本文整理汇总了Python中matplotlib.pyplot.figimage函数的典型用法代码示例。如果您正苦于以下问题:Python figimage函数的具体用法?Python figimage怎么用?Python figimage使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了figimage函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_jpeg_alpha
def test_jpeg_alpha():
Image = pytest.importorskip('PIL.Image')
plt.figure(figsize=(1, 1), dpi=300)
# Create an image that is all black, with a gradient from 0-1 in
# the alpha channel from left to right.
im = np.zeros((300, 300, 4), dtype=float)
im[..., 3] = np.linspace(0.0, 1.0, 300)
plt.figimage(im)
buff = io.BytesIO()
with rc_context({'savefig.facecolor': 'red'}):
plt.savefig(buff, transparent=True, format='jpg', dpi=300)
buff.seek(0)
image = Image.open(buff)
# If this fails, there will be only one color (all black). If this
# is working, we should have all 256 shades of grey represented.
num_colors = len(image.getcolors(256))
assert 175 <= num_colors <= 185
# The fully transparent part should be red.
corner_pixel = image.getpixel((0, 0))
assert corner_pixel == (254, 0, 0)
开发者ID:klauss-lemon-tangerine,项目名称:matplotlib,代码行数:25,代码来源:test_image.py
示例2: plotClusters
def plotClusters(websites, amount, clusters=8,xFactor=10, yFactor=10, myDpi=96, sampleSize=20):
"""
We want to plot every image according to the appropriate point
on the x-axis according to its cluster number. We want to plot
each new member of a given cluster at a higher y position
Inputs:
imagePath is a string to where the images are located
websites is a list of tuples of the form:
(clusterNumber, websitename)
"""
imagePath = getDataDir(amount, cut=True, big=False)
clusterDict = [0 for n in xrange(clusters)]
plt.figure(figsize=(800/myDpi, 800/myDpi), dpi=myDpi)
for site in websites:
clusterIndex, address = site
try:
yIndex = clusterDict[clusterIndex]
if yIndex > sampleSize:
continue
image = mpimg.imread(imagePath+address)
y = yIndex * yFactor
clusterDict[clusterIndex]+=1
plt.figimage(image, clusterIndex*xFactor, y)
except IOError:
# usually if we don't have the small cut image yet
pass
plt.show()
开发者ID:gablg1,项目名称:designator,代码行数:29,代码来源:data.py
示例3: plot_montage
def plot_montage(images, ndx, ncol=None):
N = len(ndx)
if not ncol:
ncol = int(sqrt(N))
f = plt.figure(dpi=100)
row = 0
col = 0
tot_height = 0
for i in range(N):
I = sp.array(images[ndx[i]], dtype='float')
I = I / I.max()
height = I.shape[0]
width = I.shape[1]
ax = plt.figimage(I, xo=width*col, yo=height*row, origin='lower')
col += 1
if col % ncol == 0:
row += 1
col = 0
tot_height += height
tot_height += height
tot_width = width*ncol
f.set_figheight(tot_height/100)
f.set_figwidth(tot_width/100)
return f
开发者ID:ThomasCabrol,项目名称:strata_bootcamp,代码行数:34,代码来源:cluster_flickr.py
示例4: plot_map
def plot_map(res, bins, cmap, cropName, fileName, technologyName, variableName, unitLabel, techFolder):
figTitle = cropName + ' ' + technologyName + ' ' + variableName + ' (' + unitLabel + ')'
plt.close()
plt.figtext(0.025,0.92, figTitle, clip_on = 'True', size = 'large', weight = 'semibold');
plt.figtext(0.025,0.86, 'Spatially disaggregated production statistics of circa 2005 using the Spatial Production Allocation Model (SPAM).', clip_on = 'True', size = 'x-small', stretch = 'semi-condensed', weight = 'medium');
plt.figtext(0.025,0.835,'Values are for 5 arc-minute grid cells.', clip_on = 'True', size = 'x-small', stretch = 'semi-condensed', weight = 'medium');
plt.figtext(0.025,0.072, 'You, L., U. Wood-Sichra, S. Fritz, Z. Guo, L. See, and J. Koo. 2014', clip_on = 'True', size = 'xx-small', stretch = 'semi-condensed', weight = 'medium')
plt.figtext(0.025,0.051, 'Spatial Production Allocation Model (SPAM) 2005 Version 2.0.', clip_on = 'True', size = 'xx-small', stretch = 'semi-condensed', weight = 'medium')
plt.figtext(0.025,0.030, '03.10.2015. Available from http://mapspam.info', clip_on = 'True', size = 'xx-small', stretch = 'semi-condensed', weight = 'medium');
plt.figimage(logos, 4100, 200)
map = Basemap(projection='merc',resolution='i', epsg=4326, lat_0 = 0, lon_0 = 20, llcrnrlon=-160, llcrnrlat=-70, urcrnrlon=200, urcrnrlat=90)
map.drawlsmask(land_color='#fffff0', lakes = False, zorder = 1)
shp_coast = map.readshapefile(baseShpLoc + '/ne_50m_coastline/ne_50m_coastline', 'scalerank', drawbounds=True, linewidth=0.1, color = '#828282', zorder = 7)
shp_rivers = map.readshapefile(baseShpLoc + '/ne_110m_rivers_lake_centerlines/ne_110m_rivers_lake_centerlines', 'scalerank', drawbounds=True, color='#e8f8ff', linewidth=0.1, zorder = 5)
shp_lakes = map.readshapefile(baseShpLoc + '/ne_110m_lakes/ne_110m_lakes', 'scalerank', drawbounds=True, linewidth=0.1, color='#e8f8ff', zorder=4)
paths = []
for line in shp_lakes[4]._paths:
paths.append(matplotlib.path.Path(line.vertices, codes=line.codes))
coll_lakes = matplotlib.collections.PathCollection(paths, linewidths=0, facecolors='#e8f8ff', zorder=3)
cs = map.pcolormesh(res.lons, res.lats, res.d2, cmap=cmap, norm=BoundaryNorm(bins, 256, clip=True), zorder = 6)
map.drawcountries(linewidth=0.1, color='#828282', zorder = 8)
ax = plt.gca()
ax.add_collection(coll_lakes)
cbar = map.colorbar(cs,location='bottom', pad='3%')
if (variableName == 'Production' or variableName == 'Yield'):
labelSize = 8
else :
labelSize = 7
labels = [item.get_text() for item in cbar.ax.get_xticklabels()]
labels[0] = '1'; labels[labelSize - 1] = labels[labelSize - 1] + ' <'; labels[labelSize] = ''
cbar.ax.set_xticklabels(labels)
plt.tight_layout(h_pad=0.9, w_pad = 0.9)
outputFile = 'spam2005v2r0_' + techFolder + '_' + fileName + '_' + technologyName.lower()
plt.savefig(outputFolder + '/' + techFolder + '/' + outputFile + '.png', format='png', dpi=900)
开发者ID:harvestchoice,项目名称:spam2005-global,代码行数:47,代码来源:06_nc2png.py
示例5: plot_digits
def plot_digits(X, ndx, ncol=50, width=IM_WIDTH, cmap=cm.gray):
"""
plot a montage of the examples specified in ndx (as rows of X)
"""
row = 0
col = 0
for i in range(ndx.shape[0]):
plt.figimage(reshape_digit(X, ndx[i]),
xo=width*col, yo=width*row,
origin='upper', cmap=cmap)
col += 1
if col % ncol == 0:
row += 1
col = 0
开发者ID:ThomasCabrol,项目名称:strata_bootcamp,代码行数:17,代码来源:digits.py
示例6: draw_mol_slider
def draw_mol_slider(mol, legend, matching, symbol, color, values, index):
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
if op.isfile('/home/flo/temp.png'):
os.remove('/home/flo/temp.png')
subimg = MolToImage(mol, (200, 200), legend=legend, highlightAtoms=matching, symbol=symbol, background=color,
mol_adder=MolDrawing.AddMol)
# Then we will integrate a slider showing the relative ranking of the molecule
rank = float(len(values[:index + 1])) / len(values)
alpha_axis = plt.axes([0.37, 0.59, 0.14, 0.018], axisbg='grey')
Slider(alpha_axis, '1(+)', 0, 1, valinit=rank, facecolor='w', valfmt='(-)%.0f')
# Manually set to look good on the svg: [0.37, 0.59, 0.14, 0.018] for alpha_axis and 180, 70 for subimg
# Manually set to look good on the png: [0.37, 0.59, 0.14, 0.018] for alpha_axis and 247, 172 for subimg
# Now we need to combine subimg and slider in one image
plt.figimage(subimg, 247, 172)
plt.show()
plt.savefig('/home/flo/temp.png') # , bbox_inches='tight')
开发者ID:sdvillal,项目名称:ccl-malaria,代码行数:17,代码来源:drawing_ala_rdkit.py
示例7: _mock_worker
def _mock_worker(exact, estimated, param, nologo):
"""Plot the exact and estimated values of a parameter for the mock analysis
Parameters
----------
exact: Table column
Exact values of the parameter.
estimated: Table column
Estimated values of the parameter.
param: string
Name of the parameter
nologo: boolean
Do not add the logo when set to true.
"""
range_exact = np.linspace(np.min(exact), np.max(exact), 100)
# We compute the linear regression
if (np.min(exact) < np.max(exact)):
slope, intercept, r_value, p_value, std_err = stats.linregress(exact,
estimated)
else:
slope = 0.0
intercept = 1.0
r_value = 0.0
plt.errorbar(exact, estimated, marker='.', label=param, color='k',
linestyle='None', capsize=0.)
plt.plot(range_exact, range_exact, color='r', label='1-to-1')
plt.plot(range_exact, slope * range_exact + intercept, color='b',
label='exact-fit $r^2$ = {:.2f}'.format(r_value**2))
plt.xlabel('Exact')
plt.ylabel('Estimated')
plt.title(param)
plt.legend(loc='best', fancybox=True, framealpha=0.5, numpoints=1)
plt.minorticks_on()
if nologo is False:
image = plt.imread(pkg_resources.resource_filename(__name__,
"data/CIGALE.png"))
plt.figimage(image, 510, 55, origin='upper', zorder=10, alpha=1)
plt.tight_layout()
plt.savefig(OUT_DIR + 'mock_{}.pdf'.format(param))
plt.close()
开发者ID:JohannesBuchner,项目名称:cigale,代码行数:46,代码来源:__init__.py
示例8: hydro_plot
def hydro_plot(view, hydro_code, image_size, figname):
"""
view: the (physical) region to plot [xmin, xmax, ymin, ymax]
hydro_code: hydrodynamics code in which the gas to be plotted is defined
image_size: size of the output image in pixels (x, y)
"""
if not HAS_MATPLOTLIB:
return
shape = (image_size[0], image_size[1], 1)
size = image_size[0] * image_size[1]
axis_lengths = [0.0, 0.0, 0.0] | units.m
axis_lengths[0] = view[1] - view[0]
axis_lengths[1] = view[3] - view[2]
grid = Grid.create(shape, axis_lengths)
grid.x += view[0]
grid.y += view[2]
speed = grid.z.reshape(size) * (0 | 1/units.s)
rho, rhovx, rhovy, rhovz, rhoe = hydro_code.get_hydro_state_at_point(
grid.x.reshape(size),
grid.y.reshape(size),
grid.z.reshape(size), speed, speed, speed)
min_v = 800.0 | units.km / units.s
max_v = 3000.0 | units.km / units.s
min_rho = 3.0e-9 | units.g / units.cm**3
max_rho = 1.0e-5 | units.g / units.cm**3
min_E = 1.0e11 | units.J / units.kg
max_E = 1.0e13 | units.J / units.kg
v_sqr = (rhovx**2 + rhovy**2 + rhovz**2) / rho**2
E = rhoe / rho
log_v = numpy.log((v_sqr / min_v**2)) / numpy.log((max_v**2 / min_v**2))
log_rho = numpy.log((rho / min_rho)) / numpy.log((max_rho / min_rho))
log_E = numpy.log((E / min_E)) / numpy.log((max_E / min_E))
red = numpy.minimum(numpy.ones_like(rho.number), numpy.maximum(
numpy.zeros_like(rho.number), log_rho)).reshape(shape)
green = numpy.minimum(numpy.ones_like(rho.number), numpy.maximum(
numpy.zeros_like(rho.number), log_v)).reshape(shape)
blue = numpy.minimum(numpy.ones_like(rho.number), numpy.maximum(
numpy.zeros_like(rho.number), log_E)).reshape(shape)
alpha = numpy.minimum(
numpy.ones_like(log_v),
numpy.maximum(
numpy.zeros_like(log_v),
numpy.log((rho / (10*min_rho)))
)
).reshape(shape)
rgba = numpy.concatenate((red, green, blue, alpha), axis=2)
pyplot.figure(figsize=(image_size[0]/100.0, image_size[1]/100.0), dpi=100)
im = pyplot.figimage(rgba, origin='lower')
pyplot.savefig(figname, transparent=True, dpi=100,
facecolor='k', edgecolor='k')
print "\nHydroplot was saved to: ", figname
pyplot.close()
开发者ID:amusecode,项目名称:amuse,代码行数:58,代码来源:test_supernova.py
示例9: make_image
def make_image(self):
rawdata = load(self.binfile)
rotated = rot90(rawdata)
rotated = rot90(rotated)
rotated = rot90(rotated)
rotated = reshape(rotated,(1,32,32))
rawshape = shape(rawdata)
if self.taking_sky == True:
self.skycount += rotated
#print 'rawdata shape ', shape(rawdata)
newcounts = reshape(rawdata,(1,1024))
self.counts = append(self.counts,newcounts,axis=0)
self.rotated_counts = append(self.rotated_counts, rotated, axis=0)
#print 'shape of counts', shape(self.counts)
tf = self.image_time
self.int_time = self.ui.int_time_spinBox.value()
ti = tf-self.int_time
if ti<0:
ti = 0
if tf==0 or tf==ti:
image_counts = newcounts
else:
image_counts = sum(self.counts[ti:tf],axis=0)
image_counts = reshape(image_counts,(1,1024))
if self.sky_subtraction == True:
image_counts = image_counts-reshape(self.skyrate*(tf-ti),(1,1024))
indices = sort(image_counts)
brightest = self.ui.brightpix.value()
self.vmax = indices[0,-1*(brightest)]
photon_count = reshape(image_counts,rawshape)
photon_count = rot90(photon_count)
photon_count = rot90(photon_count)
photon_count = rot90(photon_count)
fig = plt.figure(figsize=(.32,.32), dpi=100, frameon=False)
im = plt.figimage(photon_count, cmap='gray', vmax = self.vmax)
#im = plt.figimage(rawdata, cmap='gray')
plt.savefig("Arcons_frame.png", pad_inches=0)
print "Generated image ",tf
self.image_time+=1
if self.taking_sky == True:
if self.image_time == self.skytime:
self.taking_sky = False
self.skyrate = self.skycount/self.skytime
开发者ID:RupertDodkins,项目名称:ARCONS-pipeline-1,代码行数:53,代码来源:arcons_dashboard.py
示例10: compare_files
def compare_files(dir_path1, dir_path2, name):
result = None
path1 = os.path.join(dir_path1, name)
path2 = os.path.join(dir_path2, name)
if not os.path.isfile(path1) or not os.path.isfile(path2):
result = Difference(name, 'missing file')
else:
image1 = plt.imread(path1)
image2 = plt.imread(path2)
if image1.shape != image2.shape:
result = Difference(name, "shape: %s -> %s" % (image1.shape, image2.shape))
else:
diff = (image1 != image2).any(axis=2)
if diff.any():
diff_path = os.path.join(DIFF_DIR, name)
diff_path = os.path.realpath(diff_path)
plt.figure(figsize=reversed(diff.shape), dpi=1)
plt.figimage(diff, cmap=cm.gray)
plt.savefig(diff_path, dpi=1)
result = Difference(name, "diff: %s" % diff_path)
return result
开发者ID:omarjamil,项目名称:iris,代码行数:23,代码来源:idiff.py
示例11: testDivisonOfGrid
def testDivisonOfGrid():
topo = topology.Topology()
topoFile="topology_200.txt"
try:
topo.importFromFile(topoFile)
except:
print "could not read topology file",topoFile
habNM = simulation.makeNeighConnMap(topo)
sects = simulation.divideGridToSection(habNM,GRID_SIZE,GRID_SIZE)
print "sects ",sects
k=0
for habs in sects.values():
k=k+1
X = pylab.ones((10,10,3))*float(k*0.4)
print "habs" ,habs
for hab in habs:
hab=hab-1
xo=int(hab%GRID_SIZE)*2
yo=int(hab/GRID_SIZE)*2
print "X ",xo
print "Y ",yo
plt.figimage(X, xo, yo, origin='lower')
plt.show()
开发者ID:rcelebi,项目名称:legueformation,代码行数:24,代码来源:test_simulation.py
示例12: test_jpeg_alpha
def test_jpeg_alpha():
plt.figure(figsize=(1, 1), dpi=300)
# Create an image that is all black, with a gradient from 0-1 in
# the alpha channel from left to right.
im = np.zeros((300, 300, 4), dtype=float)
im[..., 3] = np.linspace(0.0, 1.0, 300)
plt.figimage(im)
buff = io.BytesIO()
with rc_context({'savefig.facecolor': 'red'}):
plt.savefig(buff, transparent=True, format='jpg', dpi=300)
buff.seek(0)
image = Image.open(buff)
# If this fails, there will be only one color (all black). If this
# is working, we should have all 256 shades of grey represented.
print("num colors: ", len(image.getcolors(256)))
assert len(image.getcolors(256)) >= 175 and len(image.getcolors(256)) <= 185
# The fully transparent part should be red, not white or black
# or anything else
print("corner pixel: ", image.getpixel((0, 0)))
assert image.getpixel((0, 0)) == (254, 0, 0)
开发者ID:4over7,项目名称:matplotlib,代码行数:24,代码来源:test_image.py
示例13: saveFig
def saveFig(w,h,data,output,cmapData=None, minData=None, maxData=None):
# --- Save image
fig = plt.figure(figsize=((w/100)+1, (h/100)+1), dpi=100)
cax = plt.figimage(data, vmin=minData, vmax=maxData, cmap=cmapData)
fig.savefig(output)#, bbox_inches=extent)
plt.close()
# Load and resave image
im = Image.open(output)
(widthN, heightN) = im.size
logger.info("Detected size: ",widthN,heightN, "targeted", w, h)
im2 = im.crop(((widthN-w),
(heightN-h),
w,h))
im.close()
im2.save(output)
开发者ID:beltegeuse,项目名称:mitsuba-prodTools,代码行数:17,代码来源:paper_figures.py
示例14: loadIm
def loadIm(self):
logger.debug("Complex load")
fig = plt.figure(figsize=((self.width/100.0), (self.height/100.0)), dpi=100)
data = convertImage(self.pixelsHDR, self.height,
self.width, self.inverse)
if(self.inverse):
pRefLum = [0.0 if lum(p)==0 else 1.0/lum(p) for p in self.pixelsHDR]
else:
pRefLum = [lum(p) for p in self.pixelsHDR]
pRefLum.sort()
maxData = pRefLum[-1]
minData = pRefLum[0]
logger.info("Find the min/max: ",str(minData),str(maxData))
if(self.pMax != -1):
maxData = pRefLum[int(len(pRefLum)*self.pMax)]
if(self.pMin != -1):
minData = pRefLum[int(len(pRefLum)*self.pMin)]
if self.minV != -10000.005454:
minData = self.minV
if self.maxV != 10000.005454:
maxData = self.maxV
logger.info("Used min/max: ",str(minData),str(maxData))
# --- Save the figure
cax = plt.figimage(data, vmin=minData, vmax=maxData, cmap=self.cmap)
fig.savefig(wk + os.path.sep + self.output)#, bbox_inches=extent)
self.im = Image.open(wk + os.path.sep + self.output)
(widthN, heightN) = self.im.size
self.im = self.im.crop(((widthN-self.width),
(heightN-self.height),
self.width,
self.height))
开发者ID:beltegeuse,项目名称:mitsuba-prodTools,代码行数:40,代码来源:paper_figures.py
示例15: make_png
def make_png(infile, outdir):
"""
"""
# Get DN
sarmp = SARMapper(infile)
sarim = SARImage(sarmp)
orig_spacing = sarim.get_original_spacing()
# n = np.ceil(sarim.get_info('number_of_samples')/600.)
# spacing = orig_spacing[1]*n
# spacing = orig_spacing[1]*10
im = abs(sarim.get_values('digital_number', step=[10, 10]))
final_spacing = orig_spacing*[10, 10]
sar_size = sarim.get_full_extent()[2:4]
extent = [sar_size[0]/2, sar_size[1]/2, sar_size[0]/2+1, sar_size[1]/2+1]
lon = sarim.get_values('lon', extent=extent)
lat = sarim.get_values('lat', extent=extent)
inc = sarim.get_values('incidence', extent=extent)
heading = sarim.get_info('platform_heading')
north = 90+heading # north dir in image
im_num = sarim.get_info('image_number')
dist = (np.array(im.shape)-1)*final_spacing/1000.
if sarim.get_info('pass') == 'Descending':
im = im[::-1, ::-1]
north = north+180
# ind = im.nonzero()
# ind = np.where(im > 50)
# im2 = im[ind]
# vmin = im2.min()
# vmax = im2.max()
imsh = im.shape
im2 = im[imsh[0]*0.1:imsh[0]*0.9, imsh[1]*0.1:imsh[1]*0.9]
vmin = im2.min()
vmax = im2.max()
# Make figure
dpi = 100
imsize = np.array(im.shape[::-1])
margin = np.array(((900-imsize[0])/2, 60))
figsize = np.array((900, imsize[1]+2*margin[1]))
imsizeN = imsize.astype('float')/figsize
marginN = margin.astype('float')/figsize
#print imsize, margin, figsize
fig = plt.figure(figsize=figsize.astype('float')/dpi, dpi=dpi)
# imax = fig.gca()
# imax.set_position([marginN[0], marginN[1], imsizeN[0], imsizeN[1]])
imax = fig.add_axes([marginN[0], marginN[1], imsizeN[0], imsizeN[1]])
imax.set_xlim(0, dist[1])
imax.set_ylim(0, dist[0])
plt.imshow(im, origin='lower', interpolation='nearest', vmin=vmin,
vmax=vmax, cmap=cm.get_cmap('Greys_r'),
extent=[0, dist[1], 0, dist[0]], aspect='auto')
imax.set_xlabel('range distance [km]')
imax.set_ylabel('azimuth distance [km]')
tit = '#%03i / lon=%.2f / lat=%.2f / inc=%.2f' % (im_num, lon, lat, inc)
imax.set_title(tit)
#imax.set_frame_on(False)
#imax.set_axis_off()
# Add colorbar
cbax = fig.add_axes([1-0.75*marginN[0], .25, 20./figsize[0], .50])
plt.colorbar(label='digital number', cax=cbax, format='%.1e')
meanstr = r'$\mu$=%.2f' % im2.mean()
cbax.text(0.5, -0.025, meanstr, ha='center', va='top')
stdstr = r'$\sigma$=%.2f' % im2.std()
cbax.text(0.5, -0.1, stdstr, ha='center', va='top')
minstr = 'min=%.2f' % im2.min()
cbax.text(0.5, 1.025, minstr, ha='center', va='bottom')
maxstr = 'max=%.2f' % im2.max()
cbax.text(0.5, 1.1, maxstr, ha='center', va='bottom')
# Add north
cpsizeN = (margin[0]-margin[1])/figsize.astype('float')
cpax = fig.add_axes([0., 0.5-cpsizeN[1]/2, cpsizeN[0], cpsizeN[1]])
plt.arrow(.5, .5, .5*np.cos(north*np.pi/180),
.5*np.sin(north*np.pi/180), facecolor='black',
width=0.01, length_includes_head=True,
head_width=0.1, head_length=0.1)
plt.annotate('North', (.5, .5), ha='center', va='top')
cpax.set_axis_off()
# Add Logos
python_logo = '/local/home/gilles/Documents/logo/python-powered-w-70x28.png'
#python_logo = '/home/cercache/users/gguitton/Documents/logo/python-powered-w-70x28.png'
logo = imread(python_logo)
plt.figimage(logo, 5, figsize[1]-logo.shape[0]-5)
odl_logo = '/local/home/gilles/Documents/logo/oceandatalab-85x32.png'
#odl_logo = '/home/cercache/users/gguitton/Documents/logo/oceandatalab-85x32.png'
logo = imread(odl_logo)
plt.figimage(logo, 5, 5)
# Save as PNG
infileid = os.path.basename(os.path.dirname(os.path.dirname(infile)))
outdir2 = os.path.join(outdir, infileid)
if os.path.exists(outdir2) == False:
os.makedirs(outdir2)
outfile = os.path.join(outdir2, os.path.basename(infile).replace('.tiff','-digital_number.png'))
plt.savefig(outfile, dpi=dpi)#, bbox_inches='tight')
plt.close()
cmd = 'convert '+outfile+' -colors 256 '+outfile
os.system(cmd)
开发者ID:lelou6666,项目名称:PySOL,代码行数:95,代码来源:sar_dn_png.py
示例16:
"""
This illustrates placing images directly in the figure, with no axes.
"""
import numpy as np
import matplotlib
import matplotlib.cm as cm
import matplotlib.pyplot as plt
fig = plt.figure()
Z = np.arange(10000.0)
Z.shape = 100, 100
Z[:, 50:] = 1.
im1 = plt.figimage(Z, xo=50, yo=0, origin='lower')
im2 = plt.figimage(Z, xo=100, yo=100, alpha=.8, origin='lower')
plt.show()
开发者ID:4over7,项目名称:matplotlib,代码行数:19,代码来源:figimage_demo.py
示例17: return
p = reader.PelFile(location+"%04i.pel"%run)
image = np.sum(p.make3d(),axis=2)
return (p.header._asdict(),image)
if __name__=="__main__":
plt.figure(figsize=(4,4))
g = gaingen()
gain = g.next()
old = -1000
d={gain:{}}
x = np.arange(512)
for i in range(1,75):
(h,im) = extract(i)
plt.clf()
plt.figimage(im,vmin=0,vmax=200,cmap="spectral")
plt.savefig(location+"%04i.png"%i,dpi=128)
plt.clf()
plt.fill_between(x,np.sum(im,axis=0))
plt.savefig(location+"x%04i.png"%i,dpi=128)
plt.clf()
plt.fill_between(x,np.sum(im,axis=1))
plt.savefig(location+"y%04i.png"%i,dpi=128)
if h[gain] < old: #we've moved on to the next gain
print (gain,h[gain],old)
gain = g.next()
if not d.has_key(gain):
d[gain] = {}
d[gain][h[gain]] = i
old = h[gain]
with open(location+"gains.html","w") as outfile:
开发者ID:rprospero,项目名称:PAPA-Control,代码行数:31,代码来源:tuneviewer.py
示例18: range
return np.concatenate((np.arange(L), np.ones(2*L+1, dtype=np.int64)*L,
np.arange(L-1,-L,-1), np.ones(2*L+1, dtype=np.int64)*-L, np.arange(1-L,0)))
count = 1
arr = np.ones((layers*2-1,layers*2-1), dtype=np.uint32)
for layer in range(1, layers):
# Generate the Y indices for the layer and offset based on the center coordinates
sequenceY = getsequence(layer) + layers - 1
# Offset X indices from the generated Y
sequenceX = np.roll(sequenceY, -2*layer)
# Assign incremental values to the indices in order
for x, y in zip(sequenceX, sequenceY):
count += 1
arr[x,y] = count
return arr
if __name__ == '__main__':
# Testing
import matplotlib.pyplot as plt
layers = 100
a = spiral(layers)
for x in range(layers*2-1):
for y in range(layers*2-1):
a[x,y] = isprime(a[x,y])
plt.figimage(a*255)
plt.show()
开发者ID:salberico,项目名称:pyprimes,代码行数:30,代码来源:pyprimes.py
示例19:
ax = plt.subplot(2,2,4)
ax.imshow(small_im, interpolation = 'nearest')
plt.subplots_adjust(left = 0.24, wspace = 0.2, hspace = 0.1, \
bottom = 0.05, top = 0.86)
#Label the rows and columns of the table
fig.text(0.03, 0.645, 'Big Image\nScaled Down', ha = 'left')
fig.text(0.03, 0.225, 'Small Image\nBlown Up', ha = 'left')
fig.text(0.383, 0.90, "Interpolation = 'none'", ha = 'center')
fig.text(0.75, 0.90, "Interpolation = 'nearest'", ha = 'center')
#If you were going to run this example on your local machine, you
#would save the figure as a PNG, save the same figure as a PDF, and
#then compare them. The following code would suffice.
txt = fig.text(0.452, 0.95, 'Saved as a PNG', fontsize = 18)
# plt.savefig('None_vs_nearest-png.png')
# txt.set_text('Saved as a PDF')
# plt.savefig('None_vs_nearest-pdf.pdf')
#Here, however, we need to display the PDF on a webpage, which means
#the PDF must be converted into an image. For the purposes of this
#example, the 'Nearest_vs_none-pdf.pdf' has been pre-converted into
#'Nearest_vs_none-pdf.png' at 80 dpi. We simply need to load and
#display it.
pdf_im_path = cbook.get_sample_data('None_vs_nearest-pdf.png')
pdf_im = plt.imread(pdf_im_path)
fig2 = plt.figure(figsize = [8.0, 7.5])
plt.figimage(pdf_im)
plt.show()
开发者ID:AudiencePropensities,项目名称:matplotlib,代码行数:30,代码来源:interpolation_none_vs_nearest.py
示例20: make_png
def make_png(infile, outdir, vmax=None):
"""
"""
# Get Sea Surface Roughness
sarim = sarimage(infile)
spacing_ra = np.ceil(sarim.get_info('number_of_samples')/600.)
spacing_ra_m = sarim.pixels2meters(spacing_ra)[1]
spacing = np.round(sarim.meters2pixels(spacing_ra_m))
spacing_m = sarim.pixels2meters(spacing)
ssr = sarim.get_data('roughness', spacing=spacing)
lon = sarim.get_data('lon', midrange=True, midazimuth=True)[0, 0]
lat = sarim.get_data('lat', midrange=True, midazimuth=True)[0, 0]
inc = sarim.get_data('incidence', midrange=True, midazimuth=True)[0, 0]
heading = sarim.get_info('platform_heading')
north = 90 + heading # north dir in image
im_num = sarim.get_info('image_number')
dist = (np.array(ssr.shape)-1)*spacing_m/1000.
# vmin = ssr[ind].min()
# vmax = ssr[ind].max()
vmin = scoreatpercentile(ssr[25:-25, 25:-25], 0.1)
if vmax is None:
vmax = scoreatpercentile(ssr[25:-25, 25:-25], 99.9)
if sarim.get_info('pass') == 'Descending':
ssr = ssr[::-1, ::-1]
north = north+180
# Make figure
dpi = 100
imsize = np.array(ssr.shape[::-1])
margin = np.array(((900-imsize[0])/2, 60))
figsize = np.array((900, imsize[1]+2*margin[1]))
imsizeN = imsize.astype('float')/figsize
marginN = margin.astype('float')/figsize
#print imsize, margin, figsize
fig = plt.figure(figsize=figsize.astype('float')/dpi, dpi=dpi)
# imax = fig.gca()
# imax.set_position([marginN[0], marginN[1], imsizeN[0], imsizeN[1]])
imax = fig.add_axes([marginN[0], marginN[1], imsizeN[0], imsizeN[1]])
imax.set_xlim(0, dist[1])
imax.set_ylim(0, dist[0])
plt.imshow(ssr, origin='lower', interpolation='nearest', vmin=vmin,
vmax=vmax, cmap=cm.get_cmap('Greys_r'),
extent=[0, dist[1], 0, dist[0]], aspect='auto')
imax.set_xlabel('range distance [km]')
imax.set_ylabel('azimuth distance [km]')
tit = '#%03i / lon=%.2f / lat=%.2f / inc=%.2f' % (im_num, lon, lat, inc)
imax.set_title(tit)
#imax.set_frame_on(False)
#imax.set_axis_off()
# Add colorbar
cbax = fig.add_axes([1-0.75*marginN[0], .25, 20./figsize[0], .50])
plt.colorbar(label='sea surface roughness', cax=cbax, format='%.1e')
meanstr = r'$\mu$=%.1f' % ssr.mean()
cbax.text(0.5, -0.025, meanstr, ha='center', va='top')
# Add north
cpsizeN = (margin[0]-margin[1])/figsize.astype('float')
cpax = fig.add_axes([0., 0.5-cpsizeN[1]/2, cpsizeN[0], cpsizeN[1]])
plt.arrow(.5, .5, .5*np.cos(north*np.pi/180),
.5*np.sin(north*np.pi/180), facecolor='black',
width=0.01, length_includes_head=True,
head_width=0.1, head_length=0.1)
plt.annotate('North', (.5, .5), ha='center', va='top')
cpax.set_axis_off()
# Add Logos
python_logo = os.path.join(LOGO_PATH, 'python-powered-w-70x28.png')
logo = imread(python_logo)
plt.figimage(logo, 5, figsize[1]-logo.shape[0]-5)
odl_logo = os.path.join(LOGO_PATH, 'oceandatalab-85x32.png')
logo = imread(odl_logo)
plt.figimage(logo, 5, 5)
# Save as PNG
outbase = os.path.splitext(os.path.basename(infile))[0]+'-roughness.png'
outfile = os.path.join(outdir, outbase)
plt.savefig(outfile, dpi=dpi)#, bbox_inches='tight')
plt.close()
cmd = 'convert '+outfile+' -colors 256 '+outfile
os.system(cmd)
开发者ID:lelou6666,项目名称:PySOL,代码行数:76,代码来源:sar_roughness_png.py
注:本文中的matplotlib.pyplot.figimage函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论