本文整理汇总了Python中matplotlib.pylab.xticks函数的典型用法代码示例。如果您正苦于以下问题:Python xticks函数的具体用法?Python xticks怎么用?Python xticks使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xticks函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: plot_rfs
def plot_rfs(size, C, Rx, Ry, color='b'):
radius = np.sqrt(size[...]/np.pi)
a, w = 0, C.shape[0]
plt.scatter(Rx, Ry, s=15, color='w', edgecolor='k')
plt.scatter(C[a:w, 1], C[a:w, 0], s=radius*500, alpha=0.4, color=color)
plt.xticks([])
plt.yticks([])
开发者ID:gdetor,项目名称:SI-RF-Structure,代码行数:7,代码来源:DNF-RF-Size.py
示例2: plot_grid_experiment_results
def plot_grid_experiment_results(grid_results, params, metrics):
global plt
params = sorted(params)
grid_params = grid_results.grid_params
plt.figure(figsize=(8, 6))
for metric in metrics:
grid_params_shape = [len(grid_params[k]) for k in sorted(grid_params.keys())]
params_max_out = [(1 if k in params else 0) for k in sorted(grid_params.keys())]
results = np.array([e.results.get(metric, 0) for e in grid_results.experiments])
results = results.reshape(*grid_params_shape)
for axis, included_in_params in enumerate(params_max_out):
if not included_in_params:
results = np.apply_along_axis(np.max, axis, results)
print results
params_shape = [len(grid_params[k]) for k in sorted(params)]
results = results.reshape(*params_shape)
if len(results.shape) == 1:
results = results.reshape(-1,1)
import matplotlib.pylab as plt
#f.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
plt.imshow(results, interpolation='nearest', cmap=plt.cm.hot)
plt.title(str(grid_results.name) + " " + metric)
if len(params) == 2:
plt.xticks(np.arange(len(grid_params[params[1]])), grid_params[params[1]], rotation=45)
plt.yticks(np.arange(len(grid_params[params[0]])), grid_params[params[0]])
plt.colorbar()
plt.show()
开发者ID:gmum,项目名称:mlls2015,代码行数:31,代码来源:utils.py
示例3: plot_confusion_matrix
def plot_confusion_matrix(cm, title='', cmap=plt.cm.Blues):
#print cm
#display vehicle, idle, walking accuracy respectively
#display overall accuracy
print type(cm)
# plt.figure(index
plt.imshow(cm, interpolation='nearest', cmap=cmap)
#plt.figure("")
plt.title("Confusion Matrix")
plt.colorbar()
tick_marks = [0,1,2]
target_name = ["driving","idling","walking"]
plt.xticks(tick_marks,target_name,rotation=45)
plt.yticks(tick_marks,target_name,rotation=45)
print len(cm[0])
for i in range(0,3):
for j in range(0,3):
plt.text(i,j,str(cm[i,j]))
plt.tight_layout()
plt.ylabel("Actual Value")
plt.xlabel("Predicted Outcome")
开发者ID:sb1989,项目名称:fyp,代码行数:25,代码来源:KNNClassifierAccuracy.py
示例4: plot_histogram
def plot_histogram(self, main="", numrows=1, numcols=1, fignum=1):
"""Plot a histogram of choices and probability sums. Expects probabilities as (at least) a 2D array.
"""
from matplotlib.pylab import bar, xticks, yticks, title, text, axis, figure, subplot
probabilities = self.get_probabilities()
if probabilities.ndim < 2:
raise StandardError, "probabilities must have at least 2 dimensions."
alts = probabilities.shape[1]
width_par = (1 / alts + 1) / 2.0
choice_counts = self.get_choice_histogram(0, alts)
sum_probs = self.get_probabilities_sum()
subplot(numrows, numcols, fignum)
bar(arange(alts), choice_counts, width=width_par)
bar(arange(alts) + width_par, sum_probs, width=width_par, color="g")
xticks(arange(alts))
title(main)
Axis = axis()
text(
alts + 0.5,
-0.1,
"\nchoices histogram (blue),\nprobabilities sum (green)",
horizontalalignment="right",
verticalalignment="top",
)
开发者ID:apdjustino,项目名称:DRCOG_Urbansim,代码行数:26,代码来源:upc_sequence.py
示例5: show_binary_images
def show_binary_images(samples, nsamples, d1, d2, nrows, ncols):
"""
Plots samples in a NumPy 2D array ``samples`` as ``d1`` by ``d2`` images.
(one sample per row of ``samples``).
The samples are assumed to be images with binary pixels. The
images are layed out in a ``nrows`` by ``ncols`` grid.
"""
perm = range(nsamples)
#random.shuffle(perm)
if samples.shape[0] < nrows*ncols:
samples_padded = numpy.zeros((nrows*ncols,samples.shape[1]))
samples_padded[:samples.shape[0],:] = samples
samples = samples_padded
image = 0.5*numpy.ones((nrows*(d1+1)-1,ncols*(d2+1)-1),dtype=float)
for i in range(nrows):
for j in range(ncols):
image[(i*d1+i):((i+1)*d1+i),(j*d2+j):((j+1)*d2+j)] = (1-samples[perm[i*ncols + j]].reshape(d1,d2))
bordered_image = 0.5 * numpy.ones((nrows*(d1+1)+1,ncols*(d2+1)+1),dtype=float)
bordered_image[1:nrows*(d1+1),1:ncols*(d2+1)] = image
imshow(bordered_image,cmap = cm.Greys,interpolation='nearest')
xticks([])
yticks([])
开发者ID:goelhardik,项目名称:projects,代码行数:27,代码来源:visualize.py
示例6: plot
def plot(frame,dirname,clim=None,axis_limits=None):
if not os.path.exists('./figures'):
os.makedirs('./figures')
try:
sol=Solution(frame,file_format='petsc',read_aux=False,path='./saved_data/'+dirname+'/_p/',file_prefix='claw_p')
except IOError:
'Data file not found; please unzip the files in saved_data/.'
return
x=sol.state.grid.x.centers; y=sol.state.grid.y.centers
mx=len(x); my=len(y)
mp=sol.state.num_eqn
yy,xx = np.meshgrid(y,x)
p=sol.state.q[0,:,:]
if clim is not None:
pl.pcolormesh(xx,yy,p,cmap=cm.RdBu_r)
else:
pl.pcolormesh(xx,yy,p,cmap=cm.Reds)
pl.title("t= "+str(sol.state.t),fontsize=20)
pl.xticks(size=20); pl.yticks(size=20)
cb = pl.colorbar();
if clim is not None:
pl.clim(clim[0],clim[1]);
imaxes = pl.gca(); pl.axes(cb.ax)
pl.yticks(fontsize=20); pl.axes(imaxes)
pl.axis('equal')
if axis_limits is None:
pl.axis([np.min(x),np.max(x),np.min(y),np.max(y)])
else:
pl.axis([axis_limits[0],axis_limits[1],axis_limits[2],axis_limits[3]])
pl.savefig('./figures/'+dirname+'.png')
pl.close()
开发者ID:ketch,项目名称:diffractons_RR,代码行数:35,代码来源:waves_2D_plots.py
示例7: algorithm_confidence_interval_figure
def algorithm_confidence_interval_figure(
self, trace_file, algorithm, data, x_aspect, y_aspect, x_title, y_title, title
):
reversed_data = transposed(data)
fig, ax = plt.subplots()
ax.set_xlabel(x_title, fontsize=18)
ax.set_ylabel(y_title, fontsize=18)
ax.set_title(title + " (" + self.legend(algorithm) + ")")
x = self.vms_scenarios
ax.xaxis.set_ticks(x)
pylab.xticks(x, self.vms_ticks(x), rotation="vertical", verticalalignment="top")
ax = fig.gca()
scenarios_series = []
m_series = []
upper_ci_series = []
lower_ci_series = []
vms_series = []
plt.grid(True)
for scenario in reversed_data:
x_serie = []
y_serie = []
x = int(scenario[0][x_aspect])
for repetition in scenario:
y = float(repetition[y_aspect])
scatter(x, y, s=1, color="k")
# ax.plot(x, y, color='red', ls='-', marker='.')#, label=self.legend(data_ref[0]['strategy']))
y_serie += [y]
x_serie += [x]
m, ci = mean_confidence_interval(y_serie)
# scenarios_series += [scenario['#VM']]
m_series += [m]
upper_ci_series += [m + ci]
lower_ci_series += [m - ci]
vms_series += [x_serie[0]]
# ax.plot(x_serie[0], m, color='red', ls='-', marker='.', label=self.legend(algorithm))
do_error_bar(x, m, ci, 1, 4)
# print(x_serie)
# print(y_serie)
# print(m)
# print(ci)
print vms_series
print m_series
ax.plot(vms_series, m_series, color="blue", ls="-", marker=".", label=self.legend(algorithm))
ax.plot(vms_series, upper_ci_series, color="red", ls="-.", marker=".", label=self.legend(algorithm))
ax.plot(vms_series, lower_ci_series, color="green", ls="-.", marker=".", label=self.legend(algorithm))
# ax.plot(x2, y2b, color='blue', ls='-', marker='o', label=self.legend(data1[0]['strategy']))
# plt.show()
plt.savefig(self.result_dir + "/figure-" + trace_file + "-" + title + "-" + algorithm + ".png")
# plt.savefig('test.png')
plt.close()
开发者ID:vonpupp,项目名称:2013-sbrc-experiments,代码行数:60,代码来源:plotdata.py
示例8: test_probabilities
def test_probabilities(exp, n=1000):
d = {}
for i in range(n):
foo = rp.parsex(exp)
# foo = len(foo.replace(' ',''))
if foo in d.keys():
d[foo] += 1
else:
d[foo] = 1
# lists = sorted(d.items())
# x, y = zip(*lists) # unpack a list of pairs into two tuples
# print x
# print y
# for a, b in zip(x, y):
# plt.text(a,b, str("%s\n%s" % (a, b)))
plt.xlabel("String length")
plt.ylabel("Occurence")
plt.title("Union: %s P=0.3 N=1000" % exp)
# plt.plot(x, y)
# For bar chart (use on Union)
# See for labeling: https://stackoverflow.com/a/30229062
l = sorted(d.items())
x, y = zip(*l)
plt.bar(range(len(y)), y, align="center")
plt.xticks(range(len(x)), x)
plt.show()
开发者ID:msunardi,项目名称:rebel_ros,代码行数:28,代码来源:test_redis.py
示例9: plotDist
def plotDist(subplot, X, Y, label):
pylab.grid()
pylab.subplot(subplot)
pylab.bar(X, Y, 0.05)
pylab.ylabel(label)
pylab.xticks(arange(len(X)), X)
pylab.yticks(arange(0,1,0.1))
开发者ID:malimome,项目名称:old-projects,代码行数:7,代码来源:infoSec.py
示例10: plot_cost
def plot_cost(self):
if self.show_cost not in self.train_outputs[0][0]:
raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost)
# print self.test_outputs
train_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.train_outputs]
test_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.test_outputs]
if self.smooth_test_errors:
test_errors = [sum(test_errors[max(0,i-len(self.test_batch_range)):i])/(i-max(0,i-len(self.test_batch_range))) for i in xrange(1,len(test_errors)+1)]
numbatches = len(self.train_batch_range)
test_errors = n.row_stack(test_errors)
test_errors = n.tile(test_errors, (1, self.testing_freq))
test_errors = list(test_errors.flatten())
test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors))
test_errors = test_errors[:len(train_errors)]
numepochs = len(train_errors) / float(numbatches)
pl.figure(1)
x = range(0, len(train_errors))
pl.plot(x, train_errors, 'k-', label='Training set')
pl.plot(x, test_errors, 'r-', label='Test set')
pl.legend()
ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches)
epoch_label_gran = int(ceil(numepochs / 20.))
epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) if numepochs >= 10 else epoch_label_gran
ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs))
pl.xticks(ticklocs, ticklabels)
pl.xlabel('Epoch')
pl.ylabel(self.show_cost)
pl.title('%s[%d]' % (self.show_cost, self.cost_idx))
print "plotted cost"
开发者ID:caomw,项目名称:cuda-convnet2-1,代码行数:31,代码来源:shownet.py
示例11: plot
def plot(self):
self._logger.debug('plotting')
colors = self._colors[:(len(self._categoryData))]
ind = pylab.arange(len(self._xData))
bar_width = 1.0 / (len(self._categoryData) + 1)
bar_groups = []
for c in range(len(self._categoryData)):
bars = pylab.bar(ind+c*bar_width, self._yData[c], bar_width, color=colors[c % len(colors)])
bar_groups.append(bars)
pylab.xticks(ind+bar_width, self._xData)
if (self._usingLegend):
pylab.legend((b[0] for b in bar_groups), self._categoryData,
title = self._legendTitle, loc = self._legendLocation,
labelspacing = self._legendLabelSpacing,
prop = self._legendFontProps, bbox_to_anchor = self._legendBboxToAnchor)
pylab.xlabel(self._xLabel, fontdict=self._font)
pylab.ylabel(self._yLabel, fontdict=self._font)
pylab.title(self._title, fontdict=self._font)
if(self._saveFig):
self._logger.debug('Saving plot as {}'.format(self._saveName))
pylab.savefig(self._saveName)
pylab.show()
开发者ID:petevieira,项目名称:ns3-sims,代码行数:26,代码来源:pvplot.py
示例12: Iris_network
def Iris_network(ant, data):
#G = nx.watts_strogatz_graph(100,3,0.6)
#G = nx.cubical_graph()
G = nx.Graph() #無向グラフ
tmp1 = []
tmp2 = []
tmp3 = []
for i in range(len(data)):
if data[i][4] == 'setosa':
tmp1.append(str(i))
elif data[i][4] == 'versicolor':
tmp2.append(str(i))
elif data[i][4] == 'virginica':
tmp3.append(str(i))
for i in range(len(data)):
if len(ant[i].parent) == 0 : pass
else:
dest = ant[i].parent[0]
#G.add_edge(str(ant[i].data), str(ant[dest].data))
G.add_edge(str(ant[i].Id), str(ant[dest].Id))
pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G, pos, nodelist=tmp1, node_size=30, node_color="r")
nx.draw_networkx_nodes(G, pos, nodelist=tmp2, node_size=30, node_color="w")
nx.draw_networkx_nodes(G, pos, nodelist=tmp3, node_size=30, node_color="w")
nx.draw_networkx_edges(G, pos, width=1)
#nx.draw_networkx_labels(G, pos, font_size=10, font_color="b")
plt.xticks([])
plt.yticks([])
plt.show()
开发者ID:ae14gotou,项目名称:tokuken2,代码行数:33,代码来源:network_Ant.py
示例13: plot_cost
def plot_cost(self):
if self.show_cost not in self.train_outputs[0][0]:
raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost)
train_errors = [o[0][self.show_cost][self.cost_idx] for o in self.train_outputs]
test_errors = [o[0][self.show_cost][self.cost_idx] for o in self.test_outputs]
numbatches = len(self.train_batch_range)
test_errors = numpy.row_stack(test_errors)
test_errors = numpy.tile(test_errors, (1, self.testing_freq))
test_errors = list(test_errors.flatten())
test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors))
test_errors = test_errors[:len(train_errors)]
numepochs = len(train_errors) / float(numbatches)
pl.figure(1)
x = range(0, len(train_errors))
pl.plot(x, train_errors, 'k-', label='Training set')
pl.plot(x, test_errors, 'r-', label='Test set')
pl.legend()
ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches)
epoch_label_gran = int(ceil(numepochs / 20.)) # aim for about 20 labels
epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) # but round to nearest 10
ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs))
pl.xticks(ticklocs, ticklabels)
pl.xlabel('Epoch')
# pl.ylabel(self.show_cost)
pl.title(self.show_cost)
pl.savefig('cost.png')
开发者ID:HoldenCaulfieldRye,项目名称:pipe-classification,代码行数:29,代码来源:shownet.py
示例14: bar_chart
def bar_chart(categories, xdata, ydata,
title, xlabel, ylabel,
font={'family':'serif','color':'black','weight':'normal','size':12,},
plot=True, saveImage=False, imageName='fig.png'):
colors = 'rgbcmyk'
colors = colors[:(len(categories))]
ind = pylab.arange(len(xdata))
bar_width = 1.0 / (len(categories) + 1)
bar_groups = []
# loop through categories and plot one bar in each category every loop (ie., one color at a time.)
fig = pylab.figure()
for c in range(len(categories)):
bars = pylab.bar(ind+c*bar_width, ydata[c], bar_width, color=colors[c % len(colors)])
bar_groups.append(bars)
fontP = FontProperties()
fontP.set_size('small')
pylab.xticks(ind+bar_width, xdata)
pylab.legend([b[0] for b in bar_groups], categories,
loc='center right', title='Flow #', labelspacing=0,
prop=fontP, bbox_to_anchor=(1.125, .7))
pylab.xlabel(xlabel, fontdict=font)
pylab.ylabel(ylabel, fontdict=font)
pylab.title(title, fontdict=font)
# save the figure
if saveImage:
pylab.savefig(imageName)
# plot the figure
if plot:
pylab.show()
开发者ID:petevieira,项目名称:ns3-sims,代码行数:35,代码来源:p1-plot.py
示例15: eqDistribution
def eqDistribution(self, plot=True):
""" Obtain and plot the equilibrium probabilities of each macrostate
Parameters
----------
plot : bool, optional, default=True
Disable plotting of the probabilities by setting it to False
Returns
-------
eq : ndarray
An array of equilibrium probabilities of the macrostates
Examples
--------
>>> model = Model(data)
>>> model.markovModel(100, 5)
>>> model.eqDistribution()
"""
self._integrityCheck(postmsm=True)
macroeq = np.ones(self.macronum) * -1
for i in range(self.macronum):
macroeq[i] = np.sum(self.msm.stationary_distribution[self.macro_ofmicro == i])
if plot:
from matplotlib import pylab as plt
plt.ion()
plt.figure()
plt.bar(range(self.macronum), macroeq)
plt.ylabel('Equilibrium probability')
plt.xlabel('Macrostates')
plt.xticks(np.arange(0.4, self.macronum+0.4, 1), range(self.macronum))
plt.show()
return macroeq
开发者ID:PabloHN,项目名称:htmd,代码行数:34,代码来源:model.py
示例16: plot_tuning_curves
def plot_tuning_curves(direction_rates, title):
"""
This function takes the x-values and the y-values in units of spikes/s
(found in the two columns of direction_rates) and plots a histogram and
polar representation of the tuning curve. It adds the given title.
"""
x = direction_rates[:,0]
y = direction_rates[:,1]
plt.figure()
plt.subplot(2,2,1)
plt.bar(x,y,width=45,align='center')
plt.xlim(-22.5,337.5)
plt.xticks(x)
plt.xlabel('Direction of Motion (degrees)')
plt.ylabel('Firing Rate (spikes/s)')
plt.title(title)
plt.subplot(2,2,2,polar=True)
r = np.append(y,y[0])
theta = np.deg2rad(np.append(x, x[0]))
plt.polar(theta,r,label='Firing Rate (spikes/s)')
plt.legend(loc=8)
plt.title(title)
开发者ID:emirvine,项目名称:psyc-179,代码行数:25,代码来源:problem_set2_solutions.py
示例17: plotRocCurves
def plotRocCurves(lesion, lesion_en):
file_legend = []
for techniqueMid in techniquesMid:
for techniqueLow in techniquesLow:
file_legend.append((directory + techniqueLow + "/" + techniqueMid + "/operating-points-" + lesion + "-scale.dat", "Low-level: " + techniqueLow + ". Mid-level: " + techniqueMid + "."))
pylab.clf()
pylab.figure(1)
pylab.xlabel('1 - Specificity', fontsize=12)
pylab.ylabel('Sensitivity', fontsize=12)
pylab.title(lesion_en)
pylab.grid(True, which='both')
pylab.xticks([i/10.0 for i in range(1,11)])
pylab.yticks([i/10.0 for i in range(0,11)])
#pylab.tick_params(axis="both", labelsize=15)
for file, legend in file_legend:
points = open(file,"rb").readlines()
x = [float(p.split()[0]) for p in points]
y = [float(p.split()[1]) for p in points]
x.append(0.0)
y.append(0.0)
auc = numpy.trapz(y, x) * -100
pylab.grid()
pylab.plot(x, y, '-', linewidth = 1.5, label = legend + u" (AUC = {0:0.1f}%)".format(auc))
pylab.legend(loc = 4, borderaxespad=0.4, prop={'size':12})
pylab.savefig(directory + "plots/" + lesion + ".pdf", format='pdf')
开发者ID:piresramon,项目名称:pires.ramon.msc,代码行数:30,代码来源:classification.py
示例18: boxplot_poi
def boxplot_poi(data, var_name):
"""
Makes box plot with variable "var_name"
split into
:param data: data dict with enron data
:param var_name: name of variable to plot
:return: plot object
"""
poi_v = []
no_poi_v = []
for p in data.itervalues():
value = p[var_name]
if value == "NaN":
value = 0
if p["poi"] == 1:
poi_v.append(value)
else:
no_poi_v.append(value)
plt.xlabel("POI")
plt.ylabel(var_name)
plt.boxplot([poi_v, no_poi_v])
plt.xticks([1, 2], ["POI", "Not a POI"])
# http://stackoverflow.com/a/29780292/1952996
for i, v in enumerate([poi_v, no_poi_v]):
y = v
x = np.random.normal(i+1, 0.04, size = len(y))
plt.plot(x, y, "r.", alpha=0.2)
开发者ID:zelite,项目名称:Identify-fraud-from-enron-email,代码行数:27,代码来源:plotting.py
示例19: plotRocCurves
def plotRocCurves(file_legend):
pylab.clf()
pylab.figure(1)
pylab.xlabel('1 - Specificity', fontsize=12)
pylab.ylabel('Sensitivity', fontsize=12)
pylab.title("Need for Referral")
pylab.grid(True, which='both')
pylab.xticks([i/10.0 for i in range(1,11)])
pylab.yticks([i/10.0 for i in range(0,11)])
pylab.tick_params(axis="both", labelsize=15)
for file, legend in file_legend:
points = open(file,"rb").readlines()
x = [float(p.split()[0]) for p in points]
y = [float(p.split()[1]) for p in points]
dev = [float(p.split()[2]) for p in points]
x = [0.0] + x
y = [0.0] + y
dev = [0.0] + dev
auc = np.trapz(y, x) * 100
aucDev = np.trapz(dev, x) * 100
pylab.grid()
pylab.errorbar(x, y, yerr = dev, fmt='-')
pylab.plot(x, y, '-', linewidth = 1.5, label = legend + u" (AUC = {0:0.1f}% \xb1 {1:0.1f}%)".format(auc,aucDev))
pylab.legend(loc = 4, borderaxespad=0.4, prop={'size':12})
pylab.savefig("referral/referral-curves.pdf", format='pdf')
开发者ID:piresramon,项目名称:retina.bovw.plosone,代码行数:29,代码来源:referral.py
示例20: plot_p
def plot_p(frame):
sol=Solution(frame,file_format='petsc',read_aux=False,path='./_output/_p/',file_prefix='claw_p')
x=sol.state.grid.x.centers; y=sol.state.grid.y.centers
mx=len(x); my=len(y)
mp=sol.state.num_eqn
yy,xx = np.meshgrid(y,x)
p=sol.state.q[0,:,:]
fig = pl.figure(figsize=(8, 3.5))
#pl.title("t= "+str(sol.state.t),fontsize=20)
pl.xticks(size=20); pl.yticks(size=20)
pl.xlabel('x',fontsize=20); pl.ylabel('y',fontsize=20)
#pl.pcolormesh(xx,yy,p_subxy,cmap=cm.OrRd)
pl.pcolormesh(xx,yy,p,cmap='RdBu_r')
pl.autoscale(tight=True)
cb = pl.colorbar(ticks=[0.5,1,1.5,2]);
#pl.clim(ticks=[0.5,1,1.5,2])
imaxes = pl.gca(); pl.axes(cb.ax)
pl.yticks(fontsize=20); pl.axes(imaxes)
#pl.xticks(fontsize=20); pl.axes(imaxes)
#pl.axis('equal')
pl.axis('tight')
fig.tight_layout()
pl.savefig('./_plots_to_paper/sound-speed_FV_t'+str(frame)+'_pcolor.png')
pl.close()
开发者ID:ketch,项目名称:effective_dispersion_RR,代码行数:27,代码来源:plots_to_paper.py
注:本文中的matplotlib.pylab.xticks函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论