• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pylab.matshow函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中matplotlib.pylab.matshow函数的典型用法代码示例。如果您正苦于以下问题:Python matshow函数的具体用法?Python matshow怎么用?Python matshow使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了matshow函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: validate

def validate(X_test, y_test, pipe, title, fileName):
    
    print('Test Accuracy: %.3f' % pipe.score(X_test, y_test))

    y_predict = pipe.predict(X_test)

    confusion_matrix = np.zeros((9,9))

    for p,r in zip(y_predict, y_test):
        confusion_matrix[p-1,r-1] = confusion_matrix[p-1,r-1] + 1

    print (confusion_matrix) 

    confusion_normalized = confusion_matrix.astype('float') / confusion_matrix.sum(axis=1)[:, np.newaxis]
    print (confusion_normalized)

    pylab.clf()
    pylab.matshow(confusion_normalized, fignum=False, cmap='Blues', vmin=0.0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(families)))
    ax.set_xticklabels(families,  fontsize=4)
    ax.xaxis.set_label_position('top') 
    ax.xaxis.set_ticks_position("top")
    ax.set_yticks(range(len(families)))
    ax.set_yticklabels(families, fontsize=4)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.grid(False)
    pylab.savefig(fileName, dpi=900)
开发者ID:tlabruyere,项目名称:CS544-Cyber,代码行数:30,代码来源:kNeighbor.py


示例2: BreakIllustration

def BreakIllustration(seed=11):

    for x in [1 , 2 , 4, 8, 16 , 25, 100]:
        pylab.clf()
        m4=GenKolmogorovV2(1025, seed,  pybnlib.Kol3DBreakLaw(1.0/x) )
        pylab.matshow(m4)
        pylab.savefig("temp/breakill-%03i.png" % x)
开发者ID:bnikolic,项目名称:oof,代码行数:7,代码来源:kolmogorov.py


示例3: PlotTurbulenceIllustr

def PlotTurbulenceIllustr(a):

    """
    Can generate the grid with
    g=kolmogorovutils.GenerateKolmogorov3D( 1025, 129, 129)
    a=kolmogorovutils.GridToNumarray(g)

    """

    for x in [1,10,100]:

        suba= numarray.sum(a[:,:,0:x], axis=2)

        suba.transpose()
        pylab.clf()
        pylab.matshow(suba)
        pylab.savefig("temp/turb3d-sum%03i.eps" % x)

    for x in [1,10,100]:

        for j in [0,1,2]:

            suba= numarray.sum(a[:,:200,j*x:(j+1)*x], axis=2)

            suba.transpose()
            pylab.clf()
            pylab.matshow(suba)
            pylab.savefig("temp/turb3d-sum%03i-s%i.eps" % (x,j))        
开发者ID:bnikolic,项目名称:oof,代码行数:28,代码来源:kolmogorov3d.py


示例4: Animate

def Animate(g):
    for i in range(1,64,5):
        pylab.clf()
        x= g[0:i,:,:]
        y= numarray.sum(x, axis=0)
        pylab.matshow( y)
        pylab.savefig("temp/3dturb-%03i.png" % i)
开发者ID:bnikolic,项目名称:oof,代码行数:7,代码来源:kolmogorov3d.py


示例5: plot_confusion_matrix

def plot_confusion_matrix(cm, meow_list, name, title):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(meow_list)))
    ax.set_xticklabels(meow_list)
    ax.xaxis.set_ticks_position("bottom")
开发者ID:FosterCL1,项目名称:cat_monitor,代码行数:7,代码来源:OrganizeUntestedDirectory.py


示例6: showKernel

def showKernel(dataOrMatrix, fileName = None, useLabels = True, **args) :
 
    labels = None
    if hasattr(dataOrMatrix, 'type') and dataOrMatrix.type == 'dataset' :
	data = dataOrMatrix
	k = data.getKernelMatrix()
	labels = data.labels
    else :
	k = dataOrMatrix
	if 'labels' in args :
	    labels = args['labels']

    import matplotlib

    if fileName is not None and fileName.find('.eps') > 0 :
        matplotlib.use('PS')
    from matplotlib import pylab

    pylab.matshow(k)
    #pylab.show()

    if useLabels and labels.L is not None :
	numPatterns = 0
	for i in range(labels.numClasses) :
	    numPatterns += labels.classSize[i]
	    #pylab.figtext(0.05, float(numPatterns) / len(labels), labels.classLabels[i])
	    #pylab.figtext(float(numPatterns) / len(labels), 0.05, labels.classLabels[i])
	    pylab.axhline(numPatterns, color = 'black', linewidth = 1)
	    pylab.axvline(numPatterns, color = 'black', linewidth = 1)
    pylab.axis([0, len(labels), 0, len(labels)])
    if fileName is not None :
        pylab.savefig(fileName)
	pylab.close()
开发者ID:Grater,项目名称:Sentiment-Analysis,代码行数:33,代码来源:ker.py


示例7: show_profile

def show_profile(task, fn):
    data = zeros((task.Sx, task.Sy))
    for i in range(task.Sx):
        for j in range(task.Sy):
            data[i][j] = fn(task.Gp(i, j, task.Sz / 2))
    plb.matshow(data.transpose())
    plb.colorbar()
    plb.show()
开发者ID:wanygen,项目名称:uestc-cemlab-fdtd,代码行数:8,代码来源:fdtd.py


示例8: PlotSTest

def PlotSTest(a):

    from matplotlib import pylab

    x = numpy.mean(a, axis=0)
    x.shape = (int(len(x) ** 0.5), int(len(x) ** 0.5))
    pylab.matshow(x)
    pylab.colorbar()
开发者ID:bnikolic,项目名称:oof,代码行数:8,代码来源:k3d_structretest.py


示例9: plot_dependency_posterior

def plot_dependency_posterior(df, meta, t, num_joints=None):
    if num_joints is None:
        num_joints = determine_num_joints(df)

    plt.figure()
    posterior=np.array([df["Posterior%d"%j].iloc[t] for j in range(num_joints)])
    plt.matshow(posterior, interpolation='nearest')
    plt.show()
开发者ID:hildensia,项目名称:joint_dependency,代码行数:8,代码来源:interpret_results.py


示例10: group_causality

def group_causality(sig_list, condition, freqs, ROI_labels=None,
                    out_path=None, submount=10):

    """
    Make group causality analysis, by evaluating significant matrices across
    subjects.
    ----------
    sig_list: list
        The path list of individual significant causal matrix.
    condition: string
        One condition of the experiments.
    freqs: list
        The list of interest frequency band.
    min_subject: string
        The subject for the common brain space.
    submount: int
        Significant interactions come out at least in 'submount' subjects.
    """
    print 'Running group causality...'
    set_directory(out_path)
    sig_caus = []

    for f in sig_list:
        sig_cau = np.load(f)
        print sig_cau.shape[-1]
        sig_caus.append(sig_cau)

    sig_caus = np.array(sig_caus)
    sig_group = sig_caus.sum(axis=0)
    plt.close()
    for i in xrange(len(sig_group)):
        fmin, fmax = freqs[i][0], freqs[i][1]
        cau_band = sig_group[i]
        # cau_band[cau_band < submount] = 0
        cau_band[cau_band < submount] = 0
        # fig, ax = pl.subplots()
        cmap = plt.get_cmap('hot', cau_band.max()+1-submount)
        cmap.set_under('gray')
        plt.matshow(cau_band, interpolation='nearest', vmin=submount, cmap=cmap)
        if ROI_labels == None:
            ROI_labels = np.arange(cau_band.shape[0]) + 1
        pl.xticks(np.arange(cau_band.shape[0]), ROI_labels, fontsize=9, rotation='vertical')
        pl.yticks(np.arange(cau_band.shape[0]), ROI_labels, fontsize=9)
        # pl.imshow(cau_band, interpolation='nearest')
        # pl.set_cmap('BlueRedAlpha')
        np.save(out_path + '/%s_%s_%sHz.npy' %
                (condition, str(fmin), str(fmax)), cau_band)
        v = np.arange(submount, cau_band.max()+1, 1)

        # cax = ax.scatter(x, y, c=z, s=100, cmap=cmap, vmin=10, vmax=z.max())
        # fig.colorbar(extend='min')

        plt.colorbar(ticks=v, extend='min')
        # pl.show()
        plt.savefig(out_path + '/%s_%s_%sHz.png' %
                    (condition, str(fmin), str(fmax)), dpi=300)
        plt.close()
    return
开发者ID:dongqunxi,项目名称:jumeg,代码行数:58,代码来源:apply_causality_whole.py


示例11: savematrixplot

def savematrixplot(datasetname,tumorname, A, k):
    """    
    plt.figure("%s_consensus_rank_%d.png" % (tumorname,k))
    plt.subplot(211)
    plt.matshow(A)
    plt.savefig("./" + datasetname + "_results/%s_consensus_rank_%d.png" % (tumorname,k))
    """
    mplpl.matshow(A)
    mplpl.savefig("./" + datasetname + "_results/%s_consensus_rank_%d.png" % (tumorname,k))
开发者ID:jdrooks,项目名称:UMBCS697CC4,代码行数:9,代码来源:phase1_transpose.py


示例12: create_heatmaps

def create_heatmaps(df, key=lambda t: t.minute):
	for group, data in df.groupby(df.index.map(key)):
		all_mat = np.zeros((100,100), dtype=np.int)
		for x, y in zip(data.x, data.y):
			all_mat[x, y] += 1
		all_mat = all_mat*1.0/len(data)
		plt.matshow(all_mat)
		plt.title(data.ix[0].name)
		print("saving: ", group)
		plt.savefig("{:02}.png".format(group))
开发者ID:ice3,项目名称:VAST_2015,代码行数:10,代码来源:test_pandas.py


示例13: plot_grid

 def plot_grid(self, name="", save_figure=True):
     """
     This plots the 2D representation of the grid
     :param name: the name of the image to save
     :return:
     """
     plt.matshow(self.matrix_grid(), cmap="RdBu", fignum=0)
     # Option to save images
     if save_figure:
         plt.savefig(self.path + name + '.png')
开发者ID:StuartGordonReid,项目名称:Ant-Colony-Optimization,代码行数:10,代码来源:Ants.py


示例14: plotArray

def plotArray( xyarray, colormap=mpl.cm.gnuplot2, normMin=None, normMax=None, showMe=True,
              cbar=False, cbarticks=None, cbarlabels=None, plotFileName='arrayPlot.png',
              plotTitle='', sigma=None):
    """
    Plots the 2D array to screen or if showMe is set to False, to file.  If normMin and
    normMax are None, the norm is just set to the full range of the array.
    """
    if sigma != None:
       meanVal = np.mean(accumulatePositive(xyarray))
       stdVal = np.std(accumulatePositive(xyarray))
       normMin = meanVal - sigma*stdVal
       normMax = meanVal + sigma*stdVal
    if normMin == None:
       normMin = xyarray.min()
    if normMax == None:
       normMax = xyarray.max()
    norm = mpl.colors.Normalize(vmin=normMin,vmax=normMax)

    figWidthPt = 550.0
    inchesPerPt = 1.0/72.27                 # Convert pt to inch
    figWidth = figWidthPt*inchesPerPt       # width in inches
    figHeight = figWidth*1.0                # height in inches
    figSize =  [figWidth,figHeight]
    params = {'backend': 'ps',
              'axes.labelsize': 10,
              'axes.titlesize': 12,
              'text.fontsize': 10,
              'legend.fontsize': 10,
              'xtick.labelsize': 10,
              'ytick.labelsize': 10,
              'figure.figsize': figSize}
    plt.rcParams.update(params)

    plt.matshow(xyarray, cmap=colormap, origin='lower',norm=norm)

    if cbar:
        if cbarticks == None:
           cbar = plt.colorbar(shrink=0.8)
        else:
           cbar = plt.colorbar(ticks=cbarticks, shrink=0.8)
        if cbarlabels != None:
           cbar.ax.set_yticklabels(cbarlabels)
    
    plt.ylabel('Row Number')
    plt.xlabel('Column Number')
    plt.title(plotTitle)

    if showMe == False:
        plt.savefig(plotFileName)
#    else:    
#        plt.show()
    plt.close()
开发者ID:RupertDodkins,项目名称:ARCONS-pipeline-1,代码行数:52,代码来源:sdssutils.py


示例15: plot_block_matrix

def plot_block_matrix(labels, tProb_, name='BlockMatrix'):
    print "Plot Block Matrix"
    indices = np.argsort(labels)
    #print indices
    block_matrix = tProb_[:,indices]
    block_matrix = block_matrix[indices,:]
    block_matrix = 1 - block_matrix
    #print block_matrix
    pylab.matshow(block_matrix, cmap=plt.cm.OrRd)
    plt.colorbar()
    plt.savefig('./' + name + '.png', dpi=400)
    #pylab.show()
    plt.close()
开发者ID:liusong299,项目名称:HK_DataMiner,代码行数:13,代码来源:plot_.py


示例16: predict

def predict(X, y, model):
    labels = model.predict(X).flatten()
    n_samples = X.shape[0]
    err = float(np.sum(y != labels))/n_samples
    print "Prediction error of ", err, "."
    cm = sklearn.metrics.confusion_matrix(y, labels)
    row_sum = cm.sum(axis=1).reshape(cm.shape[0], 1)
    print "Frequencies of each class:", row_sum
    cm = cm.astype(float)/row_sum
    plt.matshow(cm)
    plt.title("Confusion Matrix")
    plt.colorbar()
    plt.show()
开发者ID:cwein3,项目名称:im-seg,代码行数:13,代码来源:patch_class.py


示例17: simular

	def simular(self):
		pass
		i=0
		g = []
		while True:
			pass
			if (self.uf.find(self.cell(0,0),self.cell(self.N-1,self.N-1))):
				plt.plot(g)
				plt.show()
				pll.matshow(self.celda)
				pll.show()
				return int(i)
			i=i+1
			g.append(i/self.N*self.N)
			self.step()
开发者ID:juankp,项目名称:PercolacionCP,代码行数:15,代码来源:Percolation.py


示例18: main

def main():
    parser = ap.ArgumentParser()
    parser.add_argument('--data_dir', type=str, default='../data_helpers/', help='Folder containing data splits.')
    parser.add_argument('--data', type=str, help='The location of the data file we are using.')
    parser.add_argument('--mode', type=str, help='Either PREDICT or TRAIN. Will predict on test dataset or train on new dataset accordingly.')
    parser.add_argument('--old_model', type=str, default=None, help='The file location of the neural network model. If this is None, we will train a model from scratch, but this needs to be specified for predict.')
    parser.add_argument('--num_hidden', type=int, default=1000, help='The number of hidden layers in the classifier.')
    parser.add_argument('--n_iter', type=int, default=2, help='Number of iterations of gradient descent to use.')
    parser.add_argument('--outfile', type=str, help='The file which we output the trained model to.')
    parser.add_argument('--lr', type=float, default=0.01, help='Learning rate to use.')
    parser.add_argument('--allowed_num', type=int, help='The allowed number of training examples for one class.')
    parser.add_argument('--name_map', type=str, default='classmap.pkl', help='Name of the pickle file which stores the class map.')
    parser.add_argument('--num_split', type=int, default='13', help='The number of training splits to do.')
    parser.add_argument('--predict_set', type=str, default='test', help='Whether we predict on train or test.')
    parser.add_argument('--lr_decay', type=float, default=0.75, help='Learning rate decay every time we pass over a split.')
    parser.add_argument('--hardcode', type=bool, default=False, help='Whether to hardcode allowed number of classes.')
    global args
    args = parser.parse_args()
    class_map = allowed_classes if args.hardcode else pickle.load(open(args.name_map, "r"))
    num_classes = len(class_map)
    model = None if args.old_model is None else pickle.load(open(args.old_model, "r"))
    if args.mode == 'TRAIN':
	lr = args.lr
	for _ in xrange(args.n_iter):
            for split in xrange(args.num_split):
                data_loc = args.data_dir + ("trainsplit%d" % split) + args.data
                X, y, w = convert_data(data_loc, class_map)
                model = train(X, y, w, num_classes, model, lr)
		lr *= args.lr_decay 
    if args.mode == 'PREDICT':
	all_predict = np.array([])
	all_labels = np.array([])
	for split in xrange(args.num_split):
	    data_loc = args.data_dir + (args.predict_set + "split%d" % split) + args.data
            X, y, _ = convert_data(data_loc, class_map)
            all_predict = np.concatenate((all_predict, predict_split(X, y, model)), axis=0)
	    all_labels = np.concatenate((all_labels, y), axis=0)
       	n_samples = all_labels.size
       	err = float(np.sum(all_predict != all_labels))/n_samples
       	print "Prediction error of ", err, "."
       	cm = sklearn.metrics.confusion_matrix(all_labels, all_predict)
       	row_sum = cm.sum(axis=1).reshape(cm.shape[0], 1)
       	print "Frequencies of each class:", row_sum
       	cm = cm.astype(float)/row_sum
       	plt.matshow(cm)
       	plt.title("Confusion Matrix")
       	plt.colorbar()
       	plt.show()
开发者ID:cwein3,项目名称:im-seg,代码行数:48,代码来源:patch_class_splits.py


示例19: PlotTurbulenceIllustrZFlat

def PlotTurbulenceIllustrZFlat(g):


    "Like PlotTurbulenceIllustr but use the ZFlatten routine"

    Nx, Ny, Nz = g[1]    

    for x in [1,10,100]:
        res=ZFlatten(g,x)

        na=kolmogorovutils.GridToNumarray( (res, (Nx,Ny,1)))
        na=na[:,:,0]
        na.transpose()
        pylab.clf()
        pylab.matshow(na)
        pylab.savefig("temp/turb3d-zflatsum%03i.eps" % x)
开发者ID:bnikolic,项目名称:oof,代码行数:16,代码来源:kolmogorov3d.py


示例20: plot_confusion_matrix

def plot_confusion_matrix(cm, genre_list, name="", title=""):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap=plt.cm.Blues)
    ax = pylab.axes()
    ax.set_xticks(range(len(genre_list)))
    ax.set_xticklabels(genre_list)
    ax.xaxis.set_ticks_position("bottom")
    ax.set_yticks(range(len(genre_list)))
    ax.set_yticklabels(genre_list)
    #pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.show()
开发者ID:yuchi1989,项目名称:music-genre-classification-and-chord-sequence,代码行数:16,代码来源:experiment1.py



注:本文中的matplotlib.pylab.matshow函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pylab.pcolor函数代码示例发布时间:2022-05-27
下一篇:
Python pylab.loglog函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap