• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pyplot.fill_betweenx函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中matplotlib.pyplot.fill_betweenx函数的典型用法代码示例。如果您正苦于以下问题:Python fill_betweenx函数的具体用法?Python fill_betweenx怎么用?Python fill_betweenx使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fill_betweenx函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: plot_xy

    def plot_xy(self, x, y, xerror=[], yerror=[], title=' ', xLabel=' ', yLabel=' '):
        """
        Simple X vs Y plot

        Inputs:
        ------
          - x = 1D array
          - y = 1D array

        Keywords:
        --------
          - xerror = error on 'x', 1D array
          - yerror = error on 'y', 1D array
          - title = plot title, string
          - xLabel = title of the x-axis, string
          - yLabel = title of the y-axis, string
        """
        fig = plt.figure(figsize=(18,10))
        plt.rc('font',size='22')
        self._fig = plt.plot(x, y, label=title)
        scale = 1
        ticks = ticker.FuncFormatter(lambda lon, pos: '{0:g}'.format(lon/scale))
        plt.ylabel(yLabel)
        plt.xlabel(xLabel)
        if not yerror==[]:
            #plt.errorbar(x, y, yerr=yerror, fmt='o', ecolor='k')
            plt.fill_between(x, y-yerror, y+yerror,
            alpha=0.2, edgecolor='#1B2ACC', facecolor='#089FFF', antialiased=True)
        if not xerror==[]:
            #plt.errorbar(x, y, xerr=xerror, fmt='o', ecolor='k')
            plt.fill_betweenx(y, x-xerror, x+xerror,
            alpha=0.2, edgecolor='#1B2ACC', facecolor='#089FFF', antialiased=True)

        plt.show() 
开发者ID:LaVieEnRoux,项目名称:PySeidon,代码行数:34,代码来源:plotsAdcp.py


示例2: plot_wiggle

def plot_wiggle(self,figsize=[5,10],fill=True,perc=100,scale=1,subplot=False):
	# plot wiggle traces
	# figsize=[5,10]: matplotlib figure size [inch]
	# fill=True: fill values greater than zero
	# perc=100: percent clip
	# scale=1: scale trace plots
	plotdata=self.data
	plotdata=perc_clip(plotdata,perc)
	print("min=%s max=%s"%(plotdata.min(),plotdata.max()))
	maxval=np.abs(plotdata).max()
	ns=pk.get_ns(self)
	dt=pk.get_dt(self)
	ntr=pk.get_ntr(self)
	t=np.arange(ns)*dt

	if not subplot: plt.figure(figsize=figsize)
	for itr in range(ntr):
		trace=plotdata[itr,:]
		x=itr+trace/maxval*scale
		plt.plot(x,t,'k-',linewidth=0.5)
		if fill: plt.fill_betweenx(t,x,itr,where=x>itr,color='black',linewidth=0.)

	plt.xlim([-2,ntr+1])
	plt.ylim([t[-1],t[0]])
	plt.gca().xaxis.tick_top()
	plt.gca().xaxis.set_label_position('top')
	if subplot: return
	plt.xlabel('Trace number',fontsize='large')
	plt.ylabel('Time (s)',fontsize='large')
开发者ID:pkgpl,项目名称:IPythonProcessing,代码行数:29,代码来源:pkplot.py


示例3: plot_vawig

def plot_vawig(axhdl, data, t, excursion):

    import numpy as np
    import matplotlib.pyplot as plt

    [ntrc, nsamp] = data.shape
    

    
    
    t = np.hstack([0, t, t.max()])
    
    for i in range(0, ntrc):
        tbuf = excursion * data[i,:] / np.max(np.abs(data)) + i
        
        tbuf = np.hstack([i, tbuf, i])
            
        axhdl.plot(tbuf, t, color='black', linewidth=0.5)
        plt.fill_betweenx(t, tbuf, i, where=tbuf>i, facecolor=[0.6,0.6,1.0], linewidth=0)
        plt.fill_betweenx(t, tbuf, i, where=tbuf<i, facecolor=[1.0,0.7,0.7], linewidth=0)
    
    axhdl.set_xlim((-excursion, ntrc+excursion))
    axhdl.xaxis.tick_top()
    axhdl.xaxis.set_label_position('top')
    axhdl.invert_yaxis()
开发者ID:soldfield,项目名称:tutorials-2014,代码行数:25,代码来源:tuning_prestack_v2.py


示例4: plot_fill

def plot_fill(llr_cur, tkey, asimov_llr, hist_vals, bincen, fit_gauss, **kwargs):
    """
    Plots fill between the asimov llr value and the histogram values
    which represent an LLR distribution.
    """
    validate_key(tkey)

    expr = 'bincen < asimov_llr' if 'true_N' in tkey else 'bincen > asimov_llr'

    plt.fill_betweenx(
        hist_vals, bincen, x2=asimov_llr, where=eval(expr), **kwargs)

    pvalue = (1.0 - float(np.sum(llr_cur > asimov_llr))/len(llr_cur)
              if 'true_N' in tkey else
              (1.0 - float(np.sum(llr_cur < asimov_llr))/len(llr_cur)))

    sigma_fit = np.fabs(asimov_llr - fit_gauss[1])/fit_gauss[2]
    #logging.info(
    #    "  For tkey: %s, gaussian computed mean (of alt MH): %.3f and sigma: %.3f"
    #    %(tkey,fit_gauss[1],fit_gauss[2]))
    pval_gauss = 1.0 - norm.cdf(sigma_fit)
    sigma_1side = np.sqrt(2.0)*erfinv(1.0 - pval_gauss)

    mctrue_row = [tkey,asimov_llr,llr_cur.mean(),pvalue,pval_gauss,sigma_fit,
                  sigma_1side]

    return mctrue_row
开发者ID:tarlen5,项目名称:pisa,代码行数:27,代码来源:plotUtils.py


示例5: plot_posteriors

def plot_posteriors(model_params,plotfile,nbins=30,names=None):

    import matplotlib
    import matplotlib.pyplot as plt

    #----get array dimensions (number of parameters)----
    npar = model_params.shape[1]

    #----loop through parameters----
    for p in xrange(npar):
        
        #--skip iteration column or if parameter is fixed--
        if (max(model_params[:,p]) != min(model_params[:,p])) and p != 0:
            
            y = model_params[:,p]        
            y_hist, x_bin = np.histogram(y,bins=nbins)
            fig,ax=plt.subplots()
            plt.bar(x_bin[:-1],y_hist,width=x_bin[1]-x_bin[0])
            if names != None:
                plt.xlabel(names[p])
            ymin,ymax = ax.get_ylim()

            #-plot median and 1sigma range-
            med = np.median(y)
            sig = np.std(y)
            plt.plot([med,med],[ymin,ymax],color='red',linestyle='-')
            plt.fill_betweenx([0.0,ymax],[med-sig,med-sig],[med+sig,med+sig],color='red',alpha=0.2)

            #-save plot-
            plotfile.savefig()
            plt.close()
开发者ID:kariannfrank,项目名称:sn1987a,代码行数:31,代码来源:fitting.py


示例6: make_group_cumdist_fig

def make_group_cumdist_fig(LD,group_by,pcol):
    '''Make a plot showing the cumulative distribution of the within-group avg of a 
    specified response variable. compared to the cum dist expected by chance.
    INPUTS: 
        LD: pandas dataframe
        group_by: column to groupby for computing avgs.
        pcol: name of response variable column.
    OUTPUTS:
        fig: figure handle'''    

    name_legend_map = {'counts': 'Number of loans (thousands)',
				 'ROI': 'Average ROI (%)',
				  'int_rate': 'interest rate (%)',
				  'default_prob': 'default probability',
				  'dti': 'Debt-to-income ratio',
				  'emp_length': 'employment length (months)',
                        'annual_inc': 'annual income ($)'}

    min_group_loans = 100 #only use states with at least this many loans
    good_groups = LD.groupby(group_by).filter(lambda x: x[pcol].count() >= min_group_loans)
    n_groups = len(good_groups[group_by].unique())
    group_stats = good_groups.groupby(group_by)[pcol].agg(['mean','sem'])
    group_stats.sort_values(by='mean',inplace=True)
    ov_avg = good_groups[pcol].mean()
    
    #compute bootstrap estimates of null distribution of group-avgs
    boot_samps = 500 #number of bootstrap samples to use when estimating null dist
    shuff_avgs = np.zeros((boot_samps,n_groups))
    shuff_data = good_groups.copy()
    for cnt in xrange(boot_samps):
        shuff_data[pcol] = np.random.permutation(shuff_data[pcol].values)
        shuff_avgs[cnt,:] = shuff_data.groupby(group_by)[pcol].mean().sort_values()
    
    yax = np.arange(n_groups)
    rmean = np.mean(shuff_avgs,axis=0)
    rsem = np.std(shuff_avgs,axis=0)

    #plot avg and SEM of within-state returns
    fig, ax1 = plt.subplots(1,1,figsize=(6.0,5.0))
    if group_by == 'zip3':
        ax1.errorbar(group_stats['mean'].values,yax)
    else:
        ax1.errorbar(group_stats['mean'],yax,xerr=group_stats['sem'])
        plt.fill_betweenx(yax, rmean-rsem, rmean+rsem,facecolor='r',alpha=0.5,linewidth=0)
        plt.yticks(yax, group_stats.index,fontsize=6)
    
    ax1.plot(rmean,yax,'r')
    plt.legend(['Measured-avgs','Shuffled-avgs'],loc='best')
    if group_by == 'zip3':    
        plt.ylabel('Zip codes',fontsize=16)
    else:    
        plt.ylabel('States',fontsize=16)
    plt.xlabel(name_legend_map[pcol],fontsize=16)   
    plt.xlim(np.min(group_stats['mean']),np.max(group_stats['mean']))
    plt.ylim(0,n_groups)
    ax1.axvline(ov_avg,color='k',ls='dashed')
    plt.tight_layout()

    return fig
开发者ID:jmmcfarl,项目名称:loan-picker,代码行数:59,代码来源:make_mapping_figs.py


示例7: plot_mutation_rate_violins

def plot_mutation_rate_violins(libraries, out_prefix, nucleotides_to_count='ATCG', exclude_constitutive=False):
    #Makes violin plots of raw mutation rates
    data = []
    labels = []
    for library in libraries:
        labels.append(library.lib_settings.sample_name)
        data.append([math.log10(val) for val in library.list_mutation_rates(subtract_background=False, subtract_control=False,
                                                        nucleotides_to_count=nucleotides_to_count,
                                                        exclude_constitutive=exclude_constitutive) if val>0])

    colormap = uniform_colormaps.viridis
    fig = plt.figure(figsize=(5,8))
    ax1 = fig.add_subplot(111)

    # Hide the grid behind plot objects
    ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)
    ax1.set_axisbelow(True)

    #ax1.set_xlabel(ylabel)
    plt.subplots_adjust(left=0.1, right=0.95, top=0.9, bottom=0.25)

    pos = range(1,len(libraries)+1)  # starts at 1 to play nice with boxplot
    dist = max(pos)-min(pos)
    w = min(0.15*max(dist,1.0),0.5)
    for library,p in zip(libraries,pos):
        d = [math.log10(val) for val in library.list_mutation_rates(subtract_background=False, subtract_control=False,
                                                        nucleotides_to_count=nucleotides_to_count,
                                                        exclude_constitutive=exclude_constitutive) if val>0]
        k = stats.gaussian_kde(d) #calculates the kernel density
        m = k.dataset.min() #lower bound of violin
        M = k.dataset.max() #upper bound of violin
        x = numpy.arange(m,M,(M-m)/100.) # support for violin
        v = k.evaluate(x) #violin profile (density curve)
        v = v/v.max()*w #scaling the violin to the available space
        plt.fill_betweenx(x,p,v+p,facecolor=colormap((p-1)/float(len(libraries))),alpha=0.3)
        plt.fill_betweenx(x,p,-v+p,facecolor=colormap((p-1)/float(len(libraries))),alpha=0.3)
    if True:
        bplot = plt.boxplot(data,notch=1)
        plt.setp(bplot['boxes'], color='black')
        plt.setp(bplot['whiskers'], color='black')
        plt.setp(bplot['fliers'], color='red', marker='.')

    per50s = []
    i = 1
    for datum in data:
        #per50s.append(stats.scoreatpercentile(datum, 50))
        t = stats.scoreatpercentile(datum, 50)

        per50s.append(t)
        #ax1.annotate(str(round(t,3)), xy=(i+0.1, t), xycoords='data', arrowprops=None, fontsize='small', color='black')
        i+= 1
    #ax1.set_xticks([0.0, 0.5, 1.0, 1.5])
    #ax1.set_yscale('log')
    ax1.set_ylabel('log10 mutation rate')
    ax1.set_ylim(-5, 0)
    xtickNames = plt.setp(ax1, xticklabels=labels)
    plt.setp(xtickNames, rotation=90, fontsize=6)
    plt.savefig(out_prefix+'_logviolin.pdf', transparent='True', format='pdf')
    plt.clf()
开发者ID:borisz264,项目名称:mod_seq,代码行数:59,代码来源:mod_plotting.py


示例8: seismic_wiggle

def seismic_wiggle(section, dt=0.004, ranges=None, scale=1.,
                   color='k', normalize=False):
    """
    Plot a seismic section (numpy 2D array matrix) as wiggles.

    Parameters:

    * section :  2D array
        matrix of traces (first dimension time, second dimension traces)
    * dt : float
        sample rate in seconds (default 4 ms)
    * ranges : (x1, x2)
        min and max horizontal values (default trace number)
    * scale : float
        scale factor multiplied by the section values before plotting
    * color : tuple of strings
        Color for filling the wiggle, positive  and negative lobes.
    * normalize :
        True to normalizes all trace in the section using global max/min
        data will be in the range (-0.5, 0.5) zero centered

    .. warning::
        Slow for more than 200 traces, in this case decimate your
        data or use ``seismic_image``.

    """
    npts, ntraces = section.shape  # time/traces
    if ntraces < 1:
        raise IndexError("Nothing to plot")
    if npts < 1:
        raise IndexError("Nothing to plot")
    t = numpy.linspace(0, dt*npts, npts)
    amp = 1.  # normalization factor
    gmin = 0.  # global minimum
    toffset = 0.  # offset in time to make 0 centered
    if normalize:
        gmax = section.max()
        gmin = section.min()
        amp = (gmax-gmin)
        toffset = 0.5
    pyplot.ylim(max(t), 0)
    if ranges is None:
        ranges = (0, ntraces)
    x0, x1 = ranges
    # horizontal increment
    dx = float((x1-x0)/ntraces)
    pyplot.xlim(x0, x1)
    for i, trace in enumerate(section.transpose()):
        tr = (((trace-gmin)/amp)-toffset)*scale*dx
        x = x0+i*dx  # x positon for this trace
        pyplot.plot(x+tr, t, 'k')
        pyplot.fill_betweenx(t, x+tr, x, tr > 0, color=color)
开发者ID:ajayws,项目名称:fatiando,代码行数:52,代码来源:mpl.py


示例9: drawhigh

def drawhigh(cid,filesize,view,threshold,high,lowlimit=0,highlimit=0):
    avgview=sum(view[5:-5])/len(view)
    highdur=map(lambda x:(x[0],x[-1]),high)

    # 图像设置
    plt.figure(figsize=(15,7)) # figsize()设置的宽高比例是是15:7,图片的尺寸会根据这个比例进行调节
    #plt.xlim(-3,19)
    ylow=min(view)-500      #y轴下限
    yhigh=max(view)+500     #y轴上限
    plt.ylim(ylow,yhigh)
    plt.grid(which='both')


    #绘制结果数据
    plt.plot(range(1,len(view)+1),view,'bo-',ms=1,lw=0.5,label='origin')      # 原始图像
    if lowlimit and highlimit:
        plt.axhline(y=lowlimit,lw=3,ls='-',color='m',label='lowlimit')        # 低限
        plt.axhline(y=highlimit,lw=3,ls='-',color='m',label='highlimit')      # 高限

    plt.axhline(y=avgview,lw=1,ls='--',color='b',label='mean')                # 均值
    #plt.axhline(y=avgview*adjustv,lw=1,ls='--',color='g',label='mean*1.2')   # 均值*adjustv
    plt.axhline(y=threshold,lw=2,ls='--',color='r',label='threshold=1.2*mean')       # 阈值
    plt.legend(loc='upper right')
    plt.xlabel('time (s)')
    plt.ylabel('views')

    # 标注高潮区间
    for item in highdur:
        #plt.axvline(x=item[0],lw=2)
        #plt.axvline(x=item[1],lw=2)
        plt.annotate('',xy=(item[1],threshold),xytext=(item[0],threshold),arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color='g'))
        plt.fill_betweenx([ylow,yhigh],item[0], item[1], linewidth=1, alpha=0.2, color='r')

    plt.show()

    # 结果保存
    '''
    resultpath='D:\\hot_pic2'
    if not os.path.exists(resultpath):
        os.mkdir(resultpath)
    fname=os.path.join(resultpath,cid+'.'+str(filesize)+'.jpg')
    print fname
    plt.savefig(fname,dpi = 300)
    plt.close()
    '''
    return 0;
开发者ID:tuling56,项目名称:Python,代码行数:46,代码来源:hot_view_calc_sim.py


示例10: show_distr

    def show_distr(x,y, vertical=False, label=None, color='blue', linecolor='k', quantile=False):
        var_2d=np.copy(y)
        if vertical:
            var_2d=np.copy(x)
        mid=np.nanmean(var_2d, axis=0)
        lower=mid - np.nanstd(var_2d, axis=0)
        upper=mid + np.nanstd(var_2d, axis=0)
        if quantile:
            lower=np.nanpercentile(var_2d,25,axis=0)
            upper=np.nanpercentile(var_2d,75,axis=0)

        if vertical:
            plt.fill_betweenx(y,lower,upper, color=color)
            plt.plot(mid,y,color=linecolor, linewidth=2)
        else:
            plt.fill_between(x,lower,upper, color=color)
            plt.plot(x,mid,color=linecolor, linewidth=2)
开发者ID:jibbals,项目名称:OMI_regridding,代码行数:17,代码来源:localtests.py


示例11: plot_airmass

def plot_airmass(objectlist,obsvat,date):
    #ax = plt.subplot(111)
    
    for obj in objectlist:
        altdata = compute_alt_plot(obj[0],obj[1],obsvat,date)
        plt.plot(altdata[:,0],altdata[:,1])


    morn_twilight,even_twilight = functions.calc_twilight(obsvat,date)
    

    plt.fill_betweenx([0,90],[morn_twilight.datetime(),morn_twilight.datetime()],x2=[even_twilight.datetime(),even_twilight.datetime()],color="0.5")

    locs,labels = plt.xticks()
    plt.setp(labels,rotation=45)
    plt.ylim(0,90)
    plt.show()
开发者ID:georgezhou,项目名称:scheduler,代码行数:17,代码来源:phot_functions.py


示例12: peek

 def peek(self):
     plt.imshow(self.data, aspect='auto', interpolation='none',
                extent=[self.times[0].to(u.s).value,
                        self.times[-1].to(u.s).value,
                        self.latitude[0].to(u.degree).value,
                        self.latitude[-1].to(u.degree).value])
     plt.xlim(0, self.times[-1].to(u.s).value)
     if self.times[0].to(u.s).value > 0.0:
         plt.fill_betweenx([self.latitude[0].to(u.degree).value,
                            self.latitude[-1].to(u.degree).value],
                           self.times[0].to(u.s).value,
                           hatch='X', facecolor='w', label='not observed')
     plt.ylabel('degrees of arc from first measurement')
     plt.xlabel('time since originating event (seconds)')
     plt.title('arc: ' + self.title)
     plt.legend(framealpha=0.5)
     plt.show()
     return None
开发者ID:wafels,项目名称:eitwave,代码行数:18,代码来源:aware2.py


示例13: plotBootROC

def plotBootROC(rocDfL, labelL=None, aucL=None, ciParam='fpr'):
    """Plot of ROC curves with confidence intervals.

    Parameters
    ----------
    rocDfL : list of pd.DataFrames
        Each DataFram is one model and must include columns
        fpr_est, tpr_est, fpr_lb, fpr_ub
    labelL : list of str
        Names of each model for legend
    aucL : list of floats
        AUC scores of each model for legend"""
    if labelL is None and aucL is None:
        labelL = ['Model %d' % i for i in range(len(rocDfL))]
    elif labelL is None:
        labelL = ['Model %d (AUC = %0.2f [%0.2f, %0.2f])' % (i, auc[0], auc[1], auc[2]) for i, auc in enumerate(aucL)]
    else:
        labelL = ['%s (AUC = %0.2f [%0.2f, %0.2f])' % (label, auc[0], auc[1], auc[2]) for label, auc in zip(labelL, aucL)]

    colors = sns.color_palette('Set1', n_colors=len(rocDfL))

    plt.cla()
    plt.gca().set_aspect('equal')
    for i, (rocDf, label) in enumerate(zip(rocDfL, labelL)):
        if ciParam == 'fpr':
            plt.fill_betweenx(rocDf['tpr_est'], rocDf['fpr_lb'], rocDf['fpr_ub'], alpha=0.3, color=colors[i])
        elif ciParam == 'tpr':
            plt.fill_between(rocDf['fpr_est'], rocDf['tpr_lb'], rocDf['tpr_ub'], alpha=0.3, color=colors[i])
        plt.plot(rocDf['fpr_est'], rocDf['tpr_est'],'-', color=colors[i], lw=2)
        # plt.plot(rocDf['fpr_est'], rocDf['tpr_lb'], '.--', color=colors[i], lw=1)
        # plt.plot(rocDf['fpr_est'], rocDf['tpr_ub'], '.--', color=colors[i], lw=1)
        # plt.plot(rocDf['fpr_lb'], rocDf['tpr_est'], '--', color=colors[i], lw=1)
        # plt.plot(rocDf['fpr_ub'], rocDf['tpr_est'], '--', color=colors[i], lw=1)
    plt.plot([0, 1], [0, 1], '--', color='gray', label='Chance')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC')
    plt.legend([plt.Line2D([0, 1], [0, 1], color=c, lw=2) for c in colors], labelL, loc='lower right', fontsize=10)
    plt.show()
开发者ID:agartland,项目名称:utils,代码行数:41,代码来源:optimism_bootstrap.py


示例14: gen_fill

def gen_fill(tail_num, deg_left, deg_right):
    if tail_num == 3:
        plt.fill_betweenx(mlab.normpdf(x,mean,sigma),deg_left,x, where = ( x <= deg_left))
        plt.fill_betweenx(mlab.normpdf(x,mean,sigma), x,deg_right, where = ( x >= deg_right))    
        plt.draw()
        plt.show()
    elif tail_num ==  2: #right
        plt.fill_betweenx(mlab.normpdf(x,mean,sigma), x,deg_right, where = ( x >= deg_right))    
        plt.draw()
        plt.show()
    elif tail_num == 1 :
        plt.fill_betweenx(mlab.normpdf(x,mean,sigma),deg_left,x, where = ( x <= deg_left))
        plt.draw()
        plt.show()
开发者ID:IcarusRisen,项目名称:Dean_Lab_Stats,代码行数:14,代码来源:T_Test_core.py


示例15: plot_wiggle

def plot_wiggle(data,zz=1,skip=1,gain=1,alpha=0.7,black=False):
    '''
    Wiggle plot of generic 2D numpy array.

    INPUT
    data: 2D numpy array
    zz: vertical sample rate in depth or time
    skip: interval to choose traces to draw
    gain: multiplier applied to each trace
    '''
    [n_samples,n_traces]=data.shape
    t=range(n_samples)
    plt.figure(figsize=(9.6,6))
    for i in range(0, n_traces,skip):
        trace=gain*data[:,i] / np.max(np.abs(data))
        plt.plot(i+trace,t,color='k', linewidth=0.5)
        if black==False:
            plt.fill_betweenx(t,trace+i,i, where=trace+i>i, facecolor=[0.6,0.6,1.0], linewidth=0)
            plt.fill_betweenx(t,trace+i,i, where=trace+i<i, facecolor=[1.0,0.7,0.7], linewidth=0)
        else:
            plt.fill_betweenx(t,trace+i,i, where=trace+i>i, facecolor='black', linewidth=0, alpha=alpha)
    locs,labels=plt.yticks()
    plt.yticks(locs,[n*zz for n in locs.tolist()])
    plt.grid()
    plt.gca().invert_yaxis()
开发者ID:BKJackson,项目名称:geophysical_notes,代码行数:25,代码来源:aaplot.py


示例16: plot_dDAR

def plot_dDAR():
	lam_mu = 0.3+np.arange(2200)/1000
	lam_mu_ref = 0.55
	zeta_deg = 10*np.arange(8)
	plt.ylim([-3,5])
	##
	## mark X-SHOOTER arms
	plt.fill_betweenx(plt.ylim(),0.3,0.55,color="blue",alpha=0.3)
	plt.fill_betweenx(plt.ylim(),0.55,1.0,color="green",alpha=0.3)
	plt.fill_betweenx(plt.ylim(),1.0,2.5,color="red",alpha=0.3)

	for z in zeta_deg:
		am = 1/np.sin(np.deg2rad(90-z))
		plt.plot(lam_mu, dDAR(z, lam_mu, lam_mu_ref), label="{0} deg, airmass {1:5.2f}".format(z,am))
	
	plt.legend()
	plt.title("Differential atmospheric refraction w.r.t. {0:5.2f} micron".format(lam_mu_ref))
	plt.xlabel("Wavelength in micron")
	plt.ylabel("Differential atmospheric refraction in arcsec")

	plt.text(2.4, -2.5, "Paranal standard conditions: 11.5 deg C, 743 hPa, 14.5 % RH", fontsize=9, ha="right")
开发者ID:astroleo,项目名称:xshtools,代码行数:21,代码来源:atmo_disp.py


示例17: enumerate

import matplotlib.pyplot as plt
inds_t, inds_v = [(clusters[cluster_ind]) for ii, cluster_ind in
                  enumerate(good_cluster_inds)][0]  # first cluster

times = np.arange(X[0].shape[1]) * tstep * 1e3

plt.clf()
colors = ['y', 'b', 'g', 'purple']
event_ids = ['l_aud', 'r_aud', 'l_vis', 'r_vis']

for ii, (condition, color, eve_id) in enumerate(zip(X, colors, event_ids)):
    # extract time course at cluster vertices
    condition = condition[:, :, inds_v]
    # normally we would normalize values across subjects but
    # here we use data from the same subject so we're good to just
    # create average time series across subjects and vertices.
    mean_tc = condition.mean(axis=2).mean(axis=0)
    std_tc = condition.std(axis=2).std(axis=0)
    plt.plot(times, mean_tc.T, color=color, label=eve_id)
    plt.fill_between(times, mean_tc + std_tc, mean_tc - std_tc, color='gray',
                     alpha=0.5, label='')

plt.xlabel('Time (ms)')
plt.ylabel('Activation (F-values)')
plt.xlim(times[[0, -1]])
plt.fill_betweenx(np.arange(*plt.ylim()), times[inds_t[0]],
                  times[inds_t[-1]], color='orange', alpha=0.3)
plt.legend()
plt.title('Interaction between stimulus-modality and location.')
plt.show()
开发者ID:dichaelen,项目名称:mne-python,代码行数:30,代码来源:plot_cluster_stats_spatio_temporal_repeated_measures_anova.py


示例18: horiz_plot

 def horiz_plot(v_coord, orography, style_args):
     y = v_coord.points
     x = orography.points
     return plt.fill_betweenx(y, x, **style_args)
开发者ID:omarjamil,项目名称:iris,代码行数:4,代码来源:plot.py


示例19: log10

cb.set_label('Brightness contrast, log10(Shell / BG)')
plt.xlabel('Projected distance from Trapezium, D / arcmin')
plt.ylabel('Bowshock radius, r0 / arcsec')
plt.text(0.05, 0.05, 'Symbol size indicates shell relative thickness, H',
         transform=ax.transAxes, fontsize='x-small')
ax.set_xlim(0.05, 20.0)
ax.set_ylim(0.3, 11.0)
ax.set_xscale('log')
ax.set_yscale('log')
fig.savefig(pltfile)
figlist.append('[[file:luis-programas/{0}][{0}]]'.format(pltfile))

pltfile = 'will-PA-vs-PA.pdf'
fig = plt.figure(figsize=(7,6))
ax = fig.add_subplot(111, axisbg="#eeeeee")
plt.fill_betweenx([-90.0, 90.0], [0.0, 0.0], [90.0, 90.0], zorder=-10, alpha=0.05)
plt.fill_betweenx([-90.0, 90.0], [180.0, 180.0], [270.0, 270.0], zorder=-10, alpha=0.05)
plt.fill_betweenx([-90.0, 90.0], [360.0, 360.0], [450.0, 450.0], zorder=-10, alpha=0.05)
plt.text(45.0, -80.0, 'NE\nquadrant',  ha='center', fontsize='x-small')
plt.text(135.0, -80.0, 'SE\nquadrant', ha='center', fontsize='x-small')
plt.text(225.0, -80.0, 'SW\nquadrant', ha='center', fontsize='x-small')
plt.text(315.0, -80.0, 'NW\nquadrant', ha='center', fontsize='x-small')
plt.axhline(zorder=-5)
plt.scatter(PA_star[m], dPA[m], s=20*tab['R_out'][m], c=D60[m], cmap=plt.cm.hot, alpha=0.6)
label_sources(tab['Object'], PA_star, dPA, np.abs(dPA) > 45.0, allmask=m)
cb = plt.colorbar()
cb.set_label('Projected distance from Trapezium, D / arcmin')
plt.xlabel('PA of source from Trapezium, deg')
plt.ylabel('Angle between bowshock axis and radial direction, deg')
ax.set_xlim(-30.0, 375.0)
ax.set_ylim(-90.0, 90.0)
开发者ID:deprecated,项目名称:orion-bowshock-catalog,代码行数:31,代码来源:will-correlations.py


示例20: plot_llr_distributions

def plot_llr_distributions(llr_nmh, llr_imh, nbins, plot_gauss=True, imh_true=False):
    """Plots LLR distributions-expects llr_nmh and llr_imh to be type
    Series. Also plots vertical line signifying the mean of the
    hierarchy assumed to be given in nature, and the percentage of
    trials from the opposite hierarchy with LLR beyond the mean.
    """

    fig = plt.figure(figsize=(9, 8))
    label_text = r"$\log ( \mathcal{L}(data: IH|IH) / \mathcal{L}( data: IH|NH) )$"
    llr_imh.hist(bins=nbins, histtype="step", lw=2, color="b", label=label_text)
    hist_vals_imh, bincen_imh = plot_error(llr_imh, nbins, fmt=".b", lw=2)
    if plot_gauss:
        fit_imh = plot_gauss_fit(llr_imh, hist_vals_imh, bincen_imh, color="b", lw=2)

    label_text = r"$\log ( \mathcal{L}(data: NH|IH) / \mathcal{L}(data: NH|NH) )$"
    llr_nmh.hist(bins=nbins, histtype="step", lw=2, color="r", label=label_text)
    hist_vals_nmh, bincen_nmh = plot_error(llr_nmh, nbins, fmt=".r", lw=2)
    if plot_gauss:
        fit_nmh = plot_gauss_fit(llr_nmh, hist_vals_nmh, bincen_nmh, color="r", lw=2)

    if imh_true:
        mean_val = llr_nmh.mean()
        pvalue = 1.0 - float(np.sum(llr_imh > mean_val)) / len(llr_imh)
    else:
        mean_val = llr_imh.mean()
        pvalue = float(np.sum(llr_nmh > mean_val)) / len(llr_nmh)

    ymax = max(hist_vals_nmh) if imh_true else max(hist_vals_imh)
    bincen = bincen_imh if imh_true else bincen_nmh
    vline = plt.vlines(mean_val, 1, ymax, colors="k", linewidth=2, label=("pval = %.4f" % pvalue))

    sigma_1side = np.sqrt(2.0) * erfinv(1.0 - pvalue)
    sigma_2side = norm.isf(pvalue)
    print "  Using non-gauss fit: "
    print "    pvalue: %.5f" % pvalue
    print "    sigma 1 sided (erfinv): %.4f" % sigma_1side
    print "    sigma 2 sided (isf)   : %.4f" % sigma_2side

    sigma_fit_imh = (fit_imh[1] - fit_nmh[1]) / fit_imh[2]
    sigma_fit_nmh = (fit_imh[1] - fit_nmh[1]) / fit_nmh[2]
    pval_imh = 1.0 - norm.cdf(sigma_fit_imh)
    pval_nmh = 1.0 - norm.cdf(sigma_fit_nmh)
    sigma_1side_imh = np.sqrt(2.0) * erfinv(1.0 - pval_imh)
    sigma_1side_nmh = np.sqrt(2.0) * erfinv(1.0 - pval_nmh)

    print "\n\n  pval IMH: %.5f, pval NMH: %.5f" % (pval_imh, pval_nmh)
    print "  sigma gauss fit (IMH true): %.4f/%.4f" % (sigma_fit_imh, sigma_1side_imh)
    print "  sigma gauss fit (NMH true): %.4f/%.4f" % (sigma_fit_nmh, sigma_1side_nmh)

    sigma_error_nmh = np.sqrt(1.0 + 0.5 * (2.0 / sigma_1side_nmh) ** 2) / np.sqrt(len(llr_nmh))
    sigma_error_imh = np.sqrt(1.0 + 0.5 * (2.0 / sigma_1side_imh) ** 2) / np.sqrt(len(llr_imh))
    logging.info("total trials: %d", len(llr_nmh))
    logging.info("  nmh sigma error: %f" % sigma_error_nmh)
    logging.info("  imh sigma error: %f" % sigma_error_imh)

    if imh_true:
        plt.fill_betweenx(hist_vals_imh, bincen, x2=mean_val, where=bincen < mean_val, alpha=0.5, hatch="xx")
    else:
        plt.fill_betweenx(hist_vals_nmh, bincen, x2=mean_val, where=bincen > mean_val, alpha=0.5, hatch="xx")

    if args.present:
        plt.ylabel("# Trials")
        plt.xlabel("LLR value")
    else:
        plt.ylabel("# Trials", fontsize="x-large")
        plt.xlabel("LLR value", fontsize="x-large")

    return
开发者ID:steven-j-wren,项目名称:PISA-Analysis,代码行数:68,代码来源:process_LLR_analysis.py



注:本文中的matplotlib.pyplot.fill_betweenx函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pyplot.gca函数代码示例发布时间:2022-05-27
下一篇:
Python pyplot.fill_between函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap