• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pyplot.axis函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中matplotlib.pyplot.axis函数的典型用法代码示例。如果您正苦于以下问题:Python axis函数的具体用法?Python axis怎么用?Python axis使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了axis函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_prop

 def test_prop(self):
     N = 800.0
     V = linspace(5.0,51.0,50)
     rho = 1.2255
     beta = 45.0
     J    = list()
     CT   = list()
     CP   = list()
     effy = list()
     for v in V:
         data = self.analyze_prop(beta,N,v,rho)
         J.append(data[2])
         CT.append(data[3])
         CP.append(data[4])
         effy.append(data[5])
     plt.figure(1)
     plt.grid(True)
     plt.hold(True)
     plt.plot(J,CT,'o-')
     plt.xlabel('J')
     plt.plot(J,CP,'ro-')
     plt.axis([0,2.5,0,0.15])
     plt.figure(2)
     plt.plot(J,effy,'gs-')
     plt.hold(True)
     plt.grid(True)
     plt.axis([0,2.5,0,1.0])
     plt.xlabel('advance ratio')
     plt.ylabel('efficiency')
     plt.show()
开发者ID:maximtyan,项目名称:actools,代码行数:30,代码来源:propeller.py


示例2: do_plot

def do_plot(mode, content, wide):
	global style
	style.apply(mode, content, wide)

	data = np.load("data/prr_AsAu_%s%s.npz"%(content, wide))

	AU, TAU = np.meshgrid(-data["Au_range_dB"], data["tau_range"])
	Zu = data["PRR_U"]
	Zs = data["PRR_S"]

	assert TAU.shape == AU.shape == Zu.shape, "The inputs TAU, AU, PRR_U must have the same shape for plotting!"

	plt.clf()

	if mode in ("sync",):
		# Plot the inverse power ratio, sync signal is stronger for positive ratios
		CSf = plt.contourf(TAU, AU, Zs, levels=(0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0), colors=("1.0", "0.75", "0.5", "0.25", "0.15", "0.0"), origin="lower")
		CS2 = plt.contour(CSf, colors = ("r",)*5+("w",), linewidths=(0.75,)*5+(1.0,), origin="lower", hold="on")
	else:
		CSf  = plt.contourf(TAU, AU, Zs, levels=(0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0), colors=("1.0", "0.75", "0.5", "0.25", "0.15", "0.0"), origin="lower")
		CS2f = plt.contour(CSf, levels=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0), colors=4*("r",)+("w",), linewidths=(0.75,)*4+(1.0,), origin="lower", hold="on")
		#CS2f = plt.contour(TAU, -AU, Zu, levels=(0.9, 1.0), colors=("0.0",), linewidths=(1.0,), origin="lower", hold="on")
		if content in ("unif",):
			CSu  = plt.contourf(TAU, AU, Zu, levels=(0.2, 1.0), hatches=("////",), colors=("0.75",), origin="lower")
			CS2  = plt.contour(CSu, levels=(0.2,), colors = ("r",), linewidths=(1.0,), origin="lower", hold="on")

	style.annotate(mode, content, wide)

	plt.axis([data["tau_range"][0], data["tau_range"][-1], -data["Au_range_dB"][-1], -data["Au_range_dB"][0]])

	plt.ylabel(r"Signal power ratio ($\mathrm{SIR}$)", labelpad=2)
	plt.xlabel(r"Time offset $\tau$ ($/T$)", labelpad=2)

	plt.savefig("pdf/prrc2_%s_%s%s_z.pdf"%(mode, content, wide))
开发者ID:cnodadiaz,项目名称:collision,代码行数:34,代码来源:plot_ber_contour_AsAu.py


示例3: showOverlapTable

def showOverlapTable(modes_x, modes_y, **kwargs):
    """Show overlap table using :func:`~matplotlib.pyplot.pcolor`.  *modes_x*
    and *modes_y* are sets of normal modes, and correspond to x and y axes of
    the plot.  Note that mode indices are incremented by 1.  List of modes
    is assumed to contain a set of contiguous modes from the same model.

    Default arguments for :func:`~matplotlib.pyplot.pcolor`:

      * ``cmap=plt.cm.jet``
      * ``norm=plt.normalize(0, 1)``"""

    import matplotlib.pyplot as plt

    overlap = abs(calcOverlap(modes_y, modes_x))
    if overlap.ndim == 0:
        overlap = np.array([[overlap]])
    elif overlap.ndim == 1:
        overlap = overlap.reshape((modes_y.numModes(), modes_x.numModes()))

    cmap = kwargs.pop('cmap', plt.cm.jet)
    norm = kwargs.pop('norm', plt.normalize(0, 1))
    show = (plt.pcolor(overlap, cmap=cmap, norm=norm, **kwargs),
            plt.colorbar())
    x_range = np.arange(1, modes_x.numModes() + 1)
    plt.xticks(x_range-0.5, x_range)
    plt.xlabel(str(modes_x))
    y_range = np.arange(1, modes_y.numModes() + 1)
    plt.yticks(y_range-0.5, y_range)
    plt.ylabel(str(modes_y))
    plt.axis([0, modes_x.numModes(), 0, modes_y.numModes()])
    if SETTINGS['auto_show']:
        showFigure()
    return show
开发者ID:karolamik13,项目名称:ProDy,代码行数:33,代码来源:plotting.py


示例4: zplane

    def zplane(self, title="", fontsize=18):
        """ Display filter in the complex plane

        Parameters
        ----------

        """
        rb = self.z
        ra = self.p

        t = np.arange(0, 2 * np.pi + 0.1, 0.1)
        plt.plot(np.cos(t), np.sin(t), "k")

        plt.plot(np.real(ra), np.imag(ra), "x", color="r")
        plt.plot(np.real(rb), np.imag(rb), "o", color="b")
        M1 = -10000
        M2 = -10000
        if len(ra) > 0:
            M1 = np.max([np.abs(np.real(ra)), np.abs(np.imag(ra))])
        if len(rb) > 0:
            M2 = np.max([np.abs(np.real(rb)), np.abs(np.imag(rb))])
        M = 1.6 * max(1.2, M1, M2)
        plt.axis([-M, M, -0.7 * M, 0.7 * M])
        plt.title(title, fontsize=fontsize)
        plt.show()
开发者ID:tattoxcm,项目名称:pylayers,代码行数:25,代码来源:DF.py


示例5: vis_detections

def vis_detections (im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor='red', linewidth=3.5)
        )
        ax.text(bbox[0], bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                 fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    plt.draw()
开发者ID:brentsony,项目名称:py-faster-rcnn,代码行数:31,代码来源:demo.py


示例6: influence_plot

def influence_plot(X, y_true, y_pred, **kwargs):
    """Produces an influence plot.

    Parameters
    ----------
    X : array
        Design matrix.
    y_true : array_like
        Observed labels, either 0 or 1.
    y_pred : array_like
        Predicted probabilities, floats on [0, 1].

    Notes
    -----
    .. plot:: pyplots/influence_plot.py
    """
    r = pearson_residuals(y_true, y_pred)
    leverages = pregibon_leverages(X, y_pred)

    delta_X2 = case_deltas(r, leverages)
    dbetas = pregibon_dbetas(r, leverages)

    plt.scatter(y_pred, delta_X2, s=dbetas * 800, **kwargs)

    __, __, y1, y2 = plt.axis()
    plt.axis((0, 1, y1, y2))

    plt.xlabel('Predicted Probability')
    plt.ylabel(r'$\Delta \chi^2$')

    plt.tight_layout()
开发者ID:grivescorbett,项目名称:verhulst,代码行数:31,代码来源:plots.py


示例7: render

    def render(self, interval=50, **kwargs):
        import matplotlib.cm as cm
        import matplotlib.animation as animation
        import matplotlib.pyplot as plt

        p = self.plot_layout
        _axs = []
        for i in range(self.image_list[0].shape[2]):
            plt.subplot(p[0], p[1], 1 + i)
            # Hide the x and y labels
            plt.axis('off')
            _ax = plt.imshow(self.image_list[0][:, :, i], cmap=cm.Greys_r,
                             **kwargs)
            _axs.append(_ax)

        def init():
            return _axs

        def animate(j):
            for k, _ax in enumerate(_axs):
                _ax.set_data(self.image_list[j][:, :, k])
            return _axs

        self._ani = animation.FuncAnimation(self.figure, animate,
                                            init_func=init,
                                            frames=len(self.image_list),
                                            interval=interval, blit=True)
        return self
开发者ID:jacksoncsy,项目名称:menpo,代码行数:28,代码来源:viewmatplotlib.py


示例8: cplot

def cplot(data, limits=[None,None], CM = 'jet', fname='', ext='png'):
    """Make a color contour plot of data

    Usage: cplot(data, limits=[None,None], fname='')
    If no filename is specified a plot is displayed
    File format is ext (default is png)
    """

    SIZE = 12
    DPI  = 100

    nx, ny = data.shape[0], data.shape[1]
    data = data.reshape(nx,ny)
    scale  = SIZE/float(max(nx,ny))
    plt.figure(figsize=(scale*nx, scale*ny+1.0))
    plt.clf()
    c = plt.imshow(np.transpose(data), cmap=CM)
    plt.clim(limits)
    plt.axis([0,nx,0,ny])
    #cbar = plt.colorbar(c, ticks=np.arange(0.831,0.835,0.001), aspect = 20, orientation='vertical', shrink=0.72, extend='neither', spacing='proportional')
    #cbar = plt.colorbar(c, aspect = 40, orientation='vertical', shrink=0.72, extend='neither', spacing='proportional')
    #cbar = plt.colorbar(c, orientation='horizontal', shrink=1.0)
    cbar = plt.colorbar(c, orientation='vertical', shrink=0.72, extend='neither', spacing='proportional')
    
    cbar.ax.tick_params(labelsize=21,size=10)
    #cbar.ax.yaxis.set_ticks_position('left')
    #c.cmap.set_under(color='black')
    if len(fname) == 0:
        plt.show()
    else:
        plt.savefig(fname+'.'+ ext, format=ext, dpi=DPI, bbox_inches='tight', pad_inches=0.1)
        plt.close()
开发者ID:viratupadhyay,项目名称:ida,代码行数:32,代码来源:ida.py


示例9: xplot

def xplot(data, limits=[None,None], fname='', func='max', label='',
        loc='upper right', ext='png'):
    """Make an axial plot of a funtion of data

    Usage: xplot(data, limits=[None,None], fname='', loc='upper left', ext='png')
    Possible functions to plot are max, min, avg
    If no filename is specified a plot is displayed
    The special filename 'M' turns "hold" on (for multiplots)
    File format is ext (default is png)
    """

    nx,ny = data.shape[0],data.shape[1]
    z = np.zeros([3,nx])
    for x in range(nx):
        z[0,x] = data[x,:].min()
        z[1,x] = data[x,:].max()
        z[2,x] = data[x,:].sum()/float(ny)

    #plt.plot(z[0], label=label+' min')
    #plt.plot(z[1], label=label+' max')
    plt.plot(z[2], label=label+' avg')

    if (fname == 'M'):
        plt.hold=True
    else:
        plt.legend(loc=loc)
        plt.axis([0,data.shape[0]-1,limits[0],limits[1]])
        plt.hold=False
        if len(fname) == 0:
            plt.show()
        else:
            plt.savefig(fname+'-x.'+ext, format=ext)
            plt.close()
开发者ID:viratupadhyay,项目名称:ida,代码行数:33,代码来源:ida.py


示例10: plot_residuals

def plot_residuals(turnstile_weather, predictions):
    '''
    Using the same methods that we used to plot a histogram of entries
    per hour for our data, why don't you make a histogram of the residuals
    (that is, the difference between the original hourly entry data and the predicted values).

    Based on this residual histogram, do you have any insight into how our model
    performed?  Reading a bit on this webpage might be useful:

    http://www.itl.nist.gov/div898/handbook/pri/section2/pri24.htm
    '''
    
    plt.figure()
    residuals = (turnstile_weather['ENTRIESn_hourly'] - predictions)
    residuals_mean = np.mean(residuals)
    residuals_std = np.std(residuals)
    residuals.hist(color='blue', bins=100, alpha=0.5)
    the_axis = [-15000, 20000, 0, 40000]
    plt.axis(the_axis)
    plt.xlabel('Actual Hourly Entries - Predictions')
    plt.ylabel('Freq')
    plt.title('Linear Regression with Gradient Descent Residuals')


    return plt, residuals_mean, residuals_std
开发者ID:dvdunne,项目名称:Training_Archive,代码行数:25,代码来源:plot_residuals.py


示例11: plot_fun

	def plot_fun(self, x, y, x_min, x_max, y_min, y_max, style):
		fig = plt.figure()
		plt.axis([x_min, x_max, y_min, y_max])
		ax = fig.add_subplot(1, 1, 1)
		ax.plot(x, y, 'g')
		ax.set_xscale('log')
		plt.savefig('plot.png')
开发者ID:willyrv,项目名称:MS-PSMC_experiments,代码行数:7,代码来源:core.py


示例12: png

 def png(self, start_timestamp, end_timestamp):
     self.load(start_timestamp, end_timestamp)
     plt.figure(figsize=(10, 7.52))
     plt.rc("axes", labelsize=12, titlesize=14)
     plt.rc("font", size=10)
     plt.rc("legend", fontsize=7)
     plt.rc("xtick", labelsize=8)
     plt.rc("ytick", labelsize=8)
     plt.axes([0.08, 0.08, 1 - 0.27, 1 - 0.15])
     for plot in self.plots:
         plt.plot(self.timestamps, self.plots[plot], self.series_fmt(plot), label=self.series_label(plot))
     plt.axis("tight")
     plt.gca().xaxis.set_major_formatter(
         matplotlib.ticker.FuncFormatter(lambda x, pos=None: time.strftime("%H:%M\n%b %d", time.localtime(x)))
     )
     plt.gca().yaxis.set_major_formatter(
         matplotlib.ticker.FuncFormatter(lambda x, pos=None: locale.format("%.*f", (0, x), True))
     )
     plt.grid(True)
     plt.legend(loc=(1.003, 0))
     plt.xlabel("Time/Date")
     plt.title(
         self.description()
         + "\n%s to %s"
         % (
             time.strftime("%H:%M %d-%b-%Y", time.localtime(start_timestamp)),
             time.strftime("%H:%M %d-%b-%Y", time.localtime(end_timestamp)),
         )
     )
     output_buffer = StringIO.StringIO()
     plt.savefig(output_buffer, format="png")
     return output_buffer.getvalue()
开发者ID:rbroemeling,项目名称:udplogger,代码行数:32,代码来源:Graphs.py


示例13: plothist

def plothist():

	n_groups = 3

	means_men = (42.3113658071, 39.7803247373, 67.335243553)
	std_men = (1, 2, 3)

	fig, ax = plt.subplots()

	index = np.array([0.5,1.5,2.5])
	bar_width = 0.4

	opacity = 0.4
	error_config = {'ecolor': '0'}

	rects1 = plt.bar(index, means_men, bar_width,
	                 alpha=opacity,
	                 color='b',
	                 error_kw=error_config)

	plt.xlabel('Approach')
	plt.ylabel('Accuracy')
	plt.axis((0,3.4,0,100))
	plt.title('Evaluation')
	plt.xticks(index + bar_width/2, ('Bing Liu', 'AFINN', 'SentiWordNet'))
	plt.legend()

	plt.tight_layout()
	# plt.show()
	plt.savefig('foo.png')
开发者ID:abhinavchanda,项目名称:mood_india,代码行数:30,代码来源:tester.py


示例14: plot

def plot(i, pcanc, lr, pp, labelFlag, Y):
    if len(str(i)) == 1:
        fig = plt.figure(i)
    else:
        fig = plt.subplot(i)
    if pcanc == 0:
        plt.title(
                  ' learning_rate: ' + str(lr)
                + ' perplexity: ' + str(pp))
        print("Plotting tSNE")
    else:
        plt.title(
                  'PCA-n_components: ' + str(pcanc)
                + ' learning_rate: ' + str(lr)
                + ' perplexity: ' + str(pp))
        print("Plotting PCA-tSNE")
    plt.scatter(Y[:, 0], Y[:, 1], c=colors)
    if labelFlag == 1:
        for label, cx, cy in zip(y, Y[:, 0], Y[:, 1]):
            plt.annotate(
                label.decode('utf-8'),
                xy = (cx, cy),
                xytext = (-10, 10),
                fontproperties=font,
                textcoords = 'offset points', ha = 'right', va = 'bottom',
                bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.9))
                #arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
    ax.xaxis.set_major_formatter(NullFormatter())
    ax.yaxis.set_major_formatter(NullFormatter())
    plt.axis('tight')
    print("Done.")
开发者ID:CORDEA,项目名称:niconico-visualization,代码行数:31,代码来源:mds_plot_hamming.py


示例15: yplot

def yplot(data, limits=[None,None], fname='', xval=[0.5], label='',
        loc='upper left', ext='png'):
    """Make transverse plots of data

    Usage: yplot(data, limits=[None,None], fname='', xval=[0.5], label='',
        loc='upper left', ext='ext')
    xval is a list of axial distances in units of nx
    If no filename is specified a plot is displayed
    The special filename 'M' turns "hold" on (for multiplots)
    File format is ext (default is png)
    """

    nx, ny = data.shape[0], data.shape[1]

    y = np.array(range(ny)) + 0.5
    for x in xval:
        ix = int(x*nx)
        plt.plot(y, data[ix,:], label=label+" : "+"x="+str(x))

    if (fname == 'M'):
        plt.hold=True
    else:
        plt.axis([0,data.shape[1],limits[0],limits[1]])
        plt.legend(loc=loc)
        plt.hold=False
        if len(fname) == 0:
            plt.show()
        else:
            plt.savefig(fname+'-y.'+ext, format=ext)
            plt.close()
开发者ID:viratupadhyay,项目名称:ida,代码行数:30,代码来源:ida.py


示例16: visualize

def visualize(u1, t1, u2, t2, U, omega):
    plt.figure(1)
    plt.plot(t1, u1, 'r--o')
    t_fine = np.linspace(0, t1[-1], 1001)  # мелкая сетка для точного решения
    u_e = u_exact(t_fine, U, omega)
    plt.hold('on')
    plt.plot(t_fine, u_e, 'b-')
    plt.legend([u'приближенное', u'точное'], loc='upper left')
    plt.xlabel('$t$')
    plt.ylabel('$u$')
    tau = t1[1] - t1[0]
    plt.title('$\\tau = $ %g' % tau)
    umin = 1.2*u1.min();
    umax = -umin
    plt.axis([t1[0], t1[-1], umin, umax])
    plt.savefig('tmp1.png');  plt.savefig('tmp1.pdf')
    plt.figure(2)
    plt.plot(t2, u2, 'r--o')
    t_fine = np.linspace(0, t2[-1], 1001)  # мелкая сетка для точного решения
    u_e = u_exact(t_fine, U, omega)
    plt.hold('on')
    plt.plot(t_fine, u_e, 'b-')
    plt.legend([u'приближенное', u'точное'], loc='upper left')
    plt.xlabel('$t$')
    plt.ylabel('$u$')
    tau = t2[1] - t2[0]
    plt.title('$\\tau = $ %g' % tau)
    umin = 1.2 * u2.min();
    umax = -umin
    plt.axis([t2[0], t2[-1], umin, umax])
    plt.savefig('tmp2.png');
    plt.savefig('tmp2.pdf')
开发者ID:LemSkMMU2017,项目名称:Year3P2,代码行数:32,代码来源:vib_undamped.py


示例17: main

def main():
    fname = iris.sample_data_path('ostia_monthly.nc')
    
    # load a single cube of surface temperature between +/- 5 latitude
    cube = iris.load_cube(fname, iris.Constraint('surface_temperature', latitude=lambda v: -5 < v < 5))
    
    # Take the mean over latitude
    cube = cube.collapsed('latitude', iris.analysis.MEAN)
    
    # Now that we have our data in a nice way, lets create the plot
    # contour with 20 levels
    qplt.contourf(cube, 20)
    
    # Put a custom label on the y axis 
    plt.ylabel('Time / years')
    
    # Stop matplotlib providing clever axes range padding
    plt.axis('tight')
    
    # As we are plotting annual variability, put years as the y ticks
    plt.gca().yaxis.set_major_locator(mdates.YearLocator())
    
    # And format the ticks to just show the year
    plt.gca().yaxis.set_major_formatter(mdates.DateFormatter('%Y'))
    
    plt.show()
开发者ID:RachelNorth,项目名称:iris,代码行数:26,代码来源:hovmoller.py


示例18: draw

    def draw(self):
        cols, rows = self.size
        minx, maxx = self.xlimits
        miny, maxy = self.ylimits

        width, height = self.cell_dimensions

        x = map(lambda i: minx + width*i, range(cols+1))
        y = map(lambda i: miny + height*i, range(rows+1))

        f = plt.figure(figsize=self.figsize)

        hlines = np.column_stack(np.broadcast_arrays(x[0], y, x[-1], y))
        vlines = np.column_stack(np.broadcast_arrays(x, y[0], x, y[-1]))
        lines = np.concatenate([hlines, vlines]).reshape(-1, 2, 2)
        line_collection = LineCollection(lines, color="black", linewidths=0.5)
        ax = plt.gca()
        ax.add_collection(line_collection)
        ax.set_xlim(x[0]-1, x[-1]+1)
        ax.set_ylim(y[0]-1, y[-1]+1)
        plt.gca().set_aspect('equal', adjustable='box')
        plt.axis('off')
        self.draw_obstacles(plt.gca())

        return plt.gca()
开发者ID:jakebarnwell,项目名称:incremental-path-planning,代码行数:25,代码来源:grid.py


示例19: main

def main():
    G=nx.Graph()

    G.add_edge('a','b',weight=0.6)
    G.add_edge('a','c',weight=0.2)
    G.add_edge('c','d',weight=0.1)
    G.add_edge('c','e',weight=0.7)
    G.add_edge('c','f',weight=0.9)
    G.add_edge('a','d',weight=0.3)

    elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] >0.5]
    esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] <=0.5]

    pos=nx.spring_layout(G) # positions for all nodes

# nodes
    nx.draw_networkx_nodes(G,pos,node_size=700)

# edges
    nx.draw_networkx_edges(G,pos,edgelist=elarge,width=6)
    nx.draw_networkx_edges(G,pos,edgelist=esmall,width=6,alpha=0.5,edge_color='b',style='dashed')

# labels
    nx.draw_networkx_labels(G,pos,font_size=20,font_family='sans-serif')

    plt.axis('off')
#plt.savefig("weighted_graph.png") # save as png
    plt.show() # display
    return
开发者ID:e-coucou,项目名称:Test,代码行数:29,代码来源:Test.py


示例20: heatmap

def heatmap(vals, size=6, aspect=1):
    """
    Plot a heatmap from matrix data
    """
    plt.figure(figsize=(size, size))
    plt.imshow(vals, cmap="gray", aspect=aspect, interpolation="none", vmin=0, vmax=1)
    plt.axis("off")
开发者ID:speron,项目名称:sofroniew-vlasov-2015,代码行数:7,代码来源:plots.py



注:本文中的matplotlib.pyplot.axis函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pyplot.axvline函数代码示例发布时间:2022-05-27
下一篇:
Python pyplot.axhspan函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap