本文整理汇总了Python中matplotlib.pylab.legend函数的典型用法代码示例。如果您正苦于以下问题:Python legend函数的具体用法?Python legend怎么用?Python legend使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了legend函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: check_models
def check_models(self):
temp = np.logspace(0, np.log10(600))
num = len(self.available_models())
fig, ax = plt.subplots(1)
self.plotting_colours(num, fig, ax, repeats=2)
for author in self.available_models():
Nc, Nv = self.update(temp=temp, author=author)
# print Nc.shape, Nv.shape, temp.shape
ax.plot(temp, Nc, '--')
ax.plot(temp, Nv, '.', label=author)
ax.loglog()
leg1 = ax.legend(loc=0, title='colour legend')
Nc, = ax.plot(np.inf, np.inf, 'k--', label='Nc')
Nv, = ax.plot(np.inf, np.inf, 'k.', label='Nv')
plt.legend([Nc, Nv], ['Nc', 'Nv'], loc=4, title='Line legend')
plt.gca().add_artist(leg1)
ax.set_xlabel('Temperature (K)')
ax.set_ylabel('Density of states (cm$^{-3}$)')
plt.show()
开发者ID:MK8J,项目名称:semiconductor,代码行数:25,代码来源:densityofstates.py
示例2: study_multiband_planck
def study_multiband_planck(quick=True):
savename = datadir+'cl_multiband.pkl'
bands = [100, 143, 217, 'mb']
if quick: cl = pickle.load(open(savename,'r'))
else:
cl = {}
mask = load_planck_mask()
mask_factor = np.mean(mask**2.)
for band in bands:
this_map = load_planck_data(band)
this_cl = hp.anafast(this_map*mask, lmax=lmax)/mask_factor
cl[band] = this_cl
pickle.dump(cl, open(savename,'w'))
cl_theory = {}
pl.clf()
for band in bands:
l_theory, cl_theory[band] = get_cl_theory(band)
this_cl = cl[band]
pl.plot(this_cl/cl_theory[band])
pl.legend(bands)
pl.plot([0,4000],[1,1],'k--')
pl.ylim(.7,1.3)
pl.ylabel('data/theory')
开发者ID:amanzotti,项目名称:vksz,代码行数:27,代码来源:vksz.py
示例3: make_corr1d_fig
def make_corr1d_fig(dosave=False):
corr = make_corr_both_hemi()
lw=2; fs=16
pl.figure(1)#, figsize=(8, 7))
pl.clf()
pl.xlim(4,300)
pl.ylim(-400,+500)
lambda_titles = [r'$20 < \lambda < 30$',
r'$30 < \lambda < 40$',
r'$\lambda > 40$']
colors = ['blue','green','red']
for i in range(3):
corr1d, rcen = corr_1d_from_2d(corr[i])
ipdb.set_trace()
pl.semilogx(rcen, corr1d*rcen**2, lw=lw, color=colors[i])
#pl.semilogx(rcen, corr1d*rcen**2, 'o', lw=lw, color=colors[i])
pl.xlabel(r'$s (Mpc)$',fontsize=fs)
pl.ylabel(r'$s^2 \xi_0(s)$', fontsize=fs)
pl.legend(lambda_titles, 'lower left', fontsize=fs+3)
pl.plot([.1,10000],[0,0],'k--')
s_bao = 149.28
pl.plot([s_bao, s_bao],[-9e9,+9e9],'k--')
pl.text(s_bao*1.03, 420, 'BAO scale')
pl.text(s_bao*1.03, 370, '%0.1f Mpc'%s_bao)
if dosave: pl.savefig('xi1d_3bin.pdf')
开发者ID:amanzotti,项目名称:vksz,代码行数:25,代码来源:vksz.py
示例4: cdf
def cdf(x,colsym="",lab="",lw=4):
""" plot the cumulative density function
Parameters
----------
x : np.array()
colsym : string
lab : string
lw : int
linewidth
Examples
--------
>>> import numpy as np
"""
rcParams['legend.fontsize']=20
rcParams['font.size']=20
x = np.sort(x)
n = len(x)
x2 = np.repeat(x, 2)
y2 = np.hstack([0.0, repeat(np.arange(1,n) / float(n), 2), 1.0])
plt.plot(x2,y2,colsym,label=lab,linewidth=lw)
plt.grid('on')
plt.legend(loc=2)
plt.xlabel('Ranging Error[m]')
plt.ylabel('Cumulative Probability')
开发者ID:HSID,项目名称:pylayers,代码行数:30,代码来源:loss.py
示例5: plotMassFunction
def plotMassFunction(im, pm, outbase, mmin=9, mmax=13, mstep=0.05):
"""
Make a comparison plot between the input mass function and the
predicted projected correlation function
"""
plt.clf()
nmbins = ( mmax - mmin ) / mstep
mbins = np.logspace( mmin, mmax, nmbins )
mcen = ( mbins[:-1] + mbins[1:] ) /2
plt.xscale( 'log', nonposx = 'clip' )
plt.yscale( 'log', nonposy = 'clip' )
ic, e, p = plt.hist( im, mbins, label='Original Halos', alpha=0.5, normed = True)
pc, e, p = plt.hist( pm, mbins, label='Added Halos', alpha=0.5, normed = True)
plt.legend()
plt.xlabel( r'$M_{vir}$' )
plt.ylabel( r'$\frac{dN}{dM}$' )
#plt.tight_layout()
plt.savefig( outbase+'_mfcn.png' )
mdtype = np.dtype( [ ('mcen', float), ('imcounts', float), ('pmcounts', float) ] )
mf = np.ndarray( len(mcen), dtype = mdtype )
mf[ 'mcen' ] = mcen
mf[ 'imcounts' ] = ic
mf[ 'pmcounts' ] = pc
fitsio.write( outbase+'_mfcn.fit', mf )
开发者ID:j-dr,项目名称:ADDHALOS,代码行数:30,代码来源:validation.py
示例6: _fig_density
def _fig_density(sweight, surweight, pval, nlm):
"""
Plot the histogram of sweight across the image
and the thresholds implied by the surrogate model (surweight)
"""
import matplotlib.pylab as mp
# compute some thresholds
nlm = nlm.astype('d')
srweight = np.sum(surweight,1)
srw = np.sort(srweight)
nitem = np.size(srweight)
thf = srw[int((1-min(pval,1))*nitem)]
mnlm = max(1,nlm.mean())
imin = min(nitem-1,int((1.-pval/mnlm)*nitem))
thcf = srw[imin]
h,c = np.histogram(sweight,100)
I = h.sum()*(c[1]-c[0])
h = h/I
h0,c0 = np.histogram(srweight,100)
I0 = h0.sum()*(c0[1]-c0[0])
h0 = h0/I0
mp.figure(1)
mp.plot(c,h)
mp.plot(c0,h0)
mp.legend(('true histogram','surrogate histogram'))
mp.plot([thf,thf],[0,0.8*h0.max()])
mp.text(thf,0.8*h0.max(),'p<0.2, uncorrected')
mp.plot([thcf,thcf],[0,0.5*h0.max()])
mp.text(thcf,0.5*h0.max(),'p<0.05, corrected')
mp.savefig('/tmp/histo_density.eps')
mp.show()
开发者ID:cindeem,项目名称:nipy,代码行数:32,代码来源:structural_bfls.py
示例7: _plot_nullclines
def _plot_nullclines(self, resolution):
"""
Plot nullclines.
Arguments
resolution
Resolution of plot
"""
x_mesh, y_mesh, ode_x, ode_y = self._get_ode_values(resolution)
plt.contour(
x_mesh, y_mesh, ode_x,
levels=[0], linewidths=2, colors='black')
plt.contour(
x_mesh, y_mesh, ode_y,
levels=[0], linewidths=2, colors='black',
linestyles='dashed')
lblx = mlines.Line2D(
[], [],
color='black',
marker='', markersize=15,
label=r'$\dot\varphi_0=0$')
lbly = mlines.Line2D(
[], [],
color='black', linestyle='dashed',
marker='', markersize=15,
label=r'$\dot\varphi_1=0$')
plt.legend(handles=[lblx, lbly], loc='best')
开发者ID:kpj,项目名称:OsciPy,代码行数:29,代码来源:stability.py
示例8: find_params
def find_params():
FRAMES = np.arange(30)*100
frame_images = organizedata.get_frames(ddir("bukowski_04.W2"), FRAMES)
print "DONE READING DATA"
CLUST_EPS = np.linspace(0, 0.5, 10)
MIN_SAMPLES = [2, 3, 4, 5]
MIN_DISTS = [2, 3, 4, 5, 6]
THOLD = 240
fracs_2 = np.zeros((len(CLUST_EPS), len(MIN_SAMPLES), len(MIN_DISTS)))
for cei, CLUST_EP in enumerate(CLUST_EPS):
for msi, MIN_SAMPLE in enumerate(MIN_SAMPLES):
for mdi, MIN_DIST in enumerate(MIN_DISTS):
print cei, msi, mdi
numclusters = np.zeros(len(FRAMES))
for fi, im in enumerate(frame_images):
centers = frame_clust_points(im, THOLD, MIN_DIST,
CLUST_EP, MIN_SAMPLE)
# cluster centers
numclusters[fi] = len(centers)
fracs_2[cei, msi, mdi] = float(np.sum(numclusters == 2))/len(numclusters)
pylab.figure(figsize=(12, 8))
for mdi, MIN_DIST in enumerate(MIN_DISTS):
pylab.subplot(len(MIN_DISTS), 1, mdi+1)
for msi in range(len(MIN_SAMPLES)):
pylab.plot(CLUST_EPS, fracs_2[:, msi, mdi], label='%d' % MIN_SAMPLES[msi])
pylab.title("min_dist= %3.2f" % MIN_DIST)
pylab.legend()
pylab.savefig('test.png', dpi=300)
开发者ID:ericmjonas,项目名称:franktrack,代码行数:34,代码来源:measurediodes.py
示例9: test
def test():
## Load files
s = load_spectrum('ring28yael')
w = linspace(1510e-9,1600e-9,len(s))
## Process
mins = find_minima(s)
w_p = 1510e-9 + array(mins) * 90.e-9/len(w)
ww = 2 * pi * 3e8/w_p
## Plot
pl.plot(w,s)
pl.plot(w_p,s[mins],'o')
pl.show()
beta2 = -1./(112e-6*2*pi)*diff(diff(ww))/(diff(ww)[:-1]**3)
p = polyfit(w_p[1:-1], beta2, 1)
savetxt('ring28yael-p.txt', w_p)
pl.subplot(211)
pl.plot(w,s)
pl.plot(w_p,s[mins],'o')
pl.subplot(212)
pl.plot(w_p[1:-1]*1e6, beta2)
pl.plot(w_p[1:-1]*1e6, p[1]+ p[0]*w_p[1:-1], label="q=%.2e"%p[0])
pl.legend()
pl.show()
开发者ID:actionfarsi,项目名称:farsilab,代码行数:30,代码来源:resonancefinder.py
示例10: behavioral_analysis
def behavioral_analysis(self):
"""some analysis of the behavioral data, such as mean percept duration,
dominance ratio etc"""
self.assert_data_intern()
# only do anything if this is not a no report trial
if 'RP' in self.file_alias:
all_percepts_and_durations = [[],[]]
else:
all_percepts_and_durations = [[],[],[]]
if not 'NR' in self.file_alias: # and not 'RP' in self.file_alias
for x in range(len(self.trial_indices)):
if len(self.events) != 0:
events_this_trial = self.events[(self.events['EL_timestamp'] > self.timestamps_pt[x][0]) & (self.events['EL_timestamp'] < self.timestamps_pt[x][-1])]
for sc, scancode in enumerate(self.scancode_list):
percept_start_indices = np.arange(len(events_this_trial))[np.array(events_this_trial['scancode'] == scancode)]
percept_end_indices = percept_start_indices + 1
# convert to times
start_times = np.array(events_this_trial['EL_timestamp'])[percept_start_indices] - self.timestamps_pt[x,0]
if len(start_times) > 0:
if percept_end_indices[-1] == len(events_this_trial):
end_times = np.array(events_this_trial['EL_timestamp'])[percept_end_indices[:-1]] - self.timestamps_pt[x,0]
end_times = np.r_[end_times, len(self.from_zero_timepoints)]
else:
end_times = np.array(events_this_trial['EL_timestamp'])[percept_end_indices] - self.timestamps_pt[x,0]
these_raw_event_times = np.array([start_times + self.timestamps_pt[x,0], end_times + self.timestamps_pt[x,0]]).T
these_event_times = np.array([start_times, end_times]).T + x * self.trial_duration * self.sample_rate
durations = np.diff(these_event_times, axis = -1)
all_percepts_and_durations[sc].append(np.hstack((these_raw_event_times, these_event_times, durations)))
self.all_percepts_and_durations = [np.vstack(apd) for apd in all_percepts_and_durations]
# last element is duration, sum inclusive and exclusive of transitions
total_percept_duration = np.concatenate([apd[:,-1] for apd in self.all_percepts_and_durations]).sum()
total_percept_duration_excl = np.concatenate([apd[:,-1] for apd in [self.all_percepts_and_durations[0], self.all_percepts_and_durations[-1]]]).sum()
self.ratio_transition = 1.0 - (total_percept_duration_excl / total_percept_duration)
self.ratio_percept_red = self.all_percepts_and_durations[0][:,-1].sum() / total_percept_duration_excl
self.red_durations = np.array([np.mean(self.all_percepts_and_durations[0][:,-1]), np.median(self.all_percepts_and_durations[0][:,-1])])
self.green_durations = np.array([np.mean(self.all_percepts_and_durations[-1][:,-1]), np.median(self.all_percepts_and_durations[-1][:,-1])])
self.transition_durations = np.array([np.mean(self.all_percepts_and_durations[1][:,-1]), np.median(self.all_percepts_and_durations[1][:,-1])])
self.ratio_percept_red_durations = self.red_durations / (self.red_durations + self.green_durations)
plot_mean_or_median = 0 # mean
f = pl.figure(figsize = (8,4))
s = f.add_subplot(111)
for i in range(len(self.colors)):
pl.hist(self.all_percepts_and_durations[i][:,-1], bins = 20, color = self.colors[i], histtype='step', lw = 3.0, alpha = 0.4, label = ['Red', 'Trans', 'Green'][i])
pl.hist(np.concatenate([self.all_percepts_and_durations[0][:,-1], self.all_percepts_and_durations[-1][:,-1]]), bins = 20, color = 'k', histtype='step', lw = 3.0, alpha = 0.4, label = 'Percepts')
pl.legend()
s.set_xlabel('time [ms]')
s.set_ylabel('count')
sn.despine(offset=10)
s.annotate("""ratio_transition: %1.2f, \nratio_percept_red: %1.2f, \nduration_red: %2.2f,\nduration_green: %2.2f, \nratio_percept_red_durations: %1.2f"""%(self.ratio_transition, self.ratio_percept_red, self.red_durations[plot_mean_or_median], self.green_durations[plot_mean_or_median], self.ratio_percept_red_durations[plot_mean_or_median]), (0.5,0.65), textcoords = 'figure fraction')
pl.tight_layout()
pl.savefig(os.path.join(self.analyzer.fig_dir, self.file_alias + '_dur_hist.pdf'))
开发者ID:tknapen,项目名称:ssvepupil,代码行数:60,代码来源:initial.py
示例11: sanity_PDMAna
def sanity_PDMAna(self):
import numpy
import matplotlib.pylab as mpl
from PyAstronomy.pyTiming import pyPDM
# Create artificial data with frequency = 3,
# period = 1/3
x = numpy.arange(100) / 100.0
y = numpy.sin(x*2.0*numpy.pi*3.0 + 1.7)
# Get a ``scanner'', which defines the frequency interval to be checked.
# Alternatively, also periods could be used instead of frequency.
S = pyPDM.Scanner(minVal=0.5, maxVal=5.0, dVal=0.01, mode="frequency")
# Carry out PDM analysis. Get frequency array
# (f, note that it is frequency, because the scanner's
# mode is ``frequency'') and associated Theta statistic (t).
# Use 10 phase bins and 3 covers (= phase-shifted set of bins).
P = pyPDM.PyPDM(x, y)
f1, t1 = P.pdmEquiBinCover(10, 3, S)
# For comparison, carry out PDM analysis using 10 bins equidistant
# bins (no covers).
f2, t2 = P.pdmEquiBin(10, S)
# Show the result
mpl.figure(facecolor='white')
mpl.title("Result of PDM analysis")
mpl.xlabel("Frequency")
mpl.ylabel("Theta")
mpl.plot(f1, t1, 'bp-')
mpl.plot(f2, t2, 'gp-')
mpl.legend(["pdmEquiBinCover", "pdmEquiBin"])
开发者ID:dhomeier,项目名称:PyAstronomy,代码行数:33,代码来源:exampleSanity.py
示例12: plotRocCurves
def plotRocCurves(file_legend):
pylab.clf()
pylab.figure(1)
pylab.xlabel('1 - Specificity', fontsize=12)
pylab.ylabel('Sensitivity', fontsize=12)
pylab.title("Need for Referral")
pylab.grid(True, which='both')
pylab.xticks([i/10.0 for i in range(1,11)])
pylab.yticks([i/10.0 for i in range(0,11)])
pylab.tick_params(axis="both", labelsize=15)
for file, legend in file_legend:
points = open(file,"rb").readlines()
x = [float(p.split()[0]) for p in points]
y = [float(p.split()[1]) for p in points]
dev = [float(p.split()[2]) for p in points]
x = [0.0] + x
y = [0.0] + y
dev = [0.0] + dev
auc = np.trapz(y, x) * 100
aucDev = np.trapz(dev, x) * 100
pylab.grid()
pylab.errorbar(x, y, yerr = dev, fmt='-')
pylab.plot(x, y, '-', linewidth = 1.5, label = legend + u" (AUC = {0:0.1f}% \xb1 {1:0.1f}%)".format(auc,aucDev))
pylab.legend(loc = 4, borderaxespad=0.4, prop={'size':12})
pylab.savefig("referral/referral-curves.pdf", format='pdf')
开发者ID:piresramon,项目名称:retina.bovw.plosone,代码行数:29,代码来源:referral.py
示例13: is_stationary
def is_stationary(ts, test_window):
"""
This function checks whether the given TS is stationary. Can make it boolean, but lets just leave it
for visualisation purposes. Not to be run once the numbers have been fixed.
"""
# Determine the rolling statistics (places like these compelled me to use Pandas and not numpy here)
rol_mean = pd.rolling_mean(ts, window=test_window)
rol_std = pd.rolling_std(ts, window=test_window)
# Plot rolling statistics:
orig = plt.plot(ts, color="blue", label="Original")
mean = plt.plot(rol_mean, color="red", label="Rolling Mean")
std = plt.plot(rol_std, color="black", label="Rolling Std")
plt.legend(loc="best")
plt.title("Rolling Mean & Standard Deviation")
plt.show()
# Perform the Dickey-Fuller test: (Check documentation of fn for return params)
print "Results of Dickey-Fuller Test:"
dftest = adfuller(timeseries, autolag="AIC")
dfoutput = pd.Series(dftest[0:4], index=["Test Statistic", "p-value", "#Lags Used", "Number of Observations Used"])
for key, value in dftest[4].items():
dfoutput["Critical Value (%s)" % key] = value
print dfoutput
开发者ID:PrieureDeSion,项目名称:Randoms,代码行数:25,代码来源:main.py
示例14: check_models
def check_models(self):
plt.figure('Bandgap narrowing')
Na = np.logspace(12, 20)
Nd = 0.
dn = 1e14
temp = 300.
for author in self.available_models():
BGN = self.update(Na=Na, Nd=Nd, nxc=dn,
author=author,
temp=temp)
if not np.all(BGN == 0):
plt.plot(Na, BGN, label=author)
test_file = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
'Si', 'check data', 'Bgn.csv')
data = np.genfromtxt(test_file, delimiter=',', names=True)
for name in data.dtype.names[1:]:
plt.plot(
data['N'], data[name], 'r--',
label='PV-lighthouse\'s: ' + name)
plt.semilogx()
plt.xlabel('Doping (cm$^{-3}$)')
plt.ylabel('Bandgap narrowing (K)')
plt.legend(loc=0)
开发者ID:MK8J,项目名称:QSSPL-analyser,代码行数:31,代码来源:bandgap_narrowing.py
示例15: simulationWithoutDrug
def simulationWithoutDrug(numViruses, maxPop, maxBirthProb, clearProb,
numTrials):
"""
Run the simulation and plot the graph for problem 3 (no drugs are used,
viruses do not have any drug resistance).
For each of numTrials trial, instantiates a patient, runs a simulation
for 300 timesteps, and plots the average virus population size as a
function of time.
numViruses: number of SimpleVirus to create for patient (an integer)
maxPop: maximum virus population for patient (an integer)
maxBirthProb: Maximum reproduction probability (a float between 0-1)
clearProb: Maximum clearance probability (a float between 0-1)
numTrials: number of simulation runs to execute (an integer)
"""
totalTime = 300
noOfVirus = [0.0 for step in range(totalTime)]
for trial in range(numTrials):
viruses = [SimpleVirus(maxBirthProb, clearProb) for i in range(numViruses)]
patient = Patient(viruses, maxPop)
for step in range(totalTime):
noOfVirus[step] += patient.update()
for step in range(totalTime):
noOfVirus[step] /= numTrials
pylab.plot(range(totalTime), noOfVirus)
pylab.title('Virus simulation without Drug')
pylab.legend(['Virus without Drug'])
pylab.xlabel('Time step')
pylab.ylabel('Number of Viruses')
pylab.show()
开发者ID:scattm,项目名称:MIT6002x,代码行数:34,代码来源:ps3b.py
示例16: plotFeaturePDF
def plotFeaturePDF(ift, pft, outbase, fmin=0.0, fmax=1.0, fstep=0.01):
"""
Plot a comparison between the input feature distribution and the
feature distribution of the predicted halos
"""
plt.clf()
nfbins = ( fmax - fmin ) / fstep
fbins = np.logspace( fmin, fmax, nfbins )
fcen = ( fbins[:-1] + fbins[1:] ) / 2
plt.xscale( 'log', nonposx='clip' )
plt.yscale( 'log', nonposy='clip' )
ic, e, p = plt.hist( ift, fbins, label='Original Halos', alpha=0.5, normed=True )
pc, e, p = plt.hist( pft, fbins, label='Added Halos', alpha=0.5, normed=True )
plt.legend()
plt.xlabel( r'$\delta$' )
plt.savefig( outbase+'_fpdf.png' )
fdtype = np.dtype( [ ('fcen', float), ('ifcounts', float), ('pfcounts', float) ] )
fd = np.ndarray( len(fcen), dtype = fdtype )
fd[ 'mcen' ] = fcen
fd[ 'imcounts' ] = ic
fd[ 'pmcounts' ] = pc
fitsio.write( outbase+'_fpdf.fit', fd )
开发者ID:j-dr,项目名称:ADDHALOS,代码行数:27,代码来源:validation.py
示例17: plotFirstTacROC
def plotFirstTacROC(dataset):
import matplotlib.pylab as plt
from os.path import join
from src.utils import PROJECT_DIR
plt.figure(figsize=(6, 6))
time_sampler = TimeSerieSampler(n_time_points=12)
evaluator = Evaluator()
time_series_idx = 0
methods = {
"cross_correlation": "Cross corr. ",
"kendall": "Kendall ",
"symbol_mutual": "Symbol MI ",
"symbol_similarity": "Symbol sim.",
}
for method in methods:
print method
predictor = SingleSeriesPredictor(good_methods[method], time_sampler)
prediction = predictor.predictAllInstancesCombined(dataset, time_series_idx)
roc_auc, fpr, tpr = evaluator.evaluate(prediction)
plt.plot(fpr, tpr, label=methods[method] + " (auc = %0.3f)" % roc_auc)
plt.legend(loc="lower right")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.grid()
plt.savefig(join(PROJECT_DIR, "output", "firstTACROC.pdf"))
开发者ID:gajduk,项目名称:network-inference-from-short-time-series-gajduk,代码行数:28,代码来源:evaluator.py
示例18: plot_runtime_results
def plot_runtime_results(results):
plt.rcParams["figure.figsize"] = 7,7
plt.rcParams["font.size"] = 22
matplotlib.rc("xtick", labelsize=24)
matplotlib.rc("ytick", labelsize=24)
params = {"text.fontsize" : 32,
"font.size" : 32,
"legend.fontsize" : 30,
"axes.labelsize" : 32,
"text.usetex" : False
}
plt.rcParams.update(params)
#plt.semilogx(results[:,0], results[:,3], 'r-x', lw=3)
#plt.semilogx(results[:,0], results[:,1], 'g-D', lw=3)
#plt.semilogx(results[:,0], results[:,2], 'b-s', lw=3)
plt.plot(results[:,0], results[:,3], 'r-x', lw=3, ms=10)
plt.plot(results[:,0], results[:,1], 'g-D', lw=3, ms=10)
plt.plot(results[:,0], results[:,2], 'b-s', lw=3, ms=10)
plt.legend(["Chain", "Tree", "FFT Tree"], loc="upper left")
plt.xticks([1e5, 2e5, 3e5])
plt.yticks([0, 60, 120, 180])
plt.xlabel("Problem Size")
plt.ylabel("Runtime (sec)")
return results
开发者ID:kswersky,项目名称:CaRBM,代码行数:29,代码来源:sum_cardinality.py
示例19: fit_plot_unlabeled_data
def fit_plot_unlabeled_data(unlabeled_data_x, labeled_data_x, labeled_data_y, fit_order, data_type, other_data_list, other_data_name):
output = open('predictions.csv','wb')
coeffs = np.polyfit(labeled_data_x, labeled_data_y, fit_order) #does poly git to nth deg on labeled data
fit_eq = np.poly1d(coeffs) #Eqn from fit
predicted_y = fit_eq(unlabeled_data_x)
i = 0
writer = csv.writer(output,delimiter=',')
header = [str(data_type),str(other_data_name),'Predicted_Num_Inc']
writer.writerow(header)
while i < len(predicted_y):
output_data = [unlabeled_data_x[i],other_data_list[i],predicted_y[i]]
writer.writerow(output_data)
print 'For '+str(data_type)+' of: '+str(unlabeled_data_x[i])+', Predicted Number of Incidents is: '+str(predicted_y[i])
i = i + 1
plt.scatter(unlabeled_data_x, predicted_y, color='blue', label='Predicted Number of Incidents')
fit_line_x = np.arange(min(unlabeled_data_x), max(unlabeled_data_x), 1)
plt.plot(fit_line_x, fit_eq(fit_line_x), color='red',linestyle='dashed',label=' Order '+str(fit_order)+' Polynomial Fit')
#____Use below line to plot actual data also!!
#plt.scatter(labeled_data_x, labeled_data_y, color='green', label='Actual Incident Report Data')
plt.title('Predicted Number of 311 Incidents by '+str(data_type))
plt.xlabel(str(data_type))
plt.ylabel('Number of 311 Incidents')
plt.grid()
plt.xlim([min(unlabeled_data_x)-1500, max(unlabeled_data_x)+1500])
plt.legend(loc='upper left')
plt.show()
开发者ID:nyucusp,项目名称:gx5003-fall2013,代码行数:26,代码来源:prob_d_pred_by_pop.py
示例20: visualization2
def visualization2(self, sp_to_vis=None):
if sp_to_vis:
species_ready = list(set(sp_to_vis).intersection(self.all_sp_signatures.keys()))
else:
raise Exception('list of driver species must be defined')
if not species_ready:
raise Exception('None of the input species is a driver')
for sp in species_ready:
# Setting up figure
plt.figure()
plt.subplot(313)
mon_val = OrderedDict()
signature = self.all_sp_signatures[sp]
for idx, mon in enumerate(list(set(signature))):
if mon[0] == 'C':
mon_val[self.all_comb[sp][mon] + (-1,)] = idx
else:
mon_val[self.all_comb[sp][mon]] = idx
mon_rep = [0] * len(signature)
for i, m in enumerate(signature):
if m[0] == 'C':
mon_rep[i] = mon_val[self.all_comb[sp][m] + (-1,)]
else:
mon_rep[i] = mon_val[self.all_comb[sp][m]]
# mon_rep = [mon_val[self.all_comb[sp][m]] for m in signature]
y_pos = numpy.arange(len(mon_val.keys()))
plt.scatter(self.tspan[1:], mon_rep)
plt.yticks(y_pos, mon_val.keys())
plt.ylabel('Monomials', fontsize=16)
plt.xlabel('Time(s)', fontsize=16)
plt.xlim(0, self.tspan[-1])
plt.ylim(0, max(y_pos))
plt.subplot(312)
for name in self.model.odes[sp].as_coefficients_dict():
mon = name
mon = mon.subs(self.param_values)
var_to_study = [atom for atom in mon.atoms(sympy.Symbol)]
arg_f1 = [numpy.maximum(self.mach_eps, self.y[str(va)][1:]) for va in var_to_study]
f1 = sympy.lambdify(var_to_study, mon)
mon_values = f1(*arg_f1)
mon_name = str(name).partition('__')[2]
plt.plot(self.tspan[1:], mon_values, label=mon_name)
plt.ylabel('Rate(m/sec)', fontsize=16)
plt.legend(bbox_to_anchor=(-0.1, 0.85), loc='upper right', ncol=1)
plt.subplot(311)
plt.plot(self.tspan[1:], self.y['__s%d' % sp][1:], label=parse_name(self.model.species[sp]))
plt.ylabel('Molecules', fontsize=16)
plt.legend(bbox_to_anchor=(-0.15, 0.85), loc='upper right', ncol=1)
plt.suptitle('Tropicalization' + ' ' + str(self.model.species[sp]))
# plt.show()
plt.savefig('s%d' % sp + '.png', bbox_inches='tight', dpi=400)
开发者ID:LoLab-VU,项目名称:tropical,代码行数:60,代码来源:max_plus.py
注:本文中的matplotlib.pylab.legend函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论