150)
开发者ID:sagar87,项目名称:Exploring-Neural-Data-Final-Project,代码行数:60,代码来源:final.py
示例9: plotter
def plotter(fromdat,filename):
plt.figure()
bins = fromdat.bins
plt.hist(fromdat.all_val, bins=bins, color=(0, 0, 0, 1 ),
histtype='step',label = 'All Hits' )
plt.ylabel('Counts' )
plt.xlabel('Energy kev' )
plt.title('All Detectors Spectrum\n'+ filename )
plt.legend(loc='upper right' )
plt.show()
plt.figure()
his_det1 = plt.hist(fromdat.det1_val, bins=bins, color=(0, 0, 0, 0.7),
histtype='step', label = fromdat.detector1 )
his_det2 = plt.hist(fromdat.det2_val, bins=bins, color=(0, 1, 0, 0.7 ),
histtype='step', label = fromdat.detector2 )
plt.ylabel('Counts' )
plt.xlabel('Energy kev' )
plt.title('Overlay Plot Both Spectrum \n ' + filename)
plt.legend(loc='upper right' )
plt.show()
his_det3 = plt.hist(fromdat.det3_val, bins=bins, color=(0, 0, 0, 0.5 ),
histtype='step',label = fromdat.detector3 )
plt.ylabel('Counts' )
plt.xlabel('Energy kev' )
plt.title( fromdat.detector3)
plt.legend(loc='upper right' )
plt.show()
开发者ID:aggressor-FZX,项目名称:PRD_Data_analyzer,代码行数:31,代码来源:prd_hist.py
示例10: show
def show(self):
figure = plt.figure(self.figure_num)
num_histograms = len(self.histograms)
num_subplots = len(self.subplots)
y_dim = 4.0
x_dim = math.ceil((num_subplots + num_histograms)/y_dim)
for i in range(len(self.subplots)):
title, img = self.subplots[i]
print "plotting: " + str(title)
print img.shape
ax = plt.subplot(x_dim, y_dim, i + 1)
format_subplot(ax, img)
plt.title(title)
plt.imshow(img)
for i in range(len(self.histograms)):
title, img = self.histograms[i]
print "plotting: " + str(title)
print img.shape
plt.subplot(x_dim,y_dim, num_subplots + i + 1)
plt.title(title)
plt.hist(img, bins=10, alpha=0.5)
开发者ID:CURG,项目名称:pylearn_classifier_gdl,代码行数:27,代码来源:plot_output.py
示例11: CNS
def CNS(directory):
print directory
MASegDict = defaultdict(list)
seqCount = Counter()
numFeatures = defaultdict(list)
speciesDistributionMaster = defaultdict(list)
for species in [file for file in os.listdir(directory) if file.endswith('.bed')]:
try:
print directory+species
seqCount[species] = 0
speciesDistribution = Counter()
with open(directory+species,'r') as f:
lines = f.readlines()
numFeatures[species] = [len(lines)]
if species.endswith('ConservedElements.bed'):
for line in lines:
if line:
lineList = line.split('\t')
lineList2 = lineList[-1].split(';')
lineList3 = lineList2[1].split(',')
tempDict = {word.split(':')[0]:int(word.split(':')[1] != '0') for word in lineList3}
MASegDict[lineList2[2].replace('SegmentID=','')] = sum(tempDict.values())
seqCount[species] += int(lineList[2])-int(lineList[1])
for species2 in tempDict.keys():
if species2 not in speciesDistribution.keys():
speciesDistribution[species2] = 0
else:
speciesDistribution[species2] += tempDict[species2]
else:
for line in lines:
if line:
lineList = line.split('\t')
lineList2 = lineList[-1].split(';')
lineList3 = lineList2[1].split(',')
tempDict = {word.split(':')[0]:int(word.split(':')[1] != '0') for word in lineList3}
seqCount[species] += int(lineList[2])-int(lineList[1])
for species2 in tempDict.keys():
if species2 not in speciesDistribution.keys():
speciesDistribution[species2] = 0
else:
speciesDistribution[species2] += tempDict[species2]
speciesDistributionMaster[species] = speciesDistribution
#print speciesDistributionMaster
#print numFeatures
#print ','.join('%s:%d'%(key,speciesDistributionMaster[species][key]) for key in speciesDistributionMaster[species].keys())
except:
print 'Error with ' + species
with open(directory+'CNSStatistics.txt','w') as f:
for species in sorted(numFeatures.keys()):
if species:
try:
f.write(species+'\nTotalSequenceAmount=%dbps\nNumberOfElements=%d\n%s\n\n'%(seqCount[species],numFeatures[species][0],'SpeciesDistribution='+','.join('%s:%d'%(key,speciesDistributionMaster[species][key]) for key in speciesDistributionMaster[species].keys())))#FIXME Add species number and graph
except:
print 'Error writing ' + species
plt.figure()
plt.hist(MASegDict.values(),bins=np.arange(0,int(np.max(MASegDict.values()))) + 0.5)
plt.title('Distribution of Number of Species for Conserved Segments')
plt.ylabel('Count')
plt.xlabel('Number of species in Conserved Segment')
plt.savefig(directory+'SpeciesNumberDistribution.png')
开发者ID:jlevy44,项目名称:Joshua-Levy-Synteny-Analysis,代码行数:60,代码来源:CNSStatistics.py
示例12: plotHist
def plotHist(data, bins=None, figsize=(7,7), title="", **kwargs):
if (bins==None):
bins=len(data)
plt.figure(figsize=figsize);
plt.hist(data,bins=bins, **kwargs)
plt.title(title)
plt.show()
开发者ID:kundajelab,项目名称:av_scripts,代码行数:7,代码来源:matplotlibHelpers.py
示例13: create_random_sample_from_beta
def create_random_sample_from_beta(success, total, sample_size=10000, plot=False):
""" Create random sample from the Beta distribution """
failures = total - success
data = stats.beta.rvs(success, failures, size=sample_size)
if plot: hist(data, 100); show()
return data
开发者ID:andremrezende,项目名称:academy-controlled_experiments,代码行数:7,代码来源:BayesianStatistics.py
示例14: fluence_dist
def fluence_dist(self):
""" Plots the fluence distribution and gives the mean and median fluence
values of the sample """
fluences = []
for i in range(0,len(self.fluences),1):
try:
fluences.append(float(self.fluences[i]))
except ValueError:
continue
fluences = np.array(fluences)
mean_fluence = np.mean(fluences)
median_fluence = np.median(fluences)
print('Mean Fluence =',mean_fluence,'(15-150 keV) [10^-7 erg cm^-2]')
print('Median Fluence =',median_fluence,'(15-150 keV) [10^-7 erg cm^-2]')
plt.figure()
plt.xlabel('Fluence (15-150 keV) [$10^{-7}$ erg cm$^{-2}$]')
plt.ylabel('Number of GRBs')
plt.xscale('log')
minimum, maximum = min(fluences), max(fluences)
plt.axvline(mean_fluence,color='red',linestyle='-')
plt.axvline(median_fluence,color='blue',linestyle='-')
plt.hist(fluences,bins= 10**np.linspace(np.log10(minimum),np.log10(maximum),20),color='grey',alpha=0.5)
plt.show()
开发者ID:jtwm1,项目名称:adampy,代码行数:26,代码来源:swift_functions.py
示例15: test_power
def test_power():
a = 5. # shape
samples = 10000
s1 = np.random.power(a, samples)
s2 = common.rand_pow_array(a, samples)
plt.figure('power test')
count1, bins1, ignored1 = plt.hist(s1,
bins=30,
label='numpy',
histtype='step')
x = np.linspace(0, 1, 100)
y = a * x**(a - 1.0)
normed_y1 = samples * np.diff(bins1)[0] * y
plt.plot(x, normed_y1, label='numpy.random.power fit')
count2, bins2, ignored2 = plt.hist(s2,
bins=30,
label='joinmarket',
histtype='step')
normed_y2 = samples * np.diff(bins2)[0] * y
plt.plot(x, normed_y2, label='common.rand_pow_array fit')
plt.title('testing power distribution')
plt.legend(loc='upper left')
plt.show()
开发者ID:AdamISZ,项目名称:joinmarket,代码行数:25,代码来源:randomfunc-test.py
示例16: make_intergenerational_figure
def make_intergenerational_figure(data, lowerbound, upperbound, rows, title):
plt.figure(figsize=(10,10))
plt.suptitle(title,fontsize=20)
for index in range(4):
plt.subplot(2,2,index+1)
#simulation distribution
plt.hist(accepted[:,rows[index]], normed=True, bins = range(0,100,5), color = col)
#simulation values
value = np.mean(accepted[:,rows[index]])
std = 2*np.std(accepted[:,rows[index]])
plt.errorbar((value,), (red_marker_location-0.02), xerr=((std,),(std,)),
color=col, fmt='o', linewidth=2, capsize=5, mec = col)
#survey values
value = data[index]
lb = lowerbound[index]
ub = upperbound[index]
plt.errorbar((value,), (red_marker_location,), xerr=((value-lb,),(ub-value,)),
color='r', fmt='o', linewidth=2, capsize=5, mec = 'r')
#labeling
plt.ylim(0,ylimit)
plt.xlim(0,100)
#make subplots pretty
plt.subplot(2,2,1)
plt.title("Males")
plt.ylabel("'05\nFrequency")
plt.subplot(2,2,2)
plt.title("Females")
plt.subplot(2,2,3)
plt.ylabel("'08\nFrequency")
plt.xlabel("Percent Responding Affirmatively")
plt.subplot(2,2,4)
plt.xlabel("Percent Responding Affirmatively")
开发者ID:seanluciotolentino,项目名称:SimpactPurple,代码行数:32,代码来源:ABCOutputProcessing.py
示例17: testProbabilites
def testProbabilites(self):
pmf=PMFList(10)
count={}
times=10000
exp=re.compile('\d+')
o=[]
for i in range(0,times):
sel=pmf.choose()
o.append(int(exp.search(sel[0]).group()))
try:
count[sel]=count[sel]+1
except KeyError:
count[sel]=1
print("-------------------------------\n"+
"Results table of the PMF test:\n"+
"-------------------------------")
for k,i in count.items():
print("Item name: "+k[0]+" | Item probability: "+
k[1].__str__()+" | Ocurrences: "+i.__str__()+
" | Item empirical probability ("+
times.__str__()+" runs)"+
": "+(float(i)/times).__str__())
plt.hist(o)
plt.xlabel('Item number (1-'+len(count).__str__()+')')
plt.ylabel('Number of occurrences')
plt.show()
开发者ID:netogallo,项目名称:Artificial-Intelligence,代码行数:34,代码来源:testPMF.py
示例18: createResponsePlot
def createResponsePlot(dataframe,plotdir):
mag = dataframe['MAGPDE'].as_matrix()
response = (dataframe['TFIRSTPUB'].as_matrix())/60.0
response[response > 60] = 60 #anything over 60 minutes capped at 6 minutes
imag5 = (mag >= 5.0).nonzero()[0]
imag55 = (mag >= 5.5).nonzero()[0]
fig = plt.figure(figsize=(8,6))
n,bins,patches = plt.hist(response[imag5],color='g',bins=60,range=(0,60))
plt.hold(True)
plt.hist(response[imag55],color='b',bins=60,range=(0,60))
plt.xlabel('Response Time (min)')
plt.ylabel('Number of earthquakes')
plt.xticks(np.arange(0,65,5))
ymax = text.ceilToNearest(max(n),10)
yinc = ymax/10
plt.yticks(np.arange(0,ymax+yinc,yinc))
plt.grid(True,which='both')
plt.hold(True)
x = [20,20]
y = [0,ymax]
plt.plot(x,y,'r',linewidth=2,zorder=10)
s1 = 'Magnitude 5.0, Events = %i' % (len(imag5))
s2 = 'Magnitude 5.5, Events = %i' % (len(imag55))
plt.text(35,.85*ymax,s1,color='g')
plt.text(35,.75*ymax,s2,color='b')
plt.savefig(os.path.join(plotdir,'response.pdf'))
plt.savefig(os.path.join(plotdir,'response.png'))
plt.close()
print 'Saving response.pdf'
开发者ID:mhearne-usgs,项目名称:neicq,代码行数:29,代码来源:neicq.py
示例19: main
def main():
# produce gaussian noise and show as standard color coded image
ar = np.random.randn(100, 200)
plt.imshow(ar)
plt.colorbar(shrink=.5)
plt.title('Gaussian noise color coded')
plt.show()
# show as grayscale coded image
plt.imshow(ar, cmap=cm.gray)
plt.colorbar(shrink=.5)
plt.title('Gaussian noise grayscale coded')
plt.show()
# flatten and show as histogram
ar_flat = ar.reshape(100 * 200)
plt.hist(ar_flat)
plt.title('Gaussian noise histogram')
plt.show()
# show sin(x)*sin(y) sample
l = 100
sin_x = np.sin(range(l))
array = np.asarray([sin_x * x for x in sin_x])
plt.imshow(array, interpolation = None)
plt.colorbar()
plt.title('sin(x)sin(y)')
plt.show()
# replace al negative values by 0
array_pos = np.maximum(array, 0)
plt.imshow(array_pos, interpolation = None)
plt.colorbar()
plt.title('sin(x)sin(y) only positive')
plt.show()
开发者ID:loostrum,项目名称:astroprog,代码行数:35,代码来源:plotter.py
示例20: plot_tothist
def plot_tothist(infile, tot, maxy, binsize=3):
"""
Plot the total-score histogram, where the total score (tot) has been
previous calculated or read-in by the input functions
"""
""" Calculate moments of the distribution """
mn = tot.mean()
med = np.median(tot)
mp = tot.mean() + tot.std()
mm = tot.mean() - tot.std()
""" Report on the properties of the distibution """
print ""
print "Statistics for %s" % infile
print "---------------------------------"
print " Mean: %5.1f" % mn
print " Median: %5.1f" % med
print " Sigma: %5.1f" % tot.std()
print " Mean - 1 sig: %5.1f" % mm
print " Mean + 1 sig: %5.1f" % mp
print ""
""" Plot the distribution """
binhist = range(int(tot.min())-1,int(tot.max())+3,binsize)
plt.hist(tot,binhist,histtype='step',ec='k')
plt.ylim(0,maxy)
plt.axvline(x=mn, ymin=0, ymax=maxy, c='r', lw=3)
plt.axvline(x=mm, ymin=0, ymax=maxy, c='b', lw=3)
plt.axvline(x=mp, ymin=0, ymax=maxy, c='b', lw=3)
plt.title("Distribution of scores for %s" % infile)
plt.xlabel("Scores")
plt.ylabel("N")
plt.show()
开发者ID:cdfassnacht,项目名称:CodeCDF,代码行数:34,代码来源:gradefuncs.py
注:本文中的matplotlib.pyplot.hist函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论