本文整理汇总了Python中matplotlib.pyplot.axvspan函数的典型用法代码示例。如果您正苦于以下问题:Python axvspan函数的具体用法?Python axvspan怎么用?Python axvspan使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了axvspan函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: ScatterPlot
def ScatterPlot(TransitionForces,ListOfSepAndFits,ExpectedContourLength,
OutDir):
"""
Makes a scatter plot of the contour length and transition forces
Args:
TransitionForces: array, each element the transition region for curve i
ListOfSepAndFits: array, each element the output of GetWLCFits
ExpectedContourLength: how long we expect the construct to be
OutDir: base directory, for saving stuff
"""
L0Arr = []
TxArr = []
for (SepNear,FitObj),TransitionFoces in zip(ListOfSepAndFits,
TransitionForces):
MedianTx = np.median(TransitionFoces)
L0,Lp,_,_ = FitObj.Params()
L0Arr.append(L0)
TxArr.append(MedianTx)
# go ahead an throw out ridiculous data from the WLC, where transition
# normalize the contour length to L0
L0Arr = np.array(L0Arr)/ExpectedContourLength
# convert to useful units
L0Plot = np.array(L0Arr)
TxPlot = np.array(TxArr) * 1e12
fig = pPlotUtil.figure(figsize=(12,12))
plt.subplot(2,2,1)
plt.plot(L0Plot,TxPlot,'go',label="Data")
alpha = 0.3
ColorForce = 'r'
ColorLength = 'b'
plt.axhspan(62,68,color=ColorForce,label=r"$F_{\rm tx}$ $\pm$ 5%",
alpha=alpha)
L0BoxMin = 0.9
L0BoxMax = 1.1
plt.axvspan(L0BoxMin,L0BoxMax,color=ColorLength,
label=r"L$_{\rm 0}$ $\pm$ 10%",alpha=alpha)
fudge = 1.05
# make the plot boundaries OK
MaxX = max(L0BoxMax,max(L0Plot))*fudge
MaxY = 90
plt.xlim([0,MaxX])
plt.ylim([0,MaxY])
pPlotUtil.lazyLabel("",r"F$_{\rm overstretch}$ (pN)",
"DNA Characterization Histograms ",frameon=True)
## now make 1-D histograms of everything
# subplot of histogram of transition force
HistOpts = dict(alpha=alpha,linewidth=0)
plt.subplot(2,2,2)
TransitionForceBins = np.linspace(0,MaxY)
plt.hist(TxPlot,bins=TransitionForceBins,orientation="horizontal",
color=ColorForce,**HistOpts)
pPlotUtil.lazyLabel("Count","","")
plt.ylim([0,MaxY])
plt.subplot(2,2,3)
ContourBins = np.linspace(0,MaxX)
plt.hist(L0Plot,bins=ContourBins,color=ColorLength,**HistOpts)
pPlotUtil.lazyLabel(r"$\frac{L_{\rm WLC}}{L_0}$","Count","")
plt.xlim([0,MaxX])
pPlotUtil.savefig(fig,"{:s}Out/ScatterL0vsFTx.png".format(OutDir))
开发者ID:prheenan,项目名称:Research,代码行数:60,代码来源:MainCorrection.py
示例2: output_spectrum
def output_spectrum(wl, vec, interval=None):
order = np.argsort(wl)
p = plt.plot(wl[order], vec[order], color='red')
ax = plt.gca()
ax.set_xlabel('Wavelength')
ax.set_ylabel('Magnitude')
ax.grid(True)
ax.spines['bottom'].set_color('white')
ax.spines['top'].set_color('white')
ax.spines['left'].set_color('white')
ax.spines['right'].set_color('white')
ax.xaxis.label.set_color('white')
ax.yaxis.label.set_color('white')
ax.tick_params(axis='x', colors='white')
ax.tick_params(axis='y', colors='white')
if interval is not None:
plt.axvspan(interval[0], interval[1], facecolor='white', alpha=0.25)
plt.savefig('spectrum_out.png',transparent=True)
sys.stdout.write('%i'%len(wl))
for w in wl:
sys.stdout.write(' %f' % w)
for v in vec:
sys.stdout.write(' %f' % v)
sys.stdout.write('\n')
os.system('convert -resize 100x100 spectrum_out.png thumb_out.png')
开发者ID:davidraythompson,项目名称:hsifind,代码行数:25,代码来源:hsifind.py
示例3: plot_trade_windows
def plot_trade_windows(self, dt_s, dt_e, f_width):
ts_signal = self.getBollingerValue(dt_s, dt_e)
dt_previous = ''
s_color_previous = ''
for i in range(len(ts_signal)):
# get values for the current date
dt = ts_signal.index[i]
s = ts_signal[dt]
s_color = 'r' if s >= f_width else 'g' if s <= -f_width else ''
# update the figure: on change and in last day
if s_color != s_color_previous \
or (i == len(ts_signal)-1):
# if we are ending a trade opportunity window
if s_color_previous != '':
# shade the trade opportunity window
plt.axvspan(dt_previous, dt, color=s_color_previous, alpha=0.25)
# draw the end line
plt.axvline(x=dt, color=s_color_previous, alpha=0.5)
# if we are starting a new trade opportunity window
if s_color != '':
# draw the start line
plt.axvline(x=dt, color=s_color, alpha=0.5)
# save the last event
s_color_previous = s_color
dt_previous = dt
开发者ID:adsar,项目名称:repo01,代码行数:31,代码来源:TechnicalAnalysis.py
示例4: _periodogram_plot
def _periodogram_plot(title, column, data, trend, peaks):
"""display periodogram results using matplotlib"""
periods, power = periodogram(data)
plt.figure(1)
plt.subplot(311)
plt.title(title)
plt.plot(data, label=column)
if trend is not None:
plt.plot(trend, linewidth=3, label="broad trend")
plt.legend()
plt.subplot(312)
plt.title("detrended")
plt.plot(data - trend)
else:
plt.legend()
plt.subplot(312)
plt.title("(no detrending specified)")
plt.subplot(313)
plt.title("periodogram")
plt.stem(periods, power)
for peak in peaks:
period, score, pmin, pmax = peak
plt.axvline(period, linestyle='dashed', linewidth=2)
plt.axvspan(pmin, pmax, alpha=0.2, color='b')
plt.annotate("{}".format(period), (period, score * 0.8))
plt.annotate("{}...{}".format(pmin, pmax), (pmin, score * 0.5))
plt.tight_layout()
plt.show()
开发者ID:Lampadina,项目名称:seasonal,代码行数:29,代码来源:application.py
示例5: plot_frag_arrays
def plot_frag_arrays(conditions, transcript_arrays, outputdir, transcript_coords, transcripts_dict, paired):
#Plot sererately per transcript
for transcript in sorted(transcripts_dict): #Key is transcript, values are dict of positions and then fragments
a = 1
for frag_pos in sorted(transcripts_dict[transcript]):
c = 1
for sample in sorted(transcript_arrays[transcript]):
length_of_transcript = len(transcript_arrays[transcript][sample])
base_label = np.array(xrange(length_of_transcript))
c += 1 #Count number of samples for legend size
plt.plot(base_label, transcript_arrays[transcript][sample], label="{}".format(sample)) #Same as transcripts
start_pos = int(frag_pos[1]) - int(transcript_coords[transcript][1])
end_pos = int(frag_pos[2]) - int(transcript_coords[transcript][1])
plt.axvspan(start_pos, end_pos, color='red', alpha=0.2)
if paired:
start_pos = int(frag_pos[3]) - int(transcript_coords[transcript][1])
end_pos = int(frag_pos[4]) - int(transcript_coords[transcript][1])
plt.axvspan(start_pos, end_pos, color='red', alpha=0.2)
#Plot labels
if c <= 4: #Control size of legend
plt.legend(bbox_to_anchor=(1.05, 1), loc=1, borderaxespad=0., prop={'size':5})
else:
plt.legend(bbox_to_anchor=(1.05, 1), loc=1, borderaxespad=0., prop={'size':7})
plt.ylabel('Read Count')
plt.savefig(outputdir+'/plots/{}_{}.png'.format(transcript, a))
plt.close()
a += 1
开发者ID:pdl30,项目名称:pynoncode,代码行数:29,代码来源:plot.py
示例6: draw_shannon_distrib
def draw_shannon_distrib(neut_h, obs_h, outfile=None, filetype=None,
size=(15, 15)):
'''
draws distribution of Shannon values for random neutral
:argument neut_h: list of Shannon entropies corresponding to simulation under neutral model
:argument obs_h: Shannon entropy of observed distribution of abundance
:argument None outfile: path were image will be saved, if none, plot
will be shown using matplotlib GUI
:argument None filetype: pdf or png
:argument (15,15) size: size in inches of the drawing
'''
neut_h = np.array ([float (x) for x in neut_h])
obs_h = float (obs_h)
pyplot.hist(neut_h, 40, color='green', histtype='bar', fill=True)
pyplot.axvline(float(obs_h), 0, color='r', linestyle='dashed')
pyplot.axvspan (float(obs_h) - neut_h.std(), float(obs_h) + neut_h.std(),
facecolor='orange', alpha=0.3)
pyplot.xlabel('Shannon entropy (H)')
pyplot.ylabel('Number of observations over %s simulations' % (len (neut_h)))
pyplot.title("Histogram of entropies from %s simulations compared to \nobserved entropy (red), deviation computed from simulation" % (len (neut_h)))
fig = pyplot.gcf()
dpi = fig.get_dpi()
fig.set_size_inches (size)
if outfile:
fig.savefig(outfile, dpi=dpi+30, filetype=filetype)
pyplot.close()
else:
pyplot.show()
开发者ID:fransua,项目名称:ecolopy,代码行数:30,代码来源:utils.py
示例7: plot
def plot(rr_file, tag_file):
"""
Paint results of acquisition
@param rr_file: Path to file that contains rr values
@param tag_file: Path to file that contains tag values
"""
import matplotlib.pyplot as plt
plt.switch_backend("WXAgg")
colors = ['orange', 'green', 'lightblue', 'grey', 'brown', 'red', 'yellow', 'black', 'magenta', 'purple']
shuffle(colors)
rr_values = parse_rr_file(rr_file)
hr_values = map(lambda rr: 60 / (float(rr) / 1000), rr_values)
tag_values = parse_tag_file(tag_file)
x = [x / 1000 for x in cumsum(rr_values)]
y = hr_values
plt.plot(x, y)
for tag in tag_values:
c = colors.pop()
plt.axvspan(tag[0], tag[0] + tag[2], facecolor=c, alpha=.8, label=tag[1])
plt.ylabel('Heart rate (bpm)')
plt.xlabel('Time (s)')
plt.title('Acquisition results')
plt.ylim(ymin=min(min(y) - 10, 40), ymax=max(max(y) + 10, 150))
plt.legend()
plt.show()
开发者ID:Tavpritesh,项目名称:gVarvi,代码行数:29,代码来源:utils.py
示例8: fig_nucleotide_gene
def fig_nucleotide_gene(self):
print '# Plotting gene in nucleotide resolution.'
fig = plt.figure(figsize=(15, 10), dpi=80, facecolor='w', edgecolor='k')
if len(self.experiments) > 1:
print 'More than one experiment. Preprocess concat file to get only one experiment:' \
"cat your.concat | awk '$7 == \"experiment\" {print $0}' > experiment.concat"
exit()
else:
e = self.experiments[0]
fig_no, plot_no = 0, 0
for i_gene_id in self.genes_id_list:
gene_name = self.id_to_names[i_gene_id]
plot_no += 1
ax = fig.add_subplot(5, 1, plot_no)
fig.tight_layout()
plt.title(e)
ax.set_ylabel("no. of reads")
ax.set_xlabel('ID: '+i_gene_id+', Name: '+gene_name)
try:
self.data[gene_name][e] = self.data[gene_name][e][self.three_prime_flank:-self.three_prime_flank:] # plot only gene
bar = ax.bar(self.data[gene_name][e]['position'], self.data[gene_name][e]['hits'], width=0.5)
for i in self.genes[gene_name]['exons']:
plt.axvspan(i[0], i[1], alpha=0.2, color='orange')
plt.xticks(list(self.data[gene_name][e]['position']), list(self.data[gene_name][e]['nucleotides']), fontsize=8)
except KeyError:
plt.text(0.5,0.5,"NO READS")
if plot_no == 5:
fig_no += 1
plt.savefig(self.prefix+'nuc_gene'+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_'+'_fig_'+str(fig_no)+'.png')
plt.clf()
plot_no = 0
if plot_no > 0:
plt.savefig(self.prefix+'nuc_gene'+'_l'+str(self.lookahead)+'_t'+str(self.hits_threshold)+'_'+'_fig_'+str(fig_no+1)+'.png')
plt.clf()
return True
开发者ID:tturowski,项目名称:gwide,代码行数:35,代码来源:otherPol3FromConcat.py
示例9: day_e_plot
def day_e_plot(results, plot_date, save):
import matplotlib.pyplot as plt
fig = plt.figure()
results['USAGE'].ix[plot_date].plot(linestyle='--', linewidth=5, color=darkgray)
results['grid_demand_peak'].ix[plot_date].plot(marker='', linestyle='-', linewidth=2, color=redorange)
results['grid_demand_offpeak'].ix[plot_date].plot(marker='', linestyle='-', linewidth=2, color=purple)
results['grid_store'].ix[plot_date].plot(marker='', linestyle='-', linewidth=2, color=mint)
results['storage_available'].ix[plot_date].plot(marker='', linestyle='-', linewidth=2, color=apple)
results['storage_send'].ix[plot_date].plot(marker='', linestyle='-', linewidth=2, color=navy, grid='off')
plt.axvspan(plot_date+' 10:00:00',plot_date+' 19:00:00', facecolor=lightgray, alpha=0.5)
plt.legend(['Demand',
'Peak Grid for Demand',
'Off-Peak Grid for Demand',
'Grid to Battery',
'Storage Available',
'Storage to Demand'],
labelspacing=.2,
prop={'size':10})
plt.title('Demand-Side Storage Model, Hourly Energy State \n %s' %plot_date)
plt.ylabel('Hourly Electricity State (kWh)', fontsize=14)
if save == True:
filename = 'Daily_Energy_State_'+plot_date+'.png'
plt.savefig(filename)
plt.show()
开发者ID:rinckd,项目名称:demandside_storage,代码行数:35,代码来源:storage_analysis.py
示例10: plot_timeseries_comparison
def plot_timeseries_comparison(masked, inf):
fig = plt.figure(figsize=(16,4))
times = np.arange(len(masked))*inf.dt
warnings.warn("Only plotting every 10th point of time series.")
plt.plot(times[::10], masked.data[::10], 'k-', drawstyle='steps-post',
label='Time series', zorder=1)
inverted = invert_mask(masked)
slices = np.ma.flatnotmasked_contiguous(inverted)
if slices:
for ii, badslice in enumerate(slices):
if ii == 0:
label='Radar indentified'
else:
label="_nolabel"
tstart = inf.dt*(badslice.start)
tstop = inf.dt*(badslice.stop-1)
plt.axvspan(tstart, tstop, alpha=0.5,
fc='r', ec='none', zorder=0, label=label)
plt.figtext(0.02, 0.02,
"Frac. of data masked: %.2f %%" % ((len(masked)-masked.count())/float(len(masked))*100),
size='x-small')
plt.figtext(0.02, 0.05, inf.basenm, size='x-small')
plt.xlabel("Time (s)")
plt.ylabel("Intensity")
plt.xlim(0, times.max()+inf.dt)
plt.subplots_adjust(bottom=0.15, left=0.075, right=0.98)
开发者ID:chitrangpatel,项目名称:radar-removal,代码行数:31,代码来源:find_radar_mod.py
示例11: colorize_phases
def colorize_phases(STOP_TIME,durrationOfStep,ev_foot_const):
for phase in range(int(1+STOP_TIME/durrationOfStep)):
t0_phase = phase*durrationOfStep
t1_phase = (phase+ev_foot_const)*durrationOfStep
t2_phase = (phase+1)*durrationOfStep
plt.axvspan(t0_phase, t1_phase, color='g', alpha=0.3, lw=2) #adaptative part (foot goal can change)
plt.axvspan(t1_phase, t2_phase, color='r', alpha=0.3, lw=2) #non adaptative part
开发者ID:thomasfla,项目名称:minimal-pg,代码行数:7,代码来源:macro_plot.py
示例12: snap1
def snap1(vector):
fig = plt.figure()
plt.plot(vector)
plt.axvspan(75, 125, facecolor='b', alpha=0.3)
plt.xlabel('$x$')
plt.ylabel('$Ez$')
plt.show()
开发者ID:kewitz,项目名称:YeeCUDA,代码行数:7,代码来源:bench.py
示例13: plotRegion
def plotRegion(start,end,area,bpScores,centers):
if len(centers) < 6 or len(area) < 2000:
return
plt.clf()
left=len(area)/2-1000
right=len(area)/2+1000
smooth=[]
for i in range(len(area)):
smooth.append(sum(area[max(0,i-10):i+10])/20.)
print smooth
print centers
for center in centers:
#plt.axvline(center[0]-start-74, color="gray")
#plt.axvline(center[0]-start+74, color="gray")
plt.axvspan(center[0]-73, center[0]+73, color='gray', alpha=0.3)
plt.axvline(center[0], color="black")
plt.plot(smooth)
plt.plot(bpScores,"red")
plt.title("Smoothed Read Start Count (chr21:"+str(start+left)+"-"+str(start+right)+")")
plt.xlabel("Relative BP position")
plt.ylabel("Count or Score")
plt.xlim([left,right])
plt.ylim([0,10])
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(16,2)
plt.savefig(sys.argv[3]+"_"+str(start)+"-"+str(end)+'.plot.pdf', dpi=100)
开发者ID:AllanSSX,项目名称:sanefalcon,代码行数:29,代码来源:nuclDetector.py
示例14: plot_y_dist
def plot_y_dist(y_train, y_test):
"""
Plotting the counts of inhibition scores
:param y_train: Target values used for training
:param y_test: Target values used for testing
:return: None
"""
y_train = pd.read_csv('https://s3-us-west-2.amazonaws.com/pphilip-usp-inhibition/'
'data/y_train_postprocessing.csv')
y_test = pd.read_csv('https://s3-us-west-2.amazonaws.com/pphilip-usp-inhibition/'
'data/y_test_postprocessing.csv')
y_train.columns = ['ID', 'Activity_Score']
df_train = y_train.groupby('Activity_Score')['ID'].nunique().to_frame()
df_train['score'] = df_train.index
df_train.columns = ['score_counts', 'score']
df_train = df_train.reset_index(drop=True)
y_test.columns = ['ID', 'Activity_Score']
df_test = y_test.groupby('Activity_Score')['ID'].nunique().to_frame()
df_test['score'] = df_test.index
df_test.columns = ['score_counts', 'score']
df_test = df_test.reset_index(drop=True)
plt.plot(df_train['score'], df_train['score_counts'])
plt.plot(df_test['score'], df_test['score_counts'])
plt.title('Sample counts of unique inhibition scores')
plt.xlabel('Inhibition score')
plt.ylabel('Number of molecule samples')
plt.axvspan(0, 40, facecolor='orange', alpha=0.2)
plt.axvspan(40, 100, facecolor='violet', alpha=0.2)
plt.savefig('./plots/score_counts.png', bbox_inches='tight')
开发者ID:pearlphilip,项目名称:USP-inhibition,代码行数:32,代码来源:plots.py
示例15: showdata
def showdata(f, info):
print(repr(info))
offA, offB = info
offMin, offMax = min(info), max(info)
offMax += 11*EODSamples*BytesPerSample
offMin -= 10*EODSamples*BytesPerSample
offMin = max(0, offMin)
rlen = offMax - offMin
posA = (offA-offMin) / BytesPerSample
posB = (offB-offMin) / BytesPerSample
f.seek(offMin)
data = f.read(rlen)
arr = np.frombuffer(data, dtype=np.float32)
plt.figure(1,figsize=(24,14))
plt.clf()
ax = None
for ch in xrange(NumChannels):
charr = arr[ch::NumChannels]
if ch == 0:
ax = plt.subplot(NumChannels, 1, 1)
else:
plt.subplot(NumChannels, 1, ch+1, sharex=ax)
plt.plot(charr,'k')
plt.axvspan(posA, posA + EODSamples, fc='r', ec='r', alpha=.5)
plt.axvspan(posB, posB + EODSamples, fc='g', ec='g', alpha=.5)
plt.axis([0, len(charr), -10, 10])
plt.ylabel('ch%d'%ch)
plt.show()
开发者ID:neurobiofisica,项目名称:gymnotools,代码行数:33,代码来源:singlefishviewer.py
示例16: day_purchase
def day_purchase(results, plot_date, save):
import matplotlib.pyplot as plt
fig = plt.figure()
results['USAGE'].ix[plot_date].plot(linestyle='--', linewidth=3, color='gray')
#results['purchase_peak'].ix[plot_date].plot(marker='.', linestyle='', markersize=13, color='red')
#results['purchase_offpeak'].ix[plot_date].plot(marker='.', linestyle='', markersize=13, color='orange', grid='off')
results['purchase_peak'].ix[plot_date].plot(marker='', linestyle='-', linewidth=2, color='red')
results['purchase_offpeak'].ix[plot_date].plot(marker='', linestyle='-', linewidth=2, color='orange', grid='off')
plt.axvspan(plot_date+' 10:00:00',plot_date+' 19:00:00', facecolor=lightgray, alpha=0.5)
plt.legend(['Demand','Purchased During Peak Hours', 'Purchased During Off-Peak Hours'], labelspacing=.2, prop={'size':10})
plt.ylabel('Electricity (kWh)', fontsize=14)
plt.title('Demand-Side Storage Model, Hourly Electricity From Grid \n %s' %plot_date)
if save == True:
filename = 'Daily_Energy_Purchased_'+plot_date+'.png'
plt.savefig(filename)
plt.show()
开发者ID:rinckd,项目名称:demandside_storage,代码行数:27,代码来源:storage_analysis.py
示例17: _ref_single_cell_plot
def _ref_single_cell_plot(self):
seg = neo.PickleIO(self.cell_signal_path).read()[0]
signal = seg.analogsignals[0]
plt.figure()
v_line, = plt.plot(signal.times, signal)
for label, start, duration in zip(seg.epochs[0].labels,
seg.epochs[0].times,
seg.epochs[0].durations):
if label == 'subthreshold':
end = start + duration
plt.axvspan(start, end, facecolor=self.subthresh_colour,
alpha=0.05)
plt.axvline(start, linestyle=':', color='gray', linewidth=0.5)
plt.axvline(end, linestyle=':', color='gray', linewidth=0.5)
fig = plt.gcf()
fig.set_figheight(5)
fig.set_figwidth(5)
fig.suptitle('PyPe9 Simulation Output')
plt.xlim((seg.analogsignals[0].t_start, seg.analogsignals[0].t_stop))
plt.xlabel('Time (ms)')
plt.ylabel('Analog signals (mV)')
plt.title("Analog Signals", fontsize=12)
plt.legend(handles=[
v_line,
mp.Patch(facecolor='white', edgecolor='grey',
label='subVb regime', linewidth=0.5, linestyle=':'),
mp.Patch(facecolor=self.subthresh_colour, edgecolor='grey',
label='subthreshold regime', linewidth=0.5,
linestyle=':')])
plt.savefig(self.ref_single_cell_path, dpi=100.0)
开发者ID:CNS-OIST,项目名称:PyPe9,代码行数:30,代码来源:test_plot.py
示例18: main
def main():
tests = 100000
net_scores_1 = [trial(SCORES_1) for _ in range(tests)]
net_scores_2 = [trial(SCORES_2) for _ in range(tests)]
h1 = plt.hist(net_scores_1, 16, color='darkblue', alpha=0.4,
label=r'$scoring_1$')
h2 = plt.hist(net_scores_2, 16, color='red', alpha=0.7,
label=r'$scoring_2$')
actual_difference = 73.5 - 66.9
plt.axvline(actual_difference, lw=2, color='black',
label=r'$Actual\ score\ difference$')
plt.axvspan(significance_bound(h1, 0.05),
significance_bound(h1, 0.95),
color='skyblue',
alpha=0.3,
label=r'$2\sigma_1$')
plt.axvspan(significance_bound(h2, 0.05),
significance_bound(h2, 0.95),
color='salmon',
alpha=0.4,
label=r'$2\sigma_2$')
plt.legend()
plt.show()
开发者ID:noelevans,项目名称:sandpit,代码行数:25,代码来源:student_scores_comparison.py
示例19: PlotConcentrations
def PlotConcentrations(self, params, figure=None):
concentrations = params['concentrations']
if figure is None:
figure = plt.figure()
plt.xscale('log', figure=figure)
plt.ylabel('Compound KEGG ID', figure=figure)
plt.xlabel('Concentration [M]', figure=figure)
plt.yticks(range(self.Nc, 0, -1), self.cids,
fontproperties=FontProperties(size=8))
plt.plot(concentrations.T, range(self.Nc, 0, -1), '*b', figure=figure)
x_min = concentrations.min() / 10
x_max = concentrations.max() * 10
y_min = 0
y_max = self.Nc + 1
for c, cid in enumerate(self.cids):
plt.text(concentrations[0, c] * 1.1, self.Nc - c, cid, \
figure=figure, fontsize=6, rotation=0)
b_low, b_up = self.GetConcentrationBounds(cid)
plt.plot([b_low, b_up], [self.Nc - c, self.Nc - c], '-k', linewidth=0.4)
if self.c_range is not None:
plt.axvspan(self.c_range[0], self.c_range[1],
facecolor='r', alpha=0.3, figure=figure)
plt.axis([x_min, x_max, y_min, y_max], figure=figure)
return figure
开发者ID:eudoraolsen,项目名称:component-contribution,代码行数:28,代码来源:mdf_dual.py
示例20: renderFullSignal
def renderFullSignal(data, deltaT, labels, input_data, window_size, window_shift, ignore_list=[0], name="full.png"):
fig = plt.figure()
#Render the image huge
fig.set_size_inches(300,25)
plt.plot(data)
#Generate a set of unique colors for each label
colors = genColors(labels)
#for color in colors.keys():
# print color, colors[color]
#Flip through all the labels
#The length of each box drawn is the length of the sample
for index in range(len(labels)):
label = labels[index]
#Label 0 should be ignored, it is the "no other cluster" cluster
if label not in ignore_list:
color = colors[label]
#Draw a box. X coords are in data units, y coords are in the range 0-1
#X start of the box is the size of the sample offset times the index of the sample
xmin = index * window_shift
#X end of the box is the start of the box plus the sample length
xmax = xmin + window_size
plt.axvspan(xmin, xmax, ymin=0.25, ymax=0.75, alpha=0.4, ec="none", fc=colors[label])
fig.savefig(name)
plt.close()
开发者ID:ab3nd,项目名称:NeuronRobotInterface,代码行数:29,代码来源:mean-shift_test.py
注:本文中的matplotlib.pyplot.axvspan函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论