本文整理汇总了Python中matplotlib.pyplot.figure函数的典型用法代码示例。如果您正苦于以下问题:Python figure函数的具体用法?Python figure怎么用?Python figure使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了figure函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: show
def show(self, rescale=True, ax=None):
"""Visualization of a design matrix
Parameters
----------
rescale: bool, optional
rescale columns magnitude for visualization or not
ax: axis handle, optional
Handle to axis onto which we will draw design matrix
Returns
-------
ax: axis handle
"""
import matplotlib.pyplot as plt
# normalize the values per column for better visualization
x = self.matrix.copy()
if rescale:
x = x / np.sqrt(np.sum(x ** 2, 0))
if ax is None:
plt.figure()
ax = plt.subplot(1, 1, 1)
ax.imshow(x, interpolation='Nearest', aspect='auto')
ax.set_label('conditions')
ax.set_ylabel('scan number')
if self.names is not None:
ax.set_xticks(range(len(self.names)))
ax.set_xticklabels(self.names, rotation=60, ha='right')
return ax
开发者ID:endolith,项目名称:nipy,代码行数:32,代码来源:design_matrix.py
示例2: draw_ranges_for_parameters
def draw_ranges_for_parameters(data, title='', save_path='./pictures/'):
parameters = data.columns.values.tolist()
# remove flight name parameter
for idx, parameter in enumerate(parameters):
if parameter == 'flight_name':
del parameters[idx]
flight_names = np.unique(data['flight_name'])
print len(flight_names)
for parameter in parameters:
plt.figure()
axis = plt.gca()
# ax.set_xticks(numpy.arange(0,1,0.1))
axis.set_yticks(flight_names)
axis.tick_params(labelright=True)
axis.set_ylim([94., 130.])
plt.grid()
plt.title(title)
plt.xlabel(parameter)
plt.ylabel('flight name')
colors = iter(cm.rainbow(np.linspace(0, 1,len(flight_names))))
for flight in flight_names:
temp = data[data.flight_name == flight][parameter]
plt.plot([np.min(temp), np.max(temp)], [flight, flight], c=next(colors), linewidth=2.0)
plt.savefig(save_path+title+'_'+parameter+'.jpg')
plt.close()
开发者ID:prikhodkop,项目名称:AnalysisWorkbench,代码行数:35,代码来源:data_utils_v2.py
示例3: plot_predict_is
def plot_predict_is(self,h=5,**kwargs):
""" Plots forecasts with the estimated model against data
(Simulated prediction with data)
Parameters
----------
h : int (default : 5)
How many steps to forecast
Returns
----------
- Plot of the forecast against data
"""
figsize = kwargs.get('figsize',(10,7))
plt.figure(figsize=figsize)
date_index = self.index[-h:]
predictions = self.predict_is(h)
data = self.data[-h:]
t_params = self.transform_z()
plt.plot(date_index,np.abs(data-t_params[-1]),label='Data')
plt.plot(date_index,predictions,label='Predictions',c='black')
plt.title(self.data_name)
plt.legend(loc=2)
plt.show()
开发者ID:ekote,项目名称:pyflux,代码行数:28,代码来源:egarchmreg.py
示例4: plot_scenario
def plot_scenario(strategies, names, scenario_id=1):
probabilities = get_scenario(scenario_id)
plt.figure(figsize=(6, 4.5))
ax = plt.subplot(111)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.yticks(fontsize=14)
plt.xticks(fontsize=14)
plt.xlim((0, 1300))
# Remove the tick marks; they are unnecessary with the tick lines we just plotted.
plt.tick_params(axis="both", which="both", bottom="on", top="off",
labelbottom="on", left="off", right="off", labelleft="on")
for rank, (strategy, name) in enumerate(zip(strategies, names)):
plot_strategy(probabilities, strategy, name, rank)
plt.title("Bandits: " + str(probabilities), fontweight='bold')
plt.xlabel('Number of Trials', fontsize=14)
plt.ylabel('Cumulative Regret', fontsize=14)
plt.legend(names)
plt.show()
开发者ID:finartist,项目名称:CG1,代码行数:30,代码来源:plotbandits.py
示例5: plotResults
def plotResults(datasetName, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix):
"""
Plots the errors for a particular dataset on a bar graph.
"""
for k in range(len(sampleMethods)):
outfileName = outputDir + datasetName + sampleMethods[k] + fileNameSuffix + ".npz"
data = numpy.load(outfileName)
errors = data["arr_0"]
meanMeasures = numpy.mean(errors, 0)
for i in range(sampleSizes.shape[0]):
plt.figure(k*len(sampleMethods) + i)
plt.title("n="+str(sampleSizes[i]) + " " + sampleMethods[k])
for j in range(errors.shape[3]):
plt.plot(foldsSet, meanMeasures[i, :, j])
plt.xlabel("Folds")
plt.ylabel('Error')
labels = ["VFCV", "PenVF+"]
labels.extend(["VFP s=" + str(x) for x in cvScalings])
plt.legend(tuple(labels))
plt.show()
开发者ID:pierrebo,项目名称:wallhack,代码行数:25,代码来源:ProcessResults.py
示例6: test_get_obs
def test_get_obs(self):
plt.figure()
ant_sigs = antennas.antennas_signal(self.ants, self.ant_models, self.sources, self.rad.timebase)
rad_sig_full = self.rad.sampled_signal(ant_sigs[0, :], 0)
obs_full = self.rad.get_full_obs(ant_sigs, self.utc_date, self.config)
ant_sigs_simp = antennas.antennas_simplified_signal(self.ants, self.ant_models, self.sources, self.rad.baseband_timebase, self.rad.int_freq)
obs_simp = self.rad.get_simplified_obs(ant_sigs_simp, self.utc_date, self.config)
freqs, spec_full_before_obs = spectrum.plotSpectrum(rad_sig_full, self.rad.ref_freq, label='full_before_obs_obj', c='blue')
freqs, spec_full = spectrum.plotSpectrum(obs_full.get_antenna(1), self.rad.ref_freq, label='full', c='cyan')
freqs, spec_simp = spectrum.plotSpectrum(obs_simp.get_antenna(1), self.rad.ref_freq, label='simp', c='red')
plt.legend()
self.assertTrue((spec_full_before_obs == spec_full).all(), True)
plt.figure()
plt.plot(freqs, (spec_simp-spec_full)/spec_full)
plt.show()
print len(obs_full.get_antenna(1)), obs_full.get_antenna(1).mean()
print len(obs_simp.get_antenna(1)), obs_simp.get_antenna(1).mean()
开发者ID:trigrass2,项目名称:TART,代码行数:25,代码来源:test_radio.py
示例7: plotTestData
def plotTestData(tree):
plt.figure()
plt.axis([0,1,0,1])
plt.xlabel("X axis")
plt.ylabel("Y axis")
plt.title("Green: Class1, Red: Class2, Blue: Class3, Yellow: Class4")
for value in class1:
plt.plot(value[0],value[1],'go')
plt.hold(True)
for value in class2:
plt.plot(value[0],value[1],'ro')
plt.hold(True)
for value in class3:
plt.plot(value[0],value[1],'bo')
plt.hold(True)
for value in class4:
plt.plot(value[0],value[1],'yo')
plotRegion(tree)
for value in classPlot1:
plt.plot(value[0],value[1],'g.',ms=3.0)
plt.hold(True)
for value in classPlot2:
plt.plot(value[0],value[1],'r.', ms=3.0)
plt.hold(True)
for value in classPlot3:
plt.plot(value[0],value[1],'b.', ms=3.0)
plt.hold(True)
for value in classPlot4:
plt.plot(value[0],value[1],'y.', ms=3.0)
plt.grid(True)
plt.show()
开发者ID:swatibhartiya,项目名称:Metal-Scrap-Sorter,代码行数:31,代码来源:executeDT.py
示例8: regress_show4
def regress_show4( yEv, yEv_calc, disp = True, graph = True, plt_title = None, ms_sz = None):
# if the output is a vector and the original is a metrix,
# the output is translated to a matrix.
r_sqr, RMSE, MAE, DAE = estimate_accuracy4( yEv, yEv_calc, disp = disp)
if graph:
#plt.scatter( yEv.tolist(), yEv_calc.tolist())
plt.figure()
if ms_sz is None:
ms_sz = max(min( 6000 / yEv.shape[0], 8), 3)
# plt.plot( yEv.tolist(), yEv_calc.tolist(), '.', ms = ms_sz) # Change ms
plt.scatter( yEv.tolist(), yEv_calc.tolist(), s = ms_sz)
ax = plt.gca()
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes
]
# now plot both limits against eachother
#ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.plot(lims, lims, '-', color = 'pink')
plt.xlabel('Experiment')
plt.ylabel('Prediction')
if plt_title is None:
plt.title( '$r^2$={0:.1e}, RMSE={1:.1e}, MAE={2:.1e}, MedAE={3:.1e}'.format( r_sqr, RMSE, MAE, DAE))
elif plt_title != "":
plt.title( plt_title)
# plt.show()
return r_sqr, RMSE, MAE, DAE
开发者ID:jskDr,项目名称:jamespy_py3,代码行数:31,代码来源:jutil.py
示例9: cv_show
def cv_show( yEv, yEv_calc, disp = True, graph = True, grid_std = None):
# if the output is a vector and the original is a metrix,
# the output is translated to a matrix.
if len( np.shape(yEv_calc)) == 1:
yEv_calc = np.mat( yEv_calc).T
if len( np.shape(yEv)) == 1:
yEv = np.mat( yEv).T
r_sqr, RMSE = jchem.estimate_accuracy( yEv, yEv_calc, disp = disp)
if graph:
#plt.scatter( yEv.tolist(), yEv_calc.tolist())
plt.figure()
ms_sz = max(min( 4000 / yEv.shape[0], 8), 1)
plt.plot( yEv.tolist(), yEv_calc.tolist(), '.', ms = ms_sz) # Change ms
ax = plt.gca()
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes
]
# now plot both limits against eachother
#ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.plot(lims, lims, '-', color = 'pink')
plt.xlabel('Experiment')
plt.ylabel('Prediction')
if grid_std:
plt.title( '($r^2$, std) = ({0:.2e}, {1:.2e}), RMSE = {2:.2e}'.format( r_sqr, grid_std, RMSE))
else:
plt.title( '$r^2$ = {0:.2e}, RMSE = {1:.2e}'.format( r_sqr, RMSE))
plt.show()
return r_sqr, RMSE
开发者ID:jskDr,项目名称:jamespy_py3,代码行数:31,代码来源:jutil.py
示例10: make_fish
def make_fish(zoom=False):
plt.close(1)
plt.figure(1, figsize=(6, 4))
plt.plot(plot_limits['pitch'], plot_limits['rolldev'], '-g', lw=3)
plt.plot(plot_limits['pitch'], -plot_limits['rolldev'], '-g', lw=3)
plt.plot(pitch.midvals, roll.midvals, '.b', ms=1, alpha=0.7)
p, r = make_ellipse() # pitch, off nominal roll
plt.plot(p, r, '-c', lw=2)
gf = -0.08 # Fudge on pitch value for illustrative purposes
plt.plot(greta['pitch'] + gf, -greta['roll'], '.r', ms=1, alpha=0.7)
plt.plot(greta['pitch'][-1] + gf, -greta['roll'][-1], 'xr', ms=10, mew=2)
if zoom:
plt.xlim(46.3, 56.1)
plt.ylim(4.1, 7.3)
else:
plt.ylim(-22, 22)
plt.xlim(40, 180)
plt.xlabel('Sun pitch angle (deg)')
plt.ylabel('Sun off-nominal roll angle (deg)')
plt.title('Mission off-nominal roll vs. pitch (5 minute samples)')
plt.grid()
plt.tight_layout()
plt.savefig('fish{}.png'.format('_zoom' if zoom else ''))
开发者ID:sot,项目名称:safemode_2015264,代码行数:26,代码来源:plot_fish.py
示例11: make_entity_plot
def make_entity_plot(filename, title, fixed_noip, fixed_ip, dynamic_noip, dynamic_ip):
plt.figure(figsize=(12,5))
plt.title("Settings comparison - " + title)
plt.xlabel('Time (ms)', fontsize=12)
plt.xlim([0,62000])
x = 0
barwidth = 0.5
bargroupspacing = 1.5
fixed_noip_mean,fixed_noip_conf = conf_stats(fixed_noip)
fixed_ip_mean,fixed_ip_conf = conf_stats(fixed_ip)
dynamic_noip_mean,dynamic_noip_conf = conf_stats(dynamic_noip)
dynamic_ip_mean,dynamic_ip_conf = conf_stats(dynamic_ip)
values = [fixed_noip_mean,fixed_ip_mean,dynamic_noip_mean, dynamic_ip_mean]
errs = [fixed_noip_conf,fixed_ip_conf,dynamic_noip_conf, dynamic_ip_conf]
y_pos = numpy.arange(len(values))
plt.barh(y_pos, values, xerr=errs, align='center', color=['r', 'b', 'r', 'b'], ecolor='black', alpha=0.7)
plt.yticks(y_pos, ["Fixed | no I.P.", "Fixed | I.P.", "Dynamic | no I.P.", "Dynamic | I.P."])
plt.savefig(output_file(filename))
plt.clf()
开发者ID:SuperV1234,项目名称:bcs_thesis,代码行数:25,代码来源:plot_ip.py
示例12: delta
def delta():
beta = 0.99
N = 1000
u = lambda c: np.sqrt(c)
W = np.linspace(0,1,N)
X, Y = np.meshgrid(W,W)
Wdiff = (X-Y).T
index = Wdiff <0
Wdiff[index] = 0
util_grid = u(Wdiff)
util_grid[index] = -10**10
Vprime = np.zeros((N,1))
delta = np.ones(1)
tol = 10**-9
it = 0
max_iter = 500
while (delta[-1] >= tol) and (it < max_iter):
V = Vprime
it += 1;
val = util_grid + beta*V.T
Vprime = np.amax(val, axis = 1)
Vprime = Vprime.reshape((N,1))
delta = np.append(delta,np.dot((Vprime-V).T,Vprime-V))
plt.figure()
plt.plot(delta[1:])
plt.ylabel(r'$\delta_k$')
plt.xlabel('iteration')
plt.savefig('convergence.pdf')
plt.clf()
开发者ID:davidreber,项目名称:Labs,代码行数:32,代码来源:plots.py
示例13: blue_sideband_thermal_tester
def blue_sideband_thermal_tester():
#BSB sideband = +1
import matplotlib.pyplot as plt
dataobj = ReadData('2014Jun19',experiment = 'RabiFlopping' )
data = dataobj.get_data('1212_15')
sideband = 1
trap_freq = 2.57
nbar_init= .3 #default 20.
rabi = RabiFlop(data)
rabi.setData(data)
f_rabi = thermal_tester() #f_rabi is the same on same set of data
print("f_rabi from thermal tester is :"+str(f_rabi))
initial_guess = {'nbar':nbar_init, 'f_rabi':f_rabi, #same as that of thermal tester
'delta':0.0, 'delta_fluctuations':0.,
'trap_freq':trap_freq, 'sideband':sideband, 'nmax':1000,
'angle': 50./360.*2*np.pi,
'rabi_type':'thermal','eta': 0.04 #rabi.guess_eta()#0.05
}
fit_params = {}
#Put it in the fit params format
for key in initial_guess.keys():
fit_params[key] = (False, False, initial_guess[key]) # fixed most of the parameters
fit_params['nbar'] = (False, False, initial_guess['nbar'])
fit_params['angle'] = (True, False, initial_guess['angle'])
#fit_params['delta'] = (True, False, initial_guess['delta']) #we decided to fix delta
rabi.setUserParameters(fit_params)
x,y = rabi.fit()
plt.figure()
plt.plot(data[:,0], data[:,1],'o') # plotting raw data : excitation probability versus time
plt.plot(x,y) #plotting the fit
nbar = rabi.get_parameter_value('nbar') # rabi frequency in Hz
angle= rabi.get_parameter_value('angle')
print ('nbar: {}'.format(nbar))
print ('{} radians = {} degrees'.format(str(angle), str(angle/(2*np.pi)*360)))
开发者ID:dorisjlee,项目名称:rabi_flop_fitter,代码行数:34,代码来源:rabiflop_modified_test.py
示例14: thermal_tester
def thermal_tester():
import matplotlib.pyplot as plt
dataobj = ReadData('2014Jun19',experiment = 'RabiFlopping' )
car_data = dataobj.get_data('1219_57')
sideband = 0
trap_freq = 2.57
nbar_init= 0.1 #default 20.
carrier_rabi = RabiFlop(car_data)
initial_guess = {'nbar':nbar_init, 'f_rabi':carrier_rabi.guess_f_rabi(), #changing inital guess for rabi frequency to 1/2 max
'delta':0., 'delta_fluctuations':0.,
'trap_freq':trap_freq, 'sideband':sideband, 'nmax':1000,
'angle':10./360.*2*np.pi , 'rabi_type':'thermal'
,'eta': 0.05 }
fit_params = {}
#Put it in the fit params format
for key in initial_guess.keys():
fit_params[key] = (False, False, initial_guess[key]) # fix most of the parameters
fit_params['f_rabi'] = (True, False, initial_guess['f_rabi']) # fit for the rabi frequency
carrier_rabi.setUserParameters(fit_params)
x,y = carrier_rabi.fit()
plt.figure()
plt.plot(car_data[:,0], car_data[:,1],'o') # plotting raw data : excitation probability versus time
plt.plot(x,y) #plotting the fit
# Note: Only get_parameter_value returns the user_guess. Use get_parameter_info for autofit result.
f_rabi = carrier_rabi.get_parameter_info()['f_rabi'][2][2] #autofit result (rabi frequency in Hz)
return f_rabi
开发者ID:dorisjlee,项目名称:rabi_flop_fitter,代码行数:26,代码来源:rabiflop_modified_test.py
示例15: plot_data
def plot_data(kx,omega,F,F_R,F_L,K,O):
#plt.figure(4)
#plt.imshow(K,extent=[omega[0],omega[-1],kx[0],kx[-1]],\
# interpolation = "nearest", aspect = "auto")
#plt.xlabel('KX')
#plt.colorbar()
#plt.figure(5)
#plt.imshow(O,extent =[omega[0],omega[-1],kx[0],kx[-1]],interpolation="nearest", aspect="auto")
#plt.xlabel('omega')
#plt.colorbar()
plt.figure(6)
pylab.subplot(1,2,1)
plt.imshow(abs(F_R), extent= [omega[0],omega[-1],kx[0],kx[-1]], interpolation= "nearest", aspect = "auto")
plt.xlabel('abs FFT_R')
plt.colorbar()
plt.subplot(1,2,2)
plt.imshow(abs(F_L), extent= [omega[0],omega[-1],kx[0],kx[-1]], interpolation= "nearest", aspect = "auto")
plt.xlabel('abs FFT_L')
plt.colorbar()
plt.figure(7)
plt.subplot(2,1,1)
plt.imshow(abs(F_L+F_R),extent=[omega[0],omega[-1],kx[0],kx[-1]],interpolation= "nearest", aspect = "auto")
plt.xlabel('abs(F_L+F_R) reconstructed')
plt.colorbar()
pylab.subplot(2,1,2)
plt.imshow(abs(F),extent=[omega[0],omega[-1],kx[0],kx[-1]],interpolation ="nearest",aspect = "auto")
plt.xlabel('FFT of the original data')
plt.colorbar()
#plt.show()
return
开发者ID:jmunroe,项目名称:labtools,代码行数:35,代码来源:3dSpectrum.py
示例16: mlr_show4
def mlr_show4( clf, RMv, yEv, disp = True, graph = True):
yEv_calc = clf.predict( RMv)
if len( np.shape(yEv)) == 2 and len( np.shape(yEv_calc)) == 1:
yEv_calc = np.mat( yEv_calc).T
r_sqr, RMSE, MAE, DAE = estimate_accuracy4( yEv, yEv_calc, disp = disp)
if graph:
plt.figure()
ms_sz = max(min( 4000 / yEv.shape[0], 8), 1)
plt.plot( yEv.tolist(), yEv_calc.tolist(), '.', ms = ms_sz)
ax = plt.gca()
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes
]
# now plot both limits against eachother
#ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.plot(lims, lims, '-', color = 'pink')
plt.xlabel('Experiment')
plt.ylabel('Prediction')
#plt.title( '$r^2$={0:.2e}, RMSE={1:.2e}, AAE={2:.2e}'.format( r_sqr, RMSE, aae))
plt.title( '$r^2$={0:.1e},$\sigma$={1:.1e},MAE={2:.1e},DAE={3:.1e}'.format( r_sqr, RMSE, MAE, DAE))
plt.show()
return r_sqr, RMSE, MAE, DAE
开发者ID:jskDr,项目名称:jamespy_py3,代码行数:27,代码来源:jutil.py
示例17: heatmap
def heatmap(vals, size=6, aspect=1):
"""
Plot a heatmap from matrix data
"""
plt.figure(figsize=(size, size))
plt.imshow(vals, cmap="gray", aspect=aspect, interpolation="none", vmin=0, vmax=1)
plt.axis("off")
开发者ID:speron,项目名称:sofroniew-vlasov-2015,代码行数:7,代码来源:plots.py
示例18: plot_jacobian
def plot_jacobian(A, name, cmap= plt.cm.coolwarm, normalize=True, precision=1e-6):
"""
Customized visualization of jacobian matrices for observing
sparsity patterns
"""
plt.figure()
fig, ax = plt.subplots()
if normalize is True:
plt.imshow(A, interpolation='none', cmap=cmap,
norm = mpl.colors.Normalize(vmin=-1.,vmax=1.))
else:
plt.imshow(A, interpolation='none', cmap=cmap)
plt.colorbar(format=ticker.FuncFormatter(fmt))
ax.spy(A, marker='.', markersize=0, precision=precision)
ax.spines['right'].set_visible(True)
ax.spines['bottom'].set_visible(True)
ax.xaxis.set_ticks_position('top')
ax.yaxis.set_ticks_position('left')
xlabels = np.linspace(0, A.shape[0], 5, True, dtype=int)
ylabels = np.linspace(0, A.shape[1], 5, True, dtype=int)
plt.xticks(xlabels)
plt.yticks(ylabels)
plt.savefig(name, bbox_inches='tight', pad_inches=0.05)
plt.close()
return
开发者ID:komahanb,项目名称:pchaos,代码行数:35,代码来源:plotter.py
示例19: plotISVar
def plotISVar():
plt.figure()
plt.title('Variance minimization problem (call).\nVertical lines mark the minima.')
for K in [0.6, 0.8, 1.0, 1.2]:
theta = np.linspace(-0.6, 2)
var = [BS.exactCallVar(K*s0, theta) for theta in theta]
minth = theta[np.argmin(var)]
line, = plt.plot(theta, var, label=str(K))
plt.axvline(minth, color=line.get_color())
plt.xlabel(r'$\theta$')
plt.ylabel('call variance')
plt.legend(title=r'$K/s_0$', loc='upper left')
plt.autoscale(tight=True)
plt.figure()
plt.title('Variance minimization problem (put).\nVertical lines mark the minima.')
for K in [0.8, 1.0, 1.2, 1.4]:
theta = np.linspace(-2, 0.5)
var = [BS.exactPutVar(K*s0, theta) for theta in theta]
minth = theta[np.argmin(var)]
line, = plt.plot(theta, var, label=str(K))
plt.axvline(minth, color=line.get_color())
plt.xlabel(r'$\theta$')
plt.ylabel('put variance')
plt.legend(title=r'$K/s_0$', loc='upper left')
plt.autoscale(tight=True)
开发者ID:alexschlueter,项目名称:ba,代码行数:28,代码来源:callput_plots.py
示例20: entries_histogram
def entries_histogram(turnstile_weather):
'''
Before we perform any analysis, it might be useful to take a
look at the data we're hoping to analyze. More specifically, lets
examine the hourly entries in our NYC subway data and determine what
distribution the data follows. This data is stored in a dataframe
called turnstile_weather under the ['ENTRIESn_hourly'] column.
Why don't you plot two histograms on the same axes, showing hourly
entries when raining vs. when not raining. Here's an example on how
to plot histograms with pandas and matplotlib:
turnstile_weather['column_to_graph'].hist()
Your histograph may look similar to the following graph:
http://i.imgur.com/9TrkKal.png
You can read a bit about using matplotlib and pandas to plot
histograms:
http://pandas.pydata.org/pandas-docs/stable/visualization.html#histograms
You can look at the information contained within the turnstile weather data at the link below:
https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv
'''
plt.figure()
(turnstile_weather[turnstile_weather.rain==0].ENTRIESn_hourly).hist(bins=175) # your code here to plot a historgram for hourly entries when it is not raining
(turnstile_weather[turnstile_weather.rain==1].ENTRIESn_hourly).hist(bins=175) # your code here to plot a historgram for hourly entries when it is raining
plt.ylim(ymax = 45000, ymin = 0)
plt.xlim(xmax = 6000, xmin = 0)
return plt
开发者ID:ricaenriquez,项目名称:intro_to_ds,代码行数:29,代码来源:plot_histogram.py
注:本文中的matplotlib.pyplot.figure函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论