本文整理汇总了Python中matplotlib.pylab.yscale函数的典型用法代码示例。如果您正苦于以下问题:Python yscale函数的具体用法?Python yscale怎么用?Python yscale使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了yscale函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_power_spectra
def test_power_spectra(r0, N, delta, L0, l0):
N*= 10
phase_screen = atmosphere.ft_phase_screen(r0, N, delta, L0, l0)
phase_screen = phase_screen[:N/10, :N/10]
power_spec_2d = numpy.fft.fft2(phase_screen, s=(N*2, N*2))
plt.figure()
plt.imshow(numpy.abs(numpy.fft.fftshift(power_spec_2d)), interpolation='nearest')
power_spec = circle.aziAvg(numpy.abs(numpy.fft.fftshift(power_spec_2d)))
power_spec /= power_spec.sum()
freqs = numpy.fft.fftfreq(power_spec_2d.shape[0], delta)
# Theoretical Model of Power Spectrum
print freqs
plt.figure()
plt.plot(freqs[:freqs.size/2], power_spec)
plt.xscale('log')
plt.yscale('log')
plt.show()
return None
开发者ID:EdwardBetts,项目名称:soapytest,代码行数:25,代码来源:testSpatialPowSpec.py
示例2: compareMassRatioVsRedshift
def compareMassRatioVsRedshift(his, hiserr, mine, myerr, hisfield, hisid, myfield, myid, z):
import matplotlib.pylab as plt
a = []
b = []
c = []
d = []
e = []
z_list = []
for i in range(0, np.shape(mine)[0]):
if mine[i] != 0:
#his_id_idx = np.where(hisid == myid[i])[0]
pos_id_idx = np.where(hisid == myid[i])[0]
if len(pos_id_idx) == 1:
his_id_idx = int(pos_id_idx)
else:
pos_field_idx = np.where(hisfield == myfield[i])[0]
for ii in range(0, len(pos_field_idx)):
for iii in range(0, len(pos_id_idx)):
if pos_field_idx[ii] == pos_id_idx[iii]:
his_id_idx = int(pos_id_idx[iii])
#print str(myid[i]), str(myfield[i]), str(hisid[his_id_idx]), str(hisfield[his_id_idx])
assert myfield[i] == hisfield[his_id_idx]
assert myid[i] == hisid[his_id_idx]
if his[his_id_idx] != -999:
a.append(his[his_id_idx])
b.append(hiserr[his_id_idx])
c.append(mine[i])#-np.log10(((1.0+z[i]))))
d.append(myerr[i,0])#-np.log10(((1.0+z[i]))))
e.append(myerr[i,1])#-np.log10(1.0+z[i]))
z_list.append(z[i])
# since errors are just percentile, need difference from median
d = np.asarray(c)-np.asarray(d)
e = np.asarray(e)-np.asarray(c)
c_a = 10**np.array(c)
a_a = 10**np.array(a)
ratio = c_a/a_a
plt.errorbar(z_list, ratio, fmt='o',
color='b', capsize=0, alpha=0.50)
# plot the y=x line
x = np.linspace(np.min(z_list),
np.max(z_list),
10)
plt.plot(x, np.ones(len(x)), 'k--')
plt.yscale('log')
plt.xlabel("Redshift")
plt.ylabel("MCSED / Alex's [note: ratio of actual masses]")
plt.title("Redshift vs Mass Ratio (MCSED/Alex)")
#plt.legend(['With Neb. Emis.'],loc=0)#, 'W/o Neb. Emis'], loc=0)
plt.show()
开发者ID:astronomeralex,项目名称:mcsed,代码行数:60,代码来源:plotter_functions.py
示例3: nova_plot
def nova_plot():
erg2mev=624151.
fig=plot.figure()
yrange = [1e-6,2e-4]
xrange = [1e-1,1e5]
plot.fill_between([0.2,10e3],[yrange[1],yrange[1]],[yrange[0],yrange[0]],facecolor='yellow',interpolate=True,color='yellow',alpha=0.5)
plot.annotate('AMEGO',xy=(3,9e-5),xycoords='data',fontsize=26,color='black')
lat=ascii.read("data/NMon2012.LAT.dat",names=['energy','en_low','en_high','flux','flux_err','tmp'])
plot.scatter(lat['energy'],lat['flux']*erg2mev,color='red')
plot.errorbar(lat['energy'],lat['flux']*erg2mev,xerr=[lat['en_low'],lat['en_high']],yerr=lat['flux_err']*erg2mev,ecolor='red',capsize=0,fmt='none')
latul=ascii.read("data/NMon2012.LAT.limits.dat",names=['energy','en_low','en_high','flux','tmp1','tmp2','tmp3','tmp4'])
plot.errorbar(latul['energy'],latul['flux']*erg2mev,xerr=[latul['en_low'],latul['en_high']],yerr=0.5*latul['flux']*erg2mev,uplims=True,ecolor='red',capsize=0,fmt='none')
plot.scatter(latul['energy'],latul['flux']*erg2mev,color='red')
leptonic=ascii.read("data/sp-NMon12-IC-best-fit-1MeV-30GeV.txt",names=['energy','flux'],data_start=1)
hadronic=ascii.read("data/sp-NMon12-pi0-and-secondaries.txt",names=['energy','flux1','flux2'],data_start=1)
plot.plot(leptonic['energy'],leptonic['flux']*erg2mev,'r--',color='black',lw=2,label='Leptonic')
plot.plot(hadronic['energy'],hadronic['flux2']*erg2mev,color='black',lw=2,label='Hadronic+Secondary Leptons')
plot.legend(loc='upper right',fontsize='small',frameon=False,framealpha=0.5)
plot.xscale('log')
plot.yscale('log')
plot.ylim(yrange)
plot.xlim(xrange)
plot.xlabel(r'Energy (MeV)')
plot.ylabel(r'Energy$^2 \times $ Flux (Energy) (erg cm$^{-2}$ s$^{-1}$)')
plot.title('Nova V339 Del 2013')
plot.savefig('Nova_SED.png', bbox_inches='tight')
plot.savefig('Nova_SED.eps', bbox_inches='tight')
plot.show()
plot.close()
开发者ID:ComPair,项目名称:python,代码行数:35,代码来源:SciencePlots.py
示例4: plot_ccdf
def plot_ccdf(values, xscale, yscale):
pylab.yscale(yscale)
cdf = Cdf.MakeCdfFromList(values)
values, prob = cdf.Render()
pylab.xscale(xscale)
compProb = [1 - e for e in prob]
pylab.plot(values, compProb)
开发者ID:giovannipbonin,项目名称:thinkComplexity,代码行数:7,代码来源:plotCcdf.py
示例5: smooth_color_prior
def smooth_color_prior(size=64, sigma=5, do_plot=False):
prior_prob = np.load(os.path.join(data_dir, "CelebA_%s_prior_prob.npy" % size))
# add an epsilon to prior prob to avoid 0 vakues and possible NaN
prior_prob += 1E-3 * np.min(prior_prob)
# renormalize
prior_prob = prior_prob / (1.0 * np.sum(prior_prob))
# Smooth with gaussian
f = interp1d(np.arange(prior_prob.shape[0]),prior_prob)
xx = np.linspace(0,prior_prob.shape[0] - 1, 1000)
yy = f(xx)
window = gaussian(2000, sigma) # 2000 pts in the window, sigma=5
smoothed = convolve(yy, window / window.sum(), mode='same')
fout = interp1d(xx,smoothed)
prior_prob_smoothed = np.array([fout(i) for i in range(prior_prob.shape[0])])
prior_prob_smoothed = prior_prob_smoothed / np.sum(prior_prob_smoothed)
# Save
file_name = os.path.join(data_dir, "CelebA_%s_prior_prob_smoothed.npy" % size)
np.save(file_name, prior_prob_smoothed)
if do_plot:
plt.plot(prior_prob)
plt.plot(prior_prob_smoothed, "g--")
plt.plot(xx, smoothed, "r-")
plt.yscale("log")
plt.show()
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:28,代码来源:make_dataset.py
示例6: plotFeaturePDF
def plotFeaturePDF(ift, pft, outbase, fmin=0.0, fmax=1.0, fstep=0.01):
"""
Plot a comparison between the input feature distribution and the
feature distribution of the predicted halos
"""
plt.clf()
nfbins = ( fmax - fmin ) / fstep
fbins = np.logspace( fmin, fmax, nfbins )
fcen = ( fbins[:-1] + fbins[1:] ) / 2
plt.xscale( 'log', nonposx='clip' )
plt.yscale( 'log', nonposy='clip' )
ic, e, p = plt.hist( ift, fbins, label='Original Halos', alpha=0.5, normed=True )
pc, e, p = plt.hist( pft, fbins, label='Added Halos', alpha=0.5, normed=True )
plt.legend()
plt.xlabel( r'$\delta$' )
plt.savefig( outbase+'_fpdf.png' )
fdtype = np.dtype( [ ('fcen', float), ('ifcounts', float), ('pfcounts', float) ] )
fd = np.ndarray( len(fcen), dtype = fdtype )
fd[ 'mcen' ] = fcen
fd[ 'imcounts' ] = ic
fd[ 'pmcounts' ] = pc
fitsio.write( outbase+'_fpdf.fit', fd )
开发者ID:j-dr,项目名称:ADDHALOS,代码行数:27,代码来源:validation.py
示例7: plotMassFunction
def plotMassFunction(im, pm, outbase, mmin=9, mmax=13, mstep=0.05):
"""
Make a comparison plot between the input mass function and the
predicted projected correlation function
"""
plt.clf()
nmbins = ( mmax - mmin ) / mstep
mbins = np.logspace( mmin, mmax, nmbins )
mcen = ( mbins[:-1] + mbins[1:] ) /2
plt.xscale( 'log', nonposx = 'clip' )
plt.yscale( 'log', nonposy = 'clip' )
ic, e, p = plt.hist( im, mbins, label='Original Halos', alpha=0.5, normed = True)
pc, e, p = plt.hist( pm, mbins, label='Added Halos', alpha=0.5, normed = True)
plt.legend()
plt.xlabel( r'$M_{vir}$' )
plt.ylabel( r'$\frac{dN}{dM}$' )
#plt.tight_layout()
plt.savefig( outbase+'_mfcn.png' )
mdtype = np.dtype( [ ('mcen', float), ('imcounts', float), ('pmcounts', float) ] )
mf = np.ndarray( len(mcen), dtype = mdtype )
mf[ 'mcen' ] = mcen
mf[ 'imcounts' ] = ic
mf[ 'pmcounts' ] = pc
fitsio.write( outbase+'_mfcn.fit', mf )
开发者ID:j-dr,项目名称:ADDHALOS,代码行数:30,代码来源:validation.py
示例8: get_OH
def get_OH(OIII4363,OIII4959,OIII5007,Hb):
Te = np.arange(5000,20000,1)
t3 = Te/1e4
ne = 100 # cm^-3
x = 1e-4*ne*t3**(-0.5)
C_T = (8.44-1.09*t3+0.5*t3**2.-0.08*t3**3.)*(1.+0.0004*x)/(1.+0.044*x)
log_OIII_ratio = 1.432/t3+np.log10(C_T)
log_OIII_ratio_obs = np.log10((OIII4959+OIII5007)/OIII4363)
Te_obs = []
plt.clf()
plt.plot(Te,log_OIII_ratio,color='black',marker='.',linestyle='none')
plt.yscale('log')
for i in range(len(OIII4363)):
plt.axhline(log_OIII_ratio_obs[i],linestyle='--')
d_ratio = abs(log_OIII_ratio_obs[i]-log_OIII_ratio)
min_d_ratio = min(d_ratio)
min_sub = list(d_ratio).index(min_d_ratio)
Te_obs.append(Te[min_sub])
plt.xlim(10000,20000)
plt.ylim(1.,3)
plt.xlabel('Te')
plt.ylabel('(OIII4959+5007)/OIII4363')
Te_obs = np.array(Te_obs)
t3_obs = Te_obs/1e4
logOIIIH = np.log10((OIII4959+OIII5007)/Hb)+6.200+1.251+1.251/t3_obs - \
5*np.log10(t3_obs)-0.014*t3_obs
t2_obs = -0.577+t3*(2.065-0.498*t3)
logOIIH = np.log10(OII3727/Hb)+5.961+1.676/t2_obs-0.4*np.log10(t2_obs) - \
0.034*t2_obs+np.log10(1+1.35*x)
OH = 10**(logOIIIH-12.)+10**(logOIIIH-12.)
logOH = 12 + np.log10(OH)
return Te_obs,logOIIH,logOIIIH,logOH
开发者ID:jhyoon79,项目名称:Analysis,代码行数:35,代码来源:get_OH_Te.py
示例9: test_simple_gen
def test_simple_gen(self):
self_con = .8
other_con = 0.05
g = self.gen.gen_stoch_blockmodel(min_degree=1, blocks=5, self_con=self_con, other_con=other_con,
powerlaw_exp=2.1, degree_seq='powerlaw', num_nodes=1000, num_links=3000)
deg_hist = vertex_hist(g, 'total')
res = fit_powerlaw.Fit(g.degree_property_map('total').a, discrete=True)
print 'powerlaw alpha:', res.power_law.alpha
print 'powerlaw xmin:', res.power_law.xmin
if len(deg_hist[0]) != len(deg_hist[1]):
deg_hist[1] = deg_hist[1][:len(deg_hist[0])]
print 'plot degree dist'
plt.plot(deg_hist[1], deg_hist[0])
plt.xscale('log')
plt.xlabel('degree')
plt.ylabel('#nodes')
plt.yscale('log')
plt.savefig('deg_dist_test.png')
plt.close('all')
print 'plot graph'
pos = sfdp_layout(g, groups=g.vp['com'], mu=3)
graph_draw(g, pos=pos, output='graph.png', output_size=(800, 800),
vertex_size=prop_to_size(g.degree_property_map('total'), mi=2, ma=30), vertex_color=[0., 0., 0., 1.],
vertex_fill_color=g.vp['com'],
bg_color=[1., 1., 1., 1.])
plt.close('all')
print 'init:', self_con / (self_con + other_con), other_con / (self_con + other_con)
print 'real:', gt_tools.get_graph_com_connectivity(g, 'com')
开发者ID:floriangeigl,项目名称:tools,代码行数:28,代码来源:gt_tools_tests.py
示例10: compute_color_prior
def compute_color_prior(size=64, do_plot=False):
# Load the gamut points location
q_ab = np.load(os.path.join(data_dir, "pts_in_hull.npy"))
if do_plot:
plt.figure(figsize=(15, 15))
gs = gridspec.GridSpec(1, 1)
ax = plt.subplot(gs[0])
for i in range(q_ab.shape[0]):
ax.scatter(q_ab[:, 0], q_ab[:, 1])
ax.annotate(str(i), (q_ab[i, 0], q_ab[i, 1]), fontsize=6)
ax.set_xlim([-110,110])
ax.set_ylim([-110,110])
with h5py.File(os.path.join(data_dir, "CelebA_%s_data.h5" % size), "a") as hf:
# Compute the color prior over a subset of the training set
# Otherwise it is quite long
X_ab = hf["training_lab_data"][:100000][:, 1:, :, :]
npts, c, h, w = X_ab.shape
X_a = np.ravel(X_ab[:, 0, :, :])
X_b = np.ravel(X_ab[:, 1, :, :])
X_ab = np.vstack((X_a, X_b)).T
if do_plot:
plt.hist2d(X_ab[:, 0], X_ab[:, 1], bins=100, norm=LogNorm())
plt.xlim([-110, 110])
plt.ylim([-110, 110])
plt.colorbar()
plt.show()
plt.clf()
plt.close()
# Create nearest neighbord instance with index = q_ab
NN = 1
nearest = nn.NearestNeighbors(n_neighbors=NN, algorithm='ball_tree').fit(q_ab)
# Find index of nearest neighbor for X_ab
dists, ind = nearest.kneighbors(X_ab)
# We now count the number of occurrences of each color
ind = np.ravel(ind)
counts = np.bincount(ind)
idxs = np.nonzero(counts)[0]
prior_prob = np.zeros((q_ab.shape[0]))
for i in range(q_ab.shape[0]):
prior_prob[idxs] = counts[idxs]
# We turn this into a color probability
prior_prob = prior_prob / (1.0 * np.sum(prior_prob))
# Save
np.save(os.path.join(data_dir, "CelebA_%s_prior_prob.npy" % size), prior_prob)
if do_plot:
plt.hist(prior_prob, bins=100)
plt.yscale("log")
plt.show()
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:57,代码来源:make_dataset.py
示例11: plot_change
def plot_change(alldata,thisdata,name):
pl.style.use('ggplot')
f, ax = pl.subplots()
ax.loglog(alldata,'.',label='All mirNA collected in DB')
ax.loglog(alldata.index(thisdata),thisdata,'o',ms=9,label=name)
ax.legend(loc=2)
pl.ylabel('Expression change')
pl.yscale('log')
pl.ylim(alldata[2],alldata[-2])
pl.yticks(np.logspace(np.log10(alldata[2]),np.log10(alldata[-2]),10),[i.round(2) for i in np.logspace(np.log10(alldata[2]),np.log10(alldata[-2]),10)])
canvas = FigureCanvas(f)
response = HttpResponse(content_type='image/png')
canvas.print_png(response)
return response
开发者ID:dzanek,项目名称:rnadbase,代码行数:16,代码来源:func.py
示例12: plot_noise
def plot_noise(self, apsize):
logging.info('Plotting noise budget')
p = self.p.aperture[apsize]
plt.scatter(p.medmag, p.rms)
plt.plot(p.mags_model, p.sigmastar_model, label='Star noise')
plt.plot(p.mags_model, p.sigmasky_model, label='Sky noise')
plt.plot(p.mags_model, p.sigmaread_model, label='Readout noise')
plt.plot(p.mags_model, p.sigscint_model, label='Scint. noise')
plt.yscale('log')
plt.plot(p.mags_model, p.sigtot_model, label='Tot. noise')
plt.legend(loc=4)
plt.savefig(os.path.join(self.plot_out, 'noise_budget.pdf'))
plt.show()
开发者ID:marcorocchetto,项目名称:photolight,代码行数:17,代码来源:plotting.py
示例13: plotPSD
def plotPSD(lcInt, shortExp,**kwargs):
'''
plot power spectral density of lc
return frequencies and powers from periodogram
'''
freq = 1.0/shortExp
f, p = periodogram(lcInt,fs = 1./shortExp)
plt.plot(f,p/np.max(p),**kwargs)
plt.xlabel(r"Frequency (Hz)",fontsize=14)
plt.xscale('log')
plt.ylabel(r"Normalized PSD",fontsize=14)
plt.yscale('log')
plt.title(r"Lightcurve Power Spectrum",fontsize=14)
plt.show()
return f,p
开发者ID:srmeeker,项目名称:DarknessPipeline,代码行数:17,代码来源:lightCurves.py
示例14: show_reverseattn
def show_reverseattn(trange_gaincal, trange_other=None, first_attn_base=5, second_attn_base=3, corrected_attns=False):
# This routine returns the same things as get_reverseattn, but it also graphs the three different "tsys"
# variables. It interactively asks the user which antenna, which polarization, and which frequency they
# wish to view. Once it creates a graph, it will ask the user whether they wish to see more graphs or not.
# The first parameter it takes should be a GAINCALTEST trange, which may be located with find_gaincal,
# The second parameter it takes should be a FEATTNTEST trange, which may be located with find_gaincal as
# well. It may or may not take a third parameter. Any form of file that was recorded by the system from
# from the antennas may be inserted here, whether a flare or just quiet sun data.
#
# PLEASE NOTE: ANY trange with data may be used as "trange_gaincal", use a trange from a GAINCALTEST and the other
# file as "trange_other" if you want the noise to be calibrated from the GAINCALTEST file, which will most likely
# be more recent than the FEATTNTEST file it would otherwise take the noise from.
tsys_attn_noise_corrected, tsys_noise_corrected, tsys = get_reverseattn(trange_gaincal, trange_other, first_attn_base, second_attn_base, corrected_attns)
plotting_ = True
while plotting_ == True:
print ' '
antenna = input('Which antenna would you like to see? You can choose from 1 to 8 : ')
print ' '
polarization = input('Which polarization would you like to see? Enter 0 for x, and 1 for y: ')
print ' '
channel = input('Which channel would you like to see? You can choose from channel 0 to ' +str(tsys_attn_noise_corrected.shape[2]) + ' : ')
antenna = int(antenna)-1
polarization = int(polarization)
channel = int(channel)
plt.figure()
tsys_ = plt.plot(tsys[antenna, polarization, channel, :], label='tsys')
tsys_noise_corrected_ = plt.plot(tsys_noise_corrected[antenna, polarization, channel, :], label='noise corrected tsys')
tsys_attn_noise_corrected_ = plt.plot(tsys_attn_noise_corrected[antenna, polarization, channel, :], label='noise and attn corrected tsys')
plt.yscale('log')
fontP = FontProperties()
fontP.set_size('small')
plt.legend(prop = fontP)
plt.show()
print ' '
yesorno = input('Would you like to see another plot? Please answer 0 for yes or 1 for no. ')
if yesorno == 0:
pass
else:
print ' '
print 'See you next time!'
plotting_ = False
return tsys_attn_noise_corrected, tsys_noise_corrected, tsys
开发者ID:binchensolar,项目名称:eovsa,代码行数:45,代码来源:gaincal.py
示例15: compute_prior_factor
def compute_prior_factor(size=64, gamma=0.5, alpha=1, do_plot=False):
file_name = os.path.join(data_dir, "CelebA_%s_prior_prob_smoothed.npy" % size)
prior_prob_smoothed = np.load(file_name)
u = np.ones_like(prior_prob_smoothed)
u = u / np.sum(1.0 * u)
prior_factor = (1 - gamma) * prior_prob_smoothed + gamma * u
prior_factor = np.power(prior_factor, -alpha)
# renormalize
prior_factor = prior_factor / (np.sum(prior_factor * prior_prob_smoothed))
file_name = os.path.join(data_dir, "CelebA_%s_prior_factor.npy" % size)
np.save(file_name, prior_factor)
if do_plot:
plt.plot(prior_factor)
plt.yscale("log")
plt.show()
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:21,代码来源:make_dataset.py
示例16: bargraph_from_dict
def bargraph_from_dict(h_dict, group_labels, log=False, colors=None, save=None,
title=None, xlabel=None, ylabel=None, legend=False, loc='best'):
bars = len(h_dict) + 2 # Add one for a space between groups
groups = len(group_labels)
print h_dict
for v in h_dict.values():
if len(v) != groups:
raise ValueError("h_dict must contain sequences with the same number as labels")
plt.cla()
plts = []
if log:
plt.yscale("log")
if colors == "greyscale":
colors = [str(i*(.75/len(h_dict))) for i in xrange(len(h_dict))]
elif colors is None or colors == "spectrum":
colors = "rygbcmk"
keys = sorted(h_dict.keys())
for n, k in enumerate(keys):
plts.append(plt.bar(range(n+1, bars*groups+1, bars), h_dict[k],
color=colors[n % len(colors)]))
plt.xticks([1 + i*bars + bars/2 for i in xrange(groups)], group_labels)
if log:
ymin, ymax = plt.ylim()
ymin = min(reduce(lambda acc, x: acc+x, h_dict.values(), []))/2.0
plt.ylim((ymin, ymax))
if legend:
plt.legend( [p[0] for p in plts], [k.replace('_', '\_') for k in keys], loc=loc)
if title:
plt.title(title)
if ylabel:
plt.ylabel(ylabel)
if xlabel:
plt.xlabel(xlabel)
if save is not None:
plt.savefig(save)
开发者ID:aterrel,项目名称:stokes-tests,代码行数:40,代码来源:plotter.py
示例17: analyze_neuron
def analyze_neuron(cell, mapping, Mea, signal_range):
start_t, stop_t = signal_range
start_t_ixd = np.argmin(np.abs(cell.tvec - start_t))
stop_t_ixd = np.argmin(np.abs(cell.tvec - stop_t))
t_array = cell.tvec[start_t_ixd:stop_t_ixd]
imem = cell.imem[:, start_t_ixd:stop_t_ixd]
amps_at_comps = find_amplitude_at_comp(imem, debug=False)
comp_dist_from_soma = find_comps_dist_from_soma(cell)
#pl.figure()
#pl.plot(comp_dist_from_soma, amps_at_comps, 'o')
#pl.show()
for elec in xrange(Mea.n_elecs):
#if not elec == 110:
# continue
print elec
comp_dist_from_elec = find_comp_dist_from_elec(elec, cell, Mea)
comp_impact_on_elec = mapping[elec,:]*amps_at_comps
if 0:
print np.argmax(comp_dist_from_elec)
print np.argmin(comp_dist_from_elec)
pl.figure()
pl.axis('equal')
pl.plot(cell.zmid/1000, cell.ymid/1000, 'o')
pl.plot(Mea.elec_z, Mea.elec_y, 'o')
pl.plot(cell.zmid[381]/1000, cell.ymid[381]/1000, 'D')
pl.plot(cell.zmid[791]/1000, cell.ymid[791]/1000, 'D')
pl.plot(Mea.elec_z[elec], Mea.elec_y[elec], 'x')
pl.show()
pl.plot(comp_dist_from_elec, comp_impact_on_elec, 'o')
pl.yscale('log')
pl.xscale('log')
pl.title('Electrode at distal tuft dendrite, when spike originates in tuft,\n'\
+'and does not propagate to soma.')
pl.xlabel('Compartment distance from electrode [mm]')
pl.ylabel('Compartment impact on electrode [uV]')
pl.show()
开发者ID:torbjone,项目名称:ProjectBedlewo,代码行数:39,代码来源:tools.py
示例18: plot_results
def plot_results(list_log, to_plot="losses"):
list_color = [u'#E24A33',
u'#348ABD',
u'#FBC15E',
u'#777777',
u'#988ED5',
u'#8EBA42',
u'#FFB5B8']
plt.figure()
for idx, log in enumerate(list_log):
with open(log, "r") as f:
d = json.load(f)
experiment_name = d["experiment_name"]
color = list_color[idx]
plt.plot(d["train_%s" % to_plot],
color=color,
linewidth=3,
label="Train %s" % experiment_name)
plt.plot(d["val_%s" % to_plot],
color=color,
linestyle="--",
linewidth=3,)
plt.ylabel(to_plot, fontsize=20)
if to_plot == "losses":
plt.yscale("log")
if to_plot == "accs":
plt.ylim([0, 1.1])
plt.xlabel("Number of epochs", fontsize=20)
plt.title("%s experiment" % dataset, fontsize=22)
plt.legend(loc="best")
plt.tight_layout()
plt.savefig("./figures/%s_results_%s.png" % (dataset, to_plot))
plt.show()
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:37,代码来源:eval.py
示例19: plotter
def plotter(infiles, numcases, labels, linestyles, colors, savefile, ylog=False):
"""Assuming we have output from CORBITS examples,
creates plots of Transit Probability vs Mean Mutual Inclination.
"""
plt.figure()
plt.xlabel('Mean Mutual Inclination [Degrees]', fontsize=16)
plt.ylabel('Transit Probability', fontsize=16)
if numcases == 1:
data = np.loadtxt(infiles[0])
mmi = data[:,0]
tp = data[:,1]
plt.plot(mmi, tp, linestyle=linestyles[0], color=colors[0], linewidth=4)
else:
for i in range(numcases):
data = np.loadtxt(infiles[i])
mmi = data[:,0]
tp = data[:,1]
plt.plot(mmi, tp, linestyle=linestyles[i], color=colors[i], linewidth=4, label=labels[i])
if numcases != 1:
plt.legend(loc='best')
if ylog == True:
plt.yscale('log')
plt.savefig(savefile, format='pdf')
return
开发者ID:emilydeibert,项目名称:CTA200-2016,代码行数:24,代码来源:local-examples.py
示例20: plot_tec
def plot_tec(start=None, finish=None, ax=None, x_axis='EPHEMERIS_TIME',
fmt='k.', bad_fmt='r.', mew=0., labels=True):
"""Quickie that plots TEC in TECU"""
if ax is None:
ax = plt.gca()
else:
plt.sca(ax)
if x_axis == 'EPHEMERIS_TIME':
if start is None:
start, finish = plt.xlim()
else:
plt.xlim(start, finish)
t = read_tec(start, finish)
good = t['FLAG'] == True
plt.plot(t[x_axis][good], t['TEC'][good] / TECU_electrons_per_m2, fmt, mew=mew)
plt.plot(t[x_axis][~good], t['TEC'][~good] / TECU_electrons_per_m2, bad_fmt, mew=mew)
plt.xlabel(x_axis)
plt.ylabel('TEC / TECU')
plt.yscale('log')
开发者ID:irbdavid,项目名称:mex,代码行数:24,代码来源:sub_surface.py
注:本文中的matplotlib.pylab.yscale函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论