• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pylab.rc函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中matplotlib.pylab.rc函数的典型用法代码示例。如果您正苦于以下问题:Python rc函数的具体用法?Python rc怎么用?Python rc使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了rc函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: display_TwoHopSchemes

def display_TwoHopSchemes(two_hop_schemes, pathString):
    '''
    Produce a graph that compare ... 
    '''
    self = two_hop_schemes

    pylab.rc('axes', linewidth=2) # make the axes boundary lines bold 
    #fig, ax = plt.subplots()
    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 0.7, 0.7]) # left, bottom, width, height (range 0 to 1)
    rr.plot( self.region_CF_ICFsch3, 'red', lw=8, axes=ax, label='CF + ICF')
    rr.plot( self.region_DFIntegerCoeff_FCo, 'c', lw=4, axes=ax, label='DF + FCo')
    rr.plot( self.region_noInterference, 'blue', lw=2, axes=ax, label='Free Interf.')  
    
    
    fig.suptitle('$g ={},{},{},{}$'.format(self.g13, self.g14, self.g23, self.g24), fontsize=14, fontweight='bold')
    ax.set_title(r'$P_s=P_1=P_2={}, \, P_3={}, \, P_4={}, \, N=1$'.format(self.Ps, self.P3, self.P4),fontdict=self.font)
    
    ax.set_xlabel('$R_1$', fontdict=self.font)
    ax.set_ylabel('$R_2$', fontdict=self.font)
    #ax.set_xlim(xmin=0, xmax=3.5) 
    #ax.set_ylim(ymin=0, ymax=3.5) 
    ax.legend(loc=0)
    
    # savefig.save(path='{}compare_TwoHop_Schemes/PsP3P4_{}_{}_{}_g_{}_{}_{}_{}'.format(pathString, self.Ps, self.P3, self.P4, self.g13, self.g14, self.g23, self.g24), ext='pdf', close=False, verbose=True)    
    
    nameStr = 'PsP3P4_{}_{}_{}_g13g14g23g24_{}_{}_{}_{}'.format(self.Ps, self.P3, self.P4, self.g13, self.g14, self.g23, self.g24)
    savefig.save(path='{}compare_TwoHop_Schemes/{}'.format(pathString, nameStr), ext='pdf', close=False, verbose=True)
    
        
        
开发者ID:yanyingchen,项目名称:2DRateRegion,代码行数:28,代码来源:compareTwoHopSchemes.py


示例2: display

def display(oneSimulation,pathString, separate=False ,saveOnly=True):
    '''
    show/save figures
    '''
    self = oneSimulation

    pylab.rc('axes', linewidth=2) # make the axes boundary lines bold 
    #fig, ax = plt.subplots()
    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 0.7, 0.7]) # left, bottom, width, height (range 0 to 1)
    if separate:
        rr.plot( self.df_Region, 'red', lw=6, axes=ax, label='DF')
        rr.plot( self.cf_Region, 'blue', lw=4, axes=ax, label='CF')  
        rr.plot( self.fco_Region, 'red', lw=6, axes=ax, label='DF')
        rr.plot( self.icf_Region_bigR1, 'blue', lw=4, axes=ax, label='ICF')  
        rr.plot( self.icf_Region_bigR2, 'blue', lw=4, axes=ax)
    
    rr.plot(self.df_fco_region, 'red', lw=6, label='DF+FCo')
    rr.plot(self.cf_icf_region, 'blue', lw=4, label='CF+ICF')
    fig.suptitle('$g ={},{},{},{}$'.format(self.g13, self.g14, self.g23, self.g24), fontsize=14, fontweight='bold')
    ax.set_title(r'$P_s=P_1=P_2={}, \, P_3={}, \, P_4={}, \, N=1$'.format(self.Ps,
                 self.P3, self.P4),fontdict=self.font)
    
    ax.set_xlabel('$R_1$', fontdict=self.font)
    ax.set_ylabel('$R_2$', fontdict=self.font)
    #ax.set_xlim(xmin=0, xmax=3.5) 
    #ax.set_ylim(ymin=0, ymax=3.5) 
    ax.legend(loc=0)
    
    nameStr = 'PsP3P4_{}_{}_{}_g13g14g23g24_{}_{}_{}_{}'.format(self.Ps, self.P3, self.P4, 
                                                                self.g13, self.g14, self.g23, self.g24)
    savefig.save(path='{}/plots_CF_ICF__DF_FCo/{}'.format(pathString, nameStr), ext='pdf', close=saveOnly, verbose=True)        
        
开发者ID:yanyingchen,项目名称:2DRateRegion,代码行数:32,代码来源:compare_twoHops_CF_ICF__DF_FCo.py


示例3: plot_transition_ratio

def plot_transition_ratio(df1, df2):
    """
    plot stage transitions
    df1: normal sleep (df1 = analyse(base))
    df2: sleep depravation (df2 = analyse(depr))
    """    
    N = 5
    ind = np.arange(N)  # the x locations for the groups
    width = 0.2       # he width of the bars
    plt.close()
    plt.rc('font', family='Arial')

    fig, ax = plt.subplots(nrows=6, ncols=6, sharex='col', sharey='row')
    fig.suptitle("Comparison of the number of stage transitions (% of total transitions) (origin stage " + u'\u2192' + " dest. stage)", fontsize=20)        
    plt.subplots_adjust(wspace = 0.2,hspace = 0.4 )
    for i in range(0,6): # do not care about stage transitions > 5
        for j in range(0,6):     
            clef = '%t' + str(i) + '-' + str(j)
            normal = df1[clef].tolist()
            mean = sum(normal) / len(normal)
            normal.extend([mean])
            rects1 = ax[i,j].bar(ind, normal, width, color='b')
            depravation = df2[clef].tolist()
            mean = sum(depravation) / len(depravation)
            depravation.extend([mean])
            rects2 = ax[i,j].bar(ind+width, depravation, width, color='r')
            for label in (ax[i,j].get_xticklabels() + ax[i,j].get_yticklabels()):
                label.set_fontname('Arial')
                label.set_fontsize(8)            
            ax[i,j].set_title(str(i) + ' ' + u'\u2192' + ' ' + str(j))
            ax[i,j].set_xticks(ind+width)
            ax[i,j].set_xticklabels( ('1', '2', '3', '4', 'Avg') )
            ax[i,j].set_yticks(np.arange(0, 6, 2))
            ax[i,j].set_ylim([0,6])
    fig.legend( (rects1[0], rects2[0]), ('Baseline', 'Recovery'), loc = 'lower right', fontsize=10)
开发者ID:END-team,项目名称:final-project,代码行数:35,代码来源:yannick.py


示例4: newCreateAndSaveMultilineFig

def newCreateAndSaveMultilineFig(xDataList, yDataList, xLabel="", yLabel="",
                                 figFileRoot="", fileExt='.png', xMin=0,
                                 xMax=0, yMin=0, yMax=0, legendFlag=1,
                                 legendFont=12, traceNameList=[],
                                 legLoc=(0, 0)):
    """This subroutine saves a figure with multiple lines."""

    figFileName = figFileRoot + fileExt
    colorDict = createColorDictWithDashes()

    if xMax == 0:
        curMax = 0
        for n in range(0, len(xDataList)):
            if type(xDataList[n]) == list:
                if max(xDataList[n]) > curMax:
                    curMax = max(xDataList[n])
            else:
                if xDataList[n].any() > curMax:
                    curMax = max(xDataList[n])
        xMax = curMax

    if yMax == 0:
        curMax = 0
        for n in range(0, len(yDataList)):
            if type(yDataList[n]) == list:
                if max(yDataList[n]) > curMax:
                    curMax = max(yDataList[n])
            else:
                if yDataList[n].any() > curMax:
                    curMax = max(yDataList[n])
        yMax = curMax

    plt.axes([0.1, 0.1, 0.71, 0.8])
    if traceNameList == []:
        for n in range(0, len(xDataList)):
            traceNameList.append("Trace_" + str(n))

    for n in range(0, len(xDataList)):
        xData = convert_list_to_array(xDataList[n])
        yData = convert_list_to_array(yDataList[n])
        tempPlot = plt.plot(
            xData, yData, colorDict[str(n + 1)], hold="True",
            label=traceNameList[n])

    plt.xlabel(xLabel)
    plt.ylabel(yLabel)
    plt.xlim(xMin, xMax)
    plt.ylim(yMin, yMax)
    plt.rc("legend", fontsize=legendFont)

    if legendFlag == 1:
        if legLoc != (0, 0):
            print(legLoc)
            plt.legend(loc=legLoc)
        else:
            plt.legend()
    plt.savefig(figFileName, dpi=300)
    plt.clf()
开发者ID:FordyceLab,项目名称:mitomi_analysis,代码行数:58,代码来源:plotUtils.py


示例5: display70

def display70(oneSimulation,pathString, separate=False ,saveOnly=True):
    '''
    show/save figures
    '''
    self = oneSimulation
    
    tmp = np.asarray(oneSimulation.cf_icf01_region._geometry.boundary)
    tmp01= tmp[(0,1,3), :]
    
    tmp = np.asarray(oneSimulation.cf_icf_region._geometry.boundary)
    tmp03= tmp[(1,2,3,4), :]
    
    tmp = np.asarray(oneSimulation.df_fco_region._geometry.boundary)
    tmpDF = tmp[(0,1,2,3), :]


    

    pylab.rc('axes', linewidth=2) # make the axes boundary lines bold 
#     fig, ax = plt.subplots()
    fig = plt.figure()
    fig.set( size_inches=(8.8, 6) )
    
    ax = fig.add_axes([0.1, 0.1, 0.7, 0.7]) # left, bottom, width, height (range 0 to 1)
#     if separate:
#         rr.plot( self.df_region, 'red', lw=6, axes=ax, label='DF')
#         rr.plot( self.cf_region, 'blue', lw=4, axes=ax, label='CF')  
#         rr.plot( self.fco_region, 'red', lw=6, axes=ax, label='DF')
#         rr.plot( self.icf_region_bigR1, 'blue', lw=4, axes=ax, label='ICF')  
#         rr.plot( self.icf_region_bigR2, 'blue', lw=4, axes=ax)
    
    
    
#     rr.plot(self.df_fco_region, 'blue', lw=6, label='DF+FCo')
#     rr.plot(self.cf_icf_region, 'red', lw=4, label='CF+ICF Scheme 3')
#     rr.plot(self.cf_icf01_region, 'green', lw=2, label='CF+ICF Scheme 1' )
    
    
    ax.plot(tmpDF[:,0], tmpDF[:,1], 'blue', lw=6, label='DF+FCo')
    ax.plot(tmp03[:,0], tmp03[:,1], 'red', lw=4, label='CF+ICF Scheme 3')
    ax.plot(tmp01[:,0], tmp01[:,1], 'green', lw=2, label='CF+ICF Scheme 1' )
    
    
    
    
#     fig.suptitle('$g ={},{},{},{}$'.format(self.g13, self.g14, self.g23, self.g24), fontsize=14, fontweight='bold')
    ax.set_title(r'$P_s=P_1=P_2={}, \, P_3={}, \, P_4={}, \, N=1$'.format(self.Ps,
                 self.P3, self.P4),fontdict=self.font)
    
    ax.set_xlabel('$R_1$', fontdict=self.font)
    ax.set_ylabel('$R_2$', fontdict=self.font)
    #ax.set_xlim(xmin=0, xmax=3.5) 
    #ax.set_ylim(ymin=0, ymax=3.5) 
    ax.legend(loc=0)
    
    nameStr = 'PsP3P4_{}_{}_{}_g13g14g23g24_{}_{}_{}_{}'.format(self.Ps, self.P3, self.P4, 
                                                                self.g13, self.g14, self.g23, self.g24)
    savefig.save(path='{}/plots_CF_ICF03__CF_ICF01__DF_FCo/{}'.format(pathString, nameStr), ext='pdf', close=saveOnly, verbose=True)        
开发者ID:yanyingchen,项目名称:2DRateRegion,代码行数:58,代码来源:finalPlots_compare_CF_ICF03__CF_ICF01__DF_FCo.py


示例6: violin_plot

def violin_plot(ax, values_list, measure_name, group_names, fontsize, color='blue',  ttest=False):
    '''
    This is a little wrapper around the statsmodels violinplot code
    so that it looks nice :)    
    '''    
    
    # IMPORTS
    import matplotlib.pylab as plt
    import statsmodels.api as sm
    import numpy as np
    
    # Make your violin plot from the values_list
    # Don't show the box plot because it looks a mess to be honest
    # we're going to overlay a boxplot on top afterwards
    plt.sca(ax)
    
    # Adjust the font size
    font = { 'size'   : fontsize}
    plt.rc('font', **font)

    max_value = np.max(np.concatenate(values_list))
    min_value = np.min(np.concatenate(values_list))
    
    vp = sm.graphics.violinplot(values_list,
                            ax = ax,
                            labels = group_names,
                            show_boxplot=False,
                            plot_opts = { 'violin_fc':color ,
                                          'cutoff': True,
                                          'cutoff_val': max_value,
                                          'cutoff_type': 'abs'})
    
    # Now plot the boxplot on top
    bp = plt.boxplot(values_list, sym='x')
    
    for key in bp.keys():
        plt.setp(bp[key], color='black', lw=fontsize/10)
        
    # Adjust the power limits so that you use scientific notation on the y axis
    plt.ticklabel_format(style='sci', axis='y')
    ax.yaxis.major.formatter.set_powerlimits((-3,3))
    plt.tick_params(axis='both', which='major', labelsize=fontsize)

    # Add the y label
    plt.ylabel(measure_name, fontsize=fontsize)
    
    # And now turn off the major ticks on the y-axis
    for t in ax.yaxis.get_major_ticks(): 
        t.tick1On = False 
        t.tick2On = False

    return ax
开发者ID:KirstieJane,项目名称:DESCRIBING_DATA,代码行数:52,代码来源:create_violin_plots.py


示例7: chi_squared_stats

    def chi_squared_stats(self, plot_chisq=False):
        """
        Compute chi^2 statistics for an X^2 distribution.
        This is essentially a chi^2 test for normality being
        computed on residual from the fit. I'll rewrite it 
        into a chi^2 goodness of fit test when I'll get around
        to it.

        Returns
        -------
        prob_chisq : probability that X^2 obeys the chi^2 distribution

        dof : degrees of freedom for chi^2
        """
        # ------------------- TODO --------------------- #
        # rewrite it to a real chi-square goodness of fit!
        # this is essentially a chi^2 test for normality
        from scipy.stats import chisqprob

        # TODO: for Pearson's chisq test it would be
        # dof = self.xarr.size - self.specfit.fitter.npars - 1
        
        # NOTE: likelihood function should asymptotically approach
        #       chi^2 distribution too! Given that the whole point
        #       of calculating chi^2 is to use it for model 
        #       selection I should probably switch to it.

        # TODO: derive an expression for this "Astronomer's X^2" dof.
        dof = self.xarr.size
        prob_chisq = chisqprob(self.chi_squared, dof)

        # NOTE: for some reason get_modelcube returns zeros for some
        #       pixels even if corresponding Cube.parcube[:,y,x] is NaN
        prob_chisq[np.isnan(self.parcube.min(axis=0))] = np.nan

        if plot_chisq:
            if not plt.rcParams['text.usetex']:
                plt.rc('text', usetex=True)
            if self.mapplot.figure is None:
                self.mapplot()
            self.mapplot.plane = prob_chisq
            self.mapplot(estimator=None, cmap='viridis', vmin=0, vmax=1)
            labtxt = r'$\chi^2\mathrm{~probability~(%i~d.o.f.)}$' % dof
            self.mapplot.FITSFigure.colorbar.set_axis_label_text(labtxt)
            plt.show()

        self.prob_chisq = prob_chisq

        return prob_chisq, dof
开发者ID:vlas-sokolov,项目名称:multicube,代码行数:49,代码来源:subcube.py


示例8: plot

 def plot(self):
     name = self.get_tag()
     Y_list = self.get_geom().get_XYZ()[1,:]
     plt.xlim(1.1*Y_list[0], 1.1*Y_list[-1])
     plt.xlabel('y')
     plt.ylabel('gamma')
     plt.plot(Y_list,self.__gamma)
     plt.rc("font", size=14)
     plt.savefig(name+"_gamma_distrib.png",format='png')
     plt.close()
     
     plt.xlim(1.1*Y_list[0], 1.1*Y_list[-1])
     plt.xlabel('y')
     plt.ylabel('iAoA')
     plt.plot(Y_list,self.__iAoA*self.RAD_TO_DEG)
     plt.rc("font", size=14)
     plt.savefig(name+"_iAoA_distrib.png",format='png')
     plt.close()
开发者ID:matthieu-meaux,项目名称:DLLM,代码行数:18,代码来源:DLLMDirect.py


示例9: AxisFormat

def AxisFormat(FONTSIZE = 22, TickSize = 10, TickDirection = 'out'):
    """

    Format axes to standard design.

    :param FONTSIZE: desired fontsize of all fonts.
    :type FONTSIZE: int
    :param TickSize: size of ticks in pxls.
    :type TickSize: int
    :param TickDirection: decide whether to plot ticks in or out
    :type TickDirection: str

    :returns: altered axes.

    .. note::
       * This function should work if called prior to plot input.

    **Usage**

    .. code-block:: python
       :emphasize-lines: 3

       fig = plt.figure(figsize=(8,6))
       ax = fig.add_subplot(111)
       pf.AxisFormat()

       ax.plot(np.arange(0,100), np.arange(0,100), 'b-', linewidth =2)

       plt.tight_layout()
       plt.show()

    **Exmaple**


    *simple plot without AxisFormat call*

    .. plot:: pyplots/AxisFormatDemo1.py
       :include-source:

    *simple plotnwith AxisFormat call*

    .. plot:: pyplots/AxisFormatDemo2.py
       :include-source:

    """
    font = {'weight': 'norm', 'size': FONTSIZE}
    legend = {'frameon': False}
    ticks = {'direction': TickDirection, 'major.size': TickSize,
             'minor.size': TickSize - 2}

    plt.rc('font', **font)
    plt.rc('legend', **legend)
    plt.rc('xtick', **ticks)
    plt.rc('ytick', **ticks)
开发者ID:bps10,项目名称:birdsong,代码行数:54,代码来源:PlottingFun.py


示例10: __init__

    def __init__(self):
        """
        """

        fig = plt.figure(facecolor = 'w', figsize = [12, 12])
        fig.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
        
        ax1 = fig.add_subplot(1, 1, 1, aspect='equal')
        
        self.t = np.arange(0, len(Nodes['age']))
        self.x = xx[self.t]
        self.y = yy[self.t]
        self.age = Nodes['age'][self.t]

        plot_eye(Nodes,ax1)

        ax1.set_xlabel('mm',fontsize=20)
        ax1.set_ylabel('mm',fontsize=20)

        self.line1 = Line2D([], [], color='red', linewidth=4)
        self.line1e = Line2D([], [], color='red', marker='o', markeredgecolor='r', markersize=10)
        
        self.text = ax1.text(0.05, 0.05, 'Age: %s'%self.age[0] , fontsize=18, animated = True,
                            transform=ax1.transAxes)
                            
        ax1.add_line(self.line1)
        ax1.add_line(self.line1e)

        
        ax1.set_xlim(-14, 14)
        ax1.set_ylim(-14, 14)
        ax1.set_title('eye growth simulation',fontsize=20)


        ax1.set_xticks([-10, -5, 0, 5, 10])
        ax1.set_yticks([-10, -5, 0, 5, 10])
        
        
        plt.rc('xtick', labelsize=20)
        plt.rc('ytick', labelsize=20)
        plt.tight_layout()
        
        animation.TimedAnimation.__init__(self, fig, interval=10, blit=True)
开发者ID:bps10,项目名称:NeitzModel,代码行数:43,代码来源:Eye_Grow.py


示例11: display

def display(oneSimulation,pathString ,saveOnly=True):
    '''
    Produce a graph that compare three ICF schemes
    '''
    self = oneSimulation
    
    # get the union rate region for plotting 
    icf_sch1 = rr.union( [self.icf_sch1_bigR1, self.icf_sch1_bigR2] )
    icf_sch2 = rr.union( [self.icf_sch2_bigR1, self.icf_sch2_bigR2] )
    icf_sch3 = rr.union( [self.icf_sch3_bigR1, self.icf_sch3_bigR2] )

    pylab.rc('axes', linewidth=2) # make the axes boundary lines bold 
    fig, ax = plt.subplots()
    rr.plot( icf_sch1, 'g', axes=ax, label='Scheme 1')
    rr.plot( icf_sch2, 'b', axes=ax, label='Scheme 2')
    rr.plot( icf_sch3, 'r', axes=ax, label='Scheme 3')  
    
    # plot the line: R2 = R1
    tmp = np.asarray(self.icf_sch1_bigR1._geometry.boundary)
    tmp2 = [[0, tmp[1, 0]], [0, tmp[1, 1] ] ]
    ax.plot( [0, tmp[1, 0]], [0, tmp[1, 1] ] , 'k--', lw=2)

    ax.set_title(r'$ P_3={}, \, P_4={}, \, N=1$'.format(self.P3, self.P4) , fontdict=self.font)
    ax.set_xlabel('$R_1$', fontdict=self.font)
    ax.set_ylabel('$R_2$', fontdict=self.font)
    ax.set_xlim(xmin=0, xmax=3.5) 
    ax.set_ylim(ymin=0, ymax=3.5) 
    ax.legend(loc='upper right')
    
    savefig.save(path='{}/compare_three_ICF_Schemes/P3P4_{}_{}'.format(pathString, self.P3, self.P4 ), ext='pdf', close=saveOnly, verbose=True)
    if (0):
        # add annotations for 3 regions
        plt.text(0.7, 2.3, 'capacity region by coherent coding with cardinality-bounding', color='red')
        plt.text(1, 1.8, 'non-coherent coding with cardinality-bounding', color='blue')
        plt.text(1.3, 1.4, 'capacity region by coherent coding with cardinality-bounding', color='green')
        
        bbox_props = dict(boxstyle="round,pad=0.1", fc="white", ec="g", lw=1)
        plt.text(1, 0.5, r'$1$', color='black', bbox=bbox_props)
        bbox_props = dict(boxstyle="round,pad=0.1", fc="white", ec="b", lw=1)
        plt.text(1.7, 0.4, r'$2$', color='black', bbox=bbox_props)
        bbox_props = dict(boxstyle="round,pad=0.1", fc="white", ec="r", lw=1)
        plt.text(2.2, 0.3, r'$3$', color='black', bbox=bbox_props)
开发者ID:yanyingchen,项目名称:2DRateRegion,代码行数:42,代码来源:compareThreeICFSchemes.py


示例12: plot_matches

def plot_matches(smresbest,lspec):
    """
    Plot best matches

    Plots the target spectrum along with the top matches
       
    """
    shift = 1
    fig,axL = plt.subplots(nrows=2,figsize=(20,12),sharex=True)
    
    plt.sca(axL[0])
    
    targpar = smresbest.rename(columns={'targobs':'obs'})
    targpar = dict(targpar['obs ord wlo whi'.split()].iloc[0])
    targpar['type'] = 'cps'
    targspec = smio.getspec_h5(**targpar)
    w = targspec['w']
    plt.plot(w,targspec['s'],'k')

    plt.rc('axes',color_cycle=['Tomato', 'RoyalBlue'])    
    for i in smresbest.index:
        # Plot target spectrum
        plt.sca(axL[0])
        y = shift*0.3
        plt.plot(w,lspec['lspec'][i]+y)

        par = dict(smresbest.ix[i])
        par['y'] = y+1
        annotate_matches(par)
        
        # Plot residuals
        plt.sca(axL[1])
        y = shift*0.2
        plt.plot(w,lspec['fres'][i]+y)

        par['y'] = y
        annotate_matches(par)
        shift+=1

    fig.subplots_adjust(left=.03,bottom=.03,top=0.97,right=.8)
开发者ID:petigura,项目名称:specmatch-syn,代码行数:40,代码来源:smplots.py


示例13: OrientationPlot

def OrientationPlot(OrientationHist_Data,BINS):
    """
    Plot an orienation histogram. For use with OrientationHist function

    Input
    -----
    OrientationHist_Data: computed from OrienationHist function
    BINS: bins used to compute OrientationHist

    Output
    ------
    Produces a polar plot with the orientation histogram data

    """
    RAD_BINS = BINS/(180./np.pi)
    ## Data Plot
    plt.rc('grid', color='gray', linewidth=1, linestyle='-')
    plt.rc('xtick', labelsize=25)
    plt.rc('ytick', labelsize=20)
    width, height = plt.rcParams['figure.figsize']
    size = min(width, height)
    fig = plt.figure(figsize=(size, size))
    ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True, axisbg='w')
    plt.polar(RAD_BINS,OrientationHist_Data/float(sum(OrientationHist_Data)), 'k',linewidth=4, marker='o')
    ax.set_rmax(0.2)
    plt.show()
开发者ID:Jeffknowles,项目名称:DrunkardsSwim,代码行数:26,代码来源:AnalysisFunctions.py


示例14: create_bar_plots

def create_bar_plots(bins, freq_list, height, group_names, colors, xlabel, ylabel, legend=True):
    import matplotlib.pylab as plt
    import numpy as np
    from matplotlib.ticker import MaxNLocator
    
    fig = plt.figure(figsize=(height*1.5, height))
    ax = fig.add_subplot(111)
    
    font = { 'size'   : 22 * height/8}

    plt.rc('font', **font)
    
    range = np.max(bins) - np.min(bins)
    w = range/((len(bins)-1) * len(group_names))

    for i, group in enumerate(group_names):
        
        bar = plt.bar(bins + w*i, freq_list[i],
                                width=w, label = group,
                                color=colors[i],
                                edgecolor='none')
        
        # Adjust the power limits so that you use scientific notation on the y axis
        plt.ticklabel_format(style='sci', axis='y')
        ax.yaxis.major.formatter.set_powerlimits((-3,3))

        for t in ax.yaxis.get_major_ticks(): 
            t.tick1On = False 
            t.tick2On = False 

    if legend:
        plt.legend(loc=0)
    
    plt.ylabel(ylabel)
    plt.xlabel(xlabel)
    # Make sure the layout looks good :)        
    fig.tight_layout()
    
    return fig
开发者ID:KirstieJane,项目名称:DESCRIBING_DATA,代码行数:39,代码来源:create_bar_plots.py


示例15: plot_histogram

def plot_histogram(df1, df2):
    """
    plot histo for question 1 (Difference in REM sleep?)
        result => not concluant
    df1: normal sleep (df1 = analyse(base))
    df2: sleep depravation (df2 = analyse(depr))
    """    
    plt.rc('font', family='Arial')
    N = 5
    normal = df1['%5'].tolist()
    mean = sum(normal) / len(normal)
    normal.extend([mean])

    ind = np.arange(N)  # the x locations for the groups
    width = 0.35       # the width of the bars

    fig, ax = plt.subplots()
    rects1 = ax.bar(ind, normal, width, color='b')

    depravation = df2['%5'].tolist()
    mean = sum(depravation) / len(depravation)
    depravation.extend([mean])


    rects2 = ax.bar(ind+width, depravation, width, color='r')

    ax.set_ylabel('Sleep in REM stage (%)')
    ax.set_xlabel('Subjects')
    
    ax.set_title('REM sleep comparison', fontsize=20)
    ax.set_xticks(ind+width)
    ax.set_xticklabels( ('1', '2', '3', '4', 'Mean') )
    for label in (ax.get_xticklabels() + ax.get_yticklabels()):
           label.set_fontname('Arial')
           label.set_fontsize(8)            

    ax.legend( (rects1[0], rects2[0]), ('Baseline', 'After sleep depravation') ,  loc = 'lower right', fontsize=10 )
开发者ID:END-team,项目名称:final-project,代码行数:37,代码来源:yannick.py


示例16: plot_graphs

def plot_graphs(df, trending_daily, day_from, day_to, limit, country_code, folder_out=None):
    days = pd.DatetimeIndex(start=day_from, end=day_to, freq='D')
    for day in days:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        plt.rc('lines', linewidth=2)
        data = trending_daily.get_group(str(day.date()))
        places, clusters = top_trending(data, limit)
        for cluster in clusters:
            places.add(max_from_cluster(cluster, data))
        ax.set_prop_cycle(plt.cycler('color', ['r', 'b', 'yellow'] + [plt.cm.Accent(i) for i in np.linspace(0, 1, limit-3)]
                                     ) + plt.cycler('linestyle', ['-', '-', '-', '-', '-', '--', '--', '--', '--', '--']))
        frame = export(places, clusters, data)
        frame.sort_values('trending_rank', ascending=False, inplace=True)
        for i in range(len(frame)):
            item = frame.index[i]
            lat, lon, country = item
            result_items = ReverseGeoCode().get_address_attributes(lat, lon, 10, 'city', 'country_code')
            if 'city' not in result_items.keys():
                mark = "%s (%s)" % (manipulate_display_name(result_items['display_name']),
                                    result_items['country_code'].upper() if 'country_code' in result_items.keys() else country)
            else:
                if check_eng(result_items['city']):
                    mark = "%s (%s)" % (result_items['city'], result_items['country_code'].upper())
                else:
                    mark = "%.2f %.2f (%s)" % (lat, lon, result_items['country_code'].upper())
            gp = df.loc[item].plot(ax=ax, x='date', y='count', label=mark)
        ax.tick_params(axis='both', which='major', labelsize=10)
        ax.set_yscale("log", nonposy='clip')
        plt.xlabel('Date', fontsize='small', verticalalignment='baseline', horizontalalignment='right')
        plt.ylabel('Total number of views (log)', fontsize='small', verticalalignment='center', horizontalalignment='center', labelpad=6)
        gp.legend(loc='best', fontsize='xx-small', ncol=2)
        gp.set_title('Top 10 OSM trending places on ' + str(day.date()), {'fontsize': 'large', 'verticalalignment': 'bottom'})
        plt.tight_layout()
        db = TrendingDb()
        db.update_table_img(plt, str(day.date()), region=country_code)
        plt.close()
开发者ID:geometalab,项目名称:Trending-Places-in-OpenStreetMap,代码行数:37,代码来源:Top_Trending.py


示例17: plot_spectrograms

def plot_spectrograms(bsl,rec,rate,title):
    plt.close()
    plt.rc('font', family='Arial')
    fig, ax = plt.subplots(nrows=9, ncols=2, sharex='col', sharey='row')
    fig.suptitle(title + " - REM stage", fontsize=20)
    plt.subplots_adjust(wspace = .05,hspace = 0.4 )
    ny_nfft=1024
    i=0
    plt.tick_params(axis='both', labelsize=8)
    while i<9:
        Pxx, freq, bins, im = ax[i,0].specgram(bsl[i],NFFT=ny_nfft,Fs=rate)
        ax[i,0].set_yticks(np.arange(0, 50, 10))
        ax[i,0].set_ylim([0, 40])
        if(i==8):
            ax[i,0].set_xlabel("Time, seconds", fontsize=10)
        ax[i,0].set_ylabel("Freq, Hz", fontsize=8)
        ax[i,0].set_title('Baseline, channel:'+str(i+1), fontsize=10)
        for label in (ax[i,0].get_xticklabels() + ax[i,0].get_yticklabels()):
            label.set_fontname('Arial')
            label.set_fontsize(8)
        i=i+1
    i=0
    while i<9:
        Pxx, freq, bins, im = ax[i,1].specgram(rec[i],NFFT=ny_nfft,Fs=rate)
        ax[i,0].set_yticks(np.arange(0, 50, 10))
        ax[i,1].set_ylim([0, 40])
        #ax[i,1].set_xlim([0, 10000]) #13000])
        if(i==8):
            ax[i,1].set_xlabel("Time, seconds", fontsize=10)
        #ax[i,1].set_ylabel("Freq, Hz")
        ax[i,1].set_title('Recovery, channel:'+str(i+1), fontsize=10)
        for label in (ax[i,0].get_xticklabels() + ax[i,0].get_yticklabels()):
            label.set_fontname('Arial')
            label.set_fontsize(8)
        i=i+1
    plt.show()
    return
开发者ID:END-team,项目名称:final-project,代码行数:37,代码来源:feature_selection.py


示例18: plot_sleepTime

def plot_sleepTime(df1, df2):
    """
    First conclusion - obvious from experience -> sleep time longer after sleep depravation
    df1: normal sleep (df1 = analyse(base))
    df2: sleep depravation (df2 = analyse(depr))
    """    

    plt.rc('font', family='Arial')
    N = 5
    normal = df1['sleep duration'].tolist()
    mean = sum(normal) / len(normal)
    normal.extend([mean])

    ind = np.arange(N)  # the x locations for the groups
    width = 0.35       # the width of the bars

    fig, ax = plt.subplots()
    rects1 = ax.bar(ind, normal, width, color='b')

    depravation = df2['sleep duration'].tolist()
    mean = sum(depravation) / len(depravation)
    depravation.extend([mean])


    rects2 = ax.bar(ind+width, depravation, width, color='r')

    ax.set_ylabel('Sleep time (hours)')
    ax.set_xlabel('Subjects')
    
    ax.set_title('Overall sleep duration comparison', fontsize=20)
    ax.set_xticks(ind+width)
    ax.set_xticklabels( ('1', '2', '3', '4', 'Mean') )
    for label in (ax.get_xticklabels() + ax.get_yticklabels()):
           label.set_fontname('Arial')
           label.set_fontsize(8)            

    ax.legend( (rects1[0], rects2[0]), ('Baseline', 'Recovery'), loc = 'lower right', fontsize=10 )    
开发者ID:END-team,项目名称:final-project,代码行数:37,代码来源:yannick.py


示例19: integration

    # try a simple spline-based integration (good enough for small scales)
    
    xir[i] = intsp.integral(lnkf[0],(lnkf[-1]))/(2.0*math.pi**2)
    
#
#   for large r, do an expensive integration breaking integral into many pieces
#   each integrating between successive zeroes of sin(kr)
#
    xir2[i] = integrate.romberg(intfunc,lnk[0],lnk[-1],tol=1.e-14)/(2.0*math.pi**2)
            
    print "%.4f"%rd, "%.5e"%xir[i], "%.5e"%xir2[i]
    xiout.write('%.4f %.5e %.5e \n' % (rd, xir[i], xir2[i]))

fig1 = plt.figure()

plt.rc('text', usetex=True)
plt.rc('font',size=16,**{'family':'sans-serif','sans-serif':['Helvetica']})
plt.rc('xtick.major',pad=10); plt.rc('xtick.minor',pad=10)
plt.rc('ytick.major',pad=10); plt.rc('ytick.minor',pad=10)

#rfull,xifull = np.loadtxt('../s2_out.dat',usecols=(0,1),unpack=True)

plt.plot(lr,np.log10(np.abs(xir)),linewidth=1.5,c='b',label=r'$\sigma_2^2(r)$ Gaussian (spline)')
plt.plot(lr,np.log10(np.abs(xir2)),linewidth=1.5,c='m',label=r'$\sigma_2^2(r)$ TH (Romberg)')
plt.ylim(-10.0,8.0)
plt.xlim(-0.99,2.5)
#plt.xlim(8.0,16.0); 
plt.xlabel(r'\textbf{$\log_{10}(R/\rm Mpc)$}',labelpad = 5)
plt.ylabel(r'$\log_{10}(\sigma^2_2(R))$',labelpad = 10)
plt.title('power spectrum moment',fontsize=16)
plt.legend(loc='upper right')
开发者ID:faldah,项目名称:computationalAstrophysics,代码行数:31,代码来源:th+gaussian+filters.py


示例20: range

Created on Sun Apr 06 18:42:59 2014

@author: lassnech
"""

from sklearn import svm
from sklearn import grid_search
import tmpfertilized as f
import matplotlib.pylab as plt
import matplotlib
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import numpy as np
from plottools import make_spiral, point_prob_plot, probaproxy
plt.rc('text', usetex=True)
plt.rc('font', family='serif')

np.random.seed(1)

n_classes = 2
n_trees = 200
ploty = [-6, 6, 100]
plotx = [-6, 6, 100]

X, Y = make_spiral(n_arms=n_classes, noise=.4)

##############################################################################
parameters = {'kernel': ['rbf'],
              'C': [1, 10, 100, 1000, 10000, 100000],
              'gamma': [10 ** x for x in range(-5, 3)],
开发者ID:caomw,项目名称:fertilized-forests,代码行数:31,代码来源:spiral_svm.py



注:本文中的matplotlib.pylab.rc函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pylab.savefig函数代码示例发布时间:2022-05-27
下一篇:
Python pylab.plot函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap